浏览全部资源
扫码关注微信
南京大学化学化工学院 高性能高分子材料与技术教育部重点实验室 南京 210023
E-mail: chenwz@nju.edu.cn;
E-mail: ; jiangx@nju.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-11-27,
收稿日期:2024-06-30,
录用日期:2024-08-16
移动端阅览
袁洋, 蒋惠忆, 陈伟芝, 蒋锡群. 长循环双靶向重组蛋白药物偶联体用于抗肿瘤治疗[J]. 高分子学报, 2025,56(2):266-277.
YANG YUAN, HUI-YI JIANG, WEI-ZHI CHEN, XI-QUN JIANG. Long-circulated Dual-targeted Recombinant Protein Drug Conjugates for Antitumor Therapy. [J]. Acta polymerica sinica, 2025, 56(2): 266-277.
袁洋, 蒋惠忆, 陈伟芝, 蒋锡群. 长循环双靶向重组蛋白药物偶联体用于抗肿瘤治疗[J]. 高分子学报, 2025,56(2):266-277. DOI: 10.11777/j.issn1000-3304.2024.24189. CSTR: 32057.14.GFZXB.2024.7291.
YANG YUAN, HUI-YI JIANG, WEI-ZHI CHEN, XI-QUN JIANG. Long-circulated Dual-targeted Recombinant Protein Drug Conjugates for Antitumor Therapy. [J]. Acta polymerica sinica, 2025, 56(2): 266-277. DOI: 10.11777/j.issn1000-3304.2024.24189. CSTR: 32057.14.GFZXB.2024.7291.
药物的靶向性以及体内长效循环特性对于药物在病灶部位的累积和疗效发挥着至关重要的作用. 本研究设计合成了长循环双靶向重组蛋白药物偶联体RPDC-L (long-circulated dualtargeted recombinant protein drug conjugate),用于抗肿瘤治疗. RPDC-L包含4个部分,分别是靶向人表皮生长因子受体2 (HER2)的anti-HER2纳米抗体、整合素受体
α
v
β
3
的多肽配体RGD、白蛋白结合域以及小分子化疗药物阿霉素. 其中,anti-HER2纳米抗体和RGD多肽提供肿瘤靶向功能;白蛋白结合域通过结合血液中的白蛋白,赋予药物较长的体内循环时间;化疗药物阿霉素通过酸响应聚乙二醇-腙键连接子与重组蛋白偶联,在微酸性的肿瘤微环境中通过pH响应性释放,进行肿瘤杀伤. 与非长循环双靶向重组蛋白相比,融合表达白蛋白结合单元后,长循环双靶向重组蛋白在小鼠体内的半衰期时间提升到了1.51倍. 与抗肿瘤药物阿霉素偶联后,药物在肿瘤组织中的累积提升到了1.6倍. 体内抗肿瘤试验表明,RPDC-L实现安全高效的抗肿瘤效果,肿瘤抑制率达到78.4%,是非长循环双靶向重组蛋白药物偶联体的1.50倍.
Improved tumor specificity and
in vivo
pharmacokinetic behaviors are vital for enhancing drug accumulation at the tumor site and achieving desirable antitumor outcomes. In this study
we designed and synthesized a long-circulated dual-targeted recombinant protein drug conjugate RPDC-L
which is composed of four parts
including a nanobody against human epidermal growth factor receptor 2 (HER2)
integrin receptor
α
v
β
3
-binding
ligand RGD
albumin binding domain (ABD) and chemotherapeutics doxorubicin. Anti-HER2 nanobody and RGD served as tumor-targeting groups. ABD could elongate the
in vivo
circulation time by binding to albumin within the serum. Doxorubicin was conjugated with recombinant protein
via
an acid-responsive polyethylene glycol hydrazone linker
which was beneficial for the controlled drug release at the weak acidic tumor microenvironment. ABD fusion extended the half-life time of the drug about 1.51-fold. In addition
RPDC-L improved doxorubicin accumulation at the tumor site to 6.1% ID/g (injection dose per gram) up to 1.6-fold of that for the conjugate without ABD fusion (RPDC-S
3.7% ID/g). Finally
in the mouse xenograft subcutaneous tumor models of cervical carcinoma HeLa
RPDC-L showed high biocompatibility and exhibited efficient antitumor efficacy with a tumor inhibition rate of 78.4%
up to 1.5-fold of RPDC-S.
