浏览全部资源
扫码关注微信
1.珠海光驭科技有限公司珠海519099
2.聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433
[ "汪长春,男,1965年生. 复旦大学特聘教授. 1987年复旦大学化学系本科毕业,1990年复旦大学化学系硕士毕业后留在复旦大学工作,1995年获复旦大学高分子化学和物理专业理学博士学位. 2005年获国家杰出青年科学基金资助. 目前主要研究方向为特殊结构的功能微球基础和应用研究以及具有“热缩冷胀”性能的聚合物研究,相关研究应用于光子晶体材料的制备、靶向纳米药物载体及生物分子快速分离检测、高性能涂层及功能复合材料等. 在Nat. Chem., Nat. Commun., Angew. Chem. Int. Ed., JACS, Adv. Mater., ACS Nano等期刊上发表论文300余篇." ]
纸质出版日期:2025-02-20,
网络出版日期:2024-12-02,
收稿日期:2024-07-31,
录用日期:2024-09-11
移动端阅览
田丰, 黄翰闻, 田方浩, 赵国伟, 汪长春. 胶体光子晶体制备和应用研究进展[J]. 高分子学报, 2025,56(2):215-231.
FENG TIAN, HAN-WEN HUANG, FANG-HAO TIAN, GUO-WEI ZHAO, CHANG-CHUN WANG. Progress in Preparation and Application of Colloidal Photonic Crystals. [J]. Acta polymerica sinica, 2025, 56(2): 215-231.
田丰, 黄翰闻, 田方浩, 赵国伟, 汪长春. 胶体光子晶体制备和应用研究进展[J]. 高分子学报, 2025,56(2):215-231. DOI: 10.11777/j.issn1000-3304.2024.24210. CSTR: 32057.14.GFZXB.2024.7296.
FENG TIAN, HAN-WEN HUANG, FANG-HAO TIAN, GUO-WEI ZHAO, CHANG-CHUN WANG. Progress in Preparation and Application of Colloidal Photonic Crystals. [J]. Acta polymerica sinica, 2025, 56(2): 215-231. DOI: 10.11777/j.issn1000-3304.2024.24210. CSTR: 32057.14.GFZXB.2024.7296.
光子晶体是通过不同折光指数的物质在空间中周期性排列来实现对光的选择性反射,从而产生结构色. 胶体光子晶体因其构筑单元易于制备,成本低廉和应用广泛而备受关注. 本文综述了胶体光子晶体的组装技术及其应用的最新进展和面临的挑战. 胶体光子晶体的组装主要采用自下而上法,包括基于物理力场的组装(如重力、离心力、电/磁场诱导组装)和流体动力学的组装(如毛细管力、剪切诱导组装). 特别地,剪切诱导组装法因其在快速制备大尺寸光子晶体膜方面的潜力而受到关注. 此外,还分析了不同组装技术的优缺点,并讨论了胶体光子晶体在传感器、防伪和信息显示等主要应用场景中的应用潜力及面临的机遇和挑战. 最后,对光子晶体组装技术的发展趋势进行了展望,以期推动光子晶体材料的进一步发展和应用.
Photonic crystals produce structural colors through selective reflection of light by the periodic arrangement of materials with varying refractive indices. Colloidal photonic crystals
in particular
have attracted considerable attention due to their ease of preparation
cost-effectiveness
and widespread applications. This review summarizes the latest progress and challenges in the assembly techniques and applications of colloidal photonic crystals. The assembly of photonic crystals is predominantly conducted through a bottom-up approach
which includes assembly methods based on physical force fields such as gravity
centrifugal force
and electromagnetic field-induced assembly
as well as assembly techniques driven by fluid dynamics
including capillary forces and shear-induced methods. Specifically
shear-induced assembly has garnered attention for its potential in the rapid fabrication of large-scale photonic crystal films. This review critically analyzes the merits and drawbacks of different assembly methods and discusses the application prospects of colloidal photonic crystals in major fields such as sensing
anti-counterfeiting
and information display
along with the opportunities and challenges they present. In conclusion
the article provides an outlook on the development trends of photonic crystal assembly technology
with the hope of promoting further advancement and application of these materials.
光子晶体单分散微球结构色分子介导剪切诱导组装
Photonic crystalMonodisperse particlesStructure colorMolecular mediatedShear-induce assembly
Fenzl C.; Hirsch T.; Wolfbeis O. S.Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed., 2014, 53(13), 3318-3335. doi:10.1002/anie.201307828http://dx.doi.org/10.1002/anie.201307828
Vukusic P.; Sambles J. R.; Lawrence C. R.Colour mixing in wing scales of a butterfly. Nature, 2000, 404(6777), 457. doi:10.1038/35006561http://dx.doi.org/10.1038/35006561
Teyssier J.; Saenko S. V.; van der Marel D.; Milinkovitch M. C.Photonic crystals cause active colour change in chameleons. Nat. Commun., 2015, 6, 6368. doi:10.1038/ncomms7368http://dx.doi.org/10.1038/ncomms7368
Grether G. F.; Kolluru G. R.; Nersissian K.Individual colour patches as multicomponent signals. Biol. Rev., 2004, 79(3), 583-610. doi:10.1017/s1464793103006390http://dx.doi.org/10.1017/s1464793103006390
Nucara L.; Greco F.; Mattoli V.Electrically responsive photonic crystals: a review. J. Mater. Chem. C, 2015, 3(33), 8449-8467. doi:10.1039/c5tc00773ahttp://dx.doi.org/10.1039/c5tc00773a
Lotsch B. V.; Ozin G. A.Photonic clays: a new family of functional 1D photonic crystals. ACS Nano, 2008, 2(10), 2065-2074. doi:10.1021/nn800375ehttp://dx.doi.org/10.1021/nn800375e
Lotsch B. V.; Ozin G. A.Clay Bragg stack optical sensors. Adv. Mater., 2008, 20(21), 4079-4084. doi:10.1002/adma.200800914http://dx.doi.org/10.1002/adma.200800914
Wang Z. H.; Zhang J. H.; Xie J.; Yin Y. S.; Wang Z. Y.; Shen H. Z.; Li Y. F.; Li J. X.; Liang S.; Cui L. Y.; Zhang L.; Zhang H.; Yang B.Patterning organic/inorganic hybrid Bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors. ACS Appl. Mater. Interfaces, 2012, 4(3), 1397-1403. doi:10.1021/am201658dhttp://dx.doi.org/10.1021/am201658d
Zhang J. T.; Wang L. L.; Lamont D. N.; Velankar S. S.; Asher S. A.Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. Int. Ed., 2012, 51(25), 6117-6120. doi:10.1002/anie.201105439http://dx.doi.org/10.1002/anie.201105439
Ge J. P.; Yin Y. D.Responsive photonic crystals. Angew. Chem. Int. Ed., 2011, 50(7), 1492-1522. doi:10.1002/anie.200907091http://dx.doi.org/10.1002/anie.200907091
Li F.; Josephson D. P.; Stein A.Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed., 2011, 50(2), 360-388. doi:10.1002/anie.201001451http://dx.doi.org/10.1002/anie.201001451
Yu Z. Y.; Wang C. F.; Ling L. T.; Chen L.; Chen S.Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy. Angew. Chem. Int. Ed., 2012, 51(10), 2375-2378. doi:10.1002/anie.201107126http://dx.doi.org/10.1002/anie.201107126
Cong H. L.; Yu B.; Tang J. G.; Li Z. J.; Liu X. S.Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev., 2013, 42(19), 7774-7800. doi:10.1039/c3cs60078ehttp://dx.doi.org/10.1039/c3cs60078e
von Freymann G.; Kitaev V.; Lotsch B. V.; Ozin G. A.Bottom-up assembly of photonic crystals. Chem. Soc. Rev., 2013, 42(7), 2528-2554. doi:10.1039/c2cs35309ahttp://dx.doi.org/10.1039/c2cs35309a
Marlow F.; Muldarisnur, Sharifi P.; Brinkmann R.; Mendive C.Opals: status and prospects. Angew. Chem. Int. Ed, 2009, 48(34), 6212-6233. doi:10.1002/anie.200900210http://dx.doi.org/10.1002/anie.200900210
Stein A.; Wilson B. E.; Rudisill S. G.Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem. Soc. Rev., 2013, 42(7), 2763-2803. doi:10.1039/c2cs35317bhttp://dx.doi.org/10.1039/c2cs35317b
Forster J. D.; Noh H.; Liew S. F.; Saranathan V.; Schreck C. F.; Yang L.; Park J. G.; Prum R. O.; Mochrie S. G. J.; O'Hern C. S.; Cao H.; Dufresne E. R.Biomimetic isotropic nanostructures for structural coloration. Adv. Mater., 2010, 22(26-27), 2939-2944. doi:10.1002/adma.200903693http://dx.doi.org/10.1002/adma.200903693
Zeng Q.; Ding C.; Li Q. S.; Yuan W.; Peng Y.; Hu J. C.; Zhang K. Q.Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Adv., 2017, 7(14), 8443-8452. doi:10.1039/c6ra26526jhttp://dx.doi.org/10.1039/c6ra26526j
Yablonovitch E.; Gmitter T. J.; Leung K. M.Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett., 1991, 67(17), 2295-2298. doi:10.1103/physrevlett.67.2295http://dx.doi.org/10.1103/physrevlett.67.2295
Vogel N.; Retsch M.; Fustin C. A.; Del Campo A.; Jonas U.Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem. Rev., 2015, 115(13), 6265-6311. doi:10.1021/cr400081dhttp://dx.doi.org/10.1021/cr400081d
Li H. T.; Wu P.; Zhao G. W.; Guo J.; Wang C. C.Fabrication of industrial-level polymer photonic crystal films at ambient temperature