药物递送大分子药物双靶向重组蛋白药物偶联体长循环
Drug deliveryMacromolecular drugDual-targeted recombinant protein drug conjugateLong circulation
Goebeler M. E.; Stuhler G.; Bargou R.Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat. Rev. Clin. Oncol., 2024, 21(7), 539-560. doi:10.1038/s41571-024-00905-yhttp://dx.doi.org/10.1038/s41571-024-00905-y
Wang Q.; Chen Y. Q.; Park J.; Liu X.; Hu Y. F.; Wang T. X.; McFarland K.; Betenbaugh M. J.Design and production of bispecific antibodies. Antibodies, 2019, 8(3), 43. doi:10.3390/antib8030043http://dx.doi.org/10.3390/antib8030043
Petruzzella A.; Bruand M.; Santamaria-Martínez A.; Katanayeva N.; Reymond L.; Wehrle S.; Georgeon S.; Inel D.; van Dalen F. J.; Viertl D.; Lau K.; Pojer F.; Schottelius M.; Zoete V.; Verdoes M.; Arber C.; Correia B. E.; Oricchio E.Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nat. Chem. Biol., 2024, 20, 1188-1198. doi:10.1038/s41589-024-01627-zhttp://dx.doi.org/10.1038/s41589-024-01627-z
Spiess C.; Zhai Q. T.; Carter P. J.Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol., 2015, 67(2), 95-106. doi:10.1016/j.molimm.2015.01.003http://dx.doi.org/10.1016/j.molimm.2015.01.003
Chen W. Z.; Yuan Y.; Li C.; Mao H.; Liu B. R.; Jiang X. Q.Modulating tumor extracellular matrix by simultaneous inhibition of two cancer cell receptors. Adv. Mater., 2022, 34(10), e2109376. doi:10.1002/adma.202109376http://dx.doi.org/10.1002/adma.202109376
Dees S.; Ganesan R.; Singh S.; Grewal I. S.Bispecific antibodies for triple negative breast cancer. Trends Cancer, 2021, 7(2), 162-173. doi:10.1016/j.trecan.2020.09.004http://dx.doi.org/10.1016/j.trecan.2020.09.004
Goulet D. R.; Atkins W. M.Considerations for the design of antibody-based therapeutics. J. Pharm. Sci., 2020, 109(1), 74-103. doi:10.1016/j.xphs.2019.05.031http://dx.doi.org/10.1016/j.xphs.2019.05.031
Chen W. Z.; Yuan Y.; Jiang X. Q.Antibody and antibody fragments for cancer immunotherapy. J. Control. Release, 2020, 328, 395-406. doi:10.1016/j.jconrel.2020.08.021http://dx.doi.org/10.1016/j.jconrel.2020.08.021
Muyldermans, S. Applications of nanobodies. Annu. Rev. Anim. Biosci., 2021, 9, 401-421. doi:10.1146/annurev-animal-021419-083831http://dx.doi.org/10.1146/annurev-animal-021419-083831
Muyldermans S.; Atarhouch T.; Saldanha J.; Barbosa J. A.; Hamers R.Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng., 1994, 7(9), 1129-1135. doi:10.1093/protein/7.9.1129http://dx.doi.org/10.1093/protein/7.9.1129
Desmyter A.; Transue T. R.; Ghahroudi M. A.; Thi M. H.; Poortmans F.; Hamers R.; Muyldermans S.; Wyns L.Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol., 1996, 3(9), 803-811. doi:10.1038/nsb0996-803http://dx.doi.org/10.1038/nsb0996-803
Kang W.; Ding C. F.; Zheng D. N.; Ma X.; Yi L.; Tong X. Y.; Wu C.; Xue C.; Yu Y. S.; Zhou Q.Nanobody conjugates for targeted cancer therapy and imaging. Technol. Cancer Res. Treat., 2021, 20, 15330338211010117. doi:10.1177/15330338211010117http://dx.doi.org/10.1177/15330338211010117
Podust V. N.; Balan S.; Sim B. C.; Coyle M. P.; Ernst U.; Peters R. T.; Schellenberger V.Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Release, 2016, 240, 52-66. doi:10.1016/j.jconrel.2015.10.038http://dx.doi.org/10.1016/j.jconrel.2015.10.038
Yamasaki K.; Chuang V. T. G.; Maruyama T.; Otagiri M.Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta BBA Gen. Subj., 2013, 1830(12), 5435-5443. doi:10.1016/j.bbagen.2013.05.005http://dx.doi.org/10.1016/j.bbagen.2013.05.005
Burgmaier M.; Liberman A.; Möllmann J.; Kahles F.; Reith S.; Lebherz C.; Marx N.; Lehrke M.Glucagon-like peptide-1 (GLP-1) and its split products GLP-1 (9-37) and GLP-1 (28-37) stabilize atherosclerotic lesions in apoe-/- mice. Atherosclerosis, 2013, 231(2), 427-435.
Zalba S.; ten Hagen T. L. M.; Burgui C.; Garrido M. J.Stealth nanoparticles in oncology: facing the PEG dilemma. J. Control. Release, 2022, 351, 22-36. doi:10.1016/j.jconrel.2022.09.002http://dx.doi.org/10.1016/j.jconrel.2022.09.002
Strohl W. R.Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 2015, 29(4), 215-239. doi:10.1007/s40259-015-0133-6http://dx.doi.org/10.1007/s40259-015-0133-6
Cruz da Silva E.; Dontenwill M.; Choulier L.; Lehmann M.Role of integrins in resistance to therapies targeting growth factor receptors in cancer. Cancers, 2019, 11(5), 692. doi:10.3390/cancers11050692http://dx.doi.org/10.3390/cancers11050692
Hanker A. B.; Estrada M. V.; Bianchini G.; Moore P. D.; Zhao J.; Cheng F.; Koch J. P.; Gianni L.; Tyson D. R.; Sánchez V.; Rexer B. N.; Sanders M. E.; Zhao Z.; Stricker T. P.; Arteaga C. L.Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3in HERK2+ breast cancer. Cancer Res., 2017, 77(12), 3280-3292. doi:10.1158/0008-5472.can-16-2808http://dx.doi.org/10.1158/0008-5472.can-16-2808
Yuan Y.; Zhou S. S.; Li C.; Zhang X. K.; Mao H.; Chen W. Z.; Jiang X. Q.Cascade downregulation of the HER family by a dual-targeted recombinant protein-drug conjugate to inhibit tumor growth and metastasis. Adv. Mater., 2022, 34(23), e2201558. doi:10.1002/adma.202201558http://dx.doi.org/10.1002/adma.202201558
Hopp J.; Hornig N.; Zettlitz K. A.; Schwarz A.; Fuss N.; Müller D.; Kontermann R. E.The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng. Des. Sel., 2010, 23(11), 827-834. doi:10.1093/protein/gzq058http://dx.doi.org/10.1093/protein/gzq058
Zhang Y. J.; Chen W. Z.; Yang C. C.; Fan Q. L.; Wu W.; Jiang X. Q.Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J. Control. Release, 2016, 237, 115-124. doi:10.1016/j.jconrel.2016.07.011http://dx.doi.org/10.1016/j.jconrel.2016.07.011
Ji S. L.; Lan H. M.; Zhou S. S.; Zhang X. K.; Chen W. Z.; Jiang X. Q.Ir(III)-based ratiometric hypoxic probe for cell imaging. Chin. J. Polym. Sci., 2023, 41(5), 794-801. doi:10.1007/s10118-023-2922-6http://dx.doi.org/10.1007/s10118-023-2922-6
Boedtkjer E.; Pedersen S. F.The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol., 2020, 82, 103-126. doi:10.1146/annurev-physiol-021119-034627http://dx.doi.org/10.1146/annurev-physiol-021119-034627
Zhou S. S.; Jiang L.; Li C.; Mao H.; Jiang C. P.; Wang Z. X.; Zheng X. C.; Jiang X. Q.Acid and hypoxia tandem-activatable deep near-infrared nanoprobe for two-step signal amplification and early detection of cancer. Adv. Mater., 2023, 35(36), e2212231. doi:10.1002/adma.202212231http://dx.doi.org/10.1002/adma.202212231
0
浏览量
111
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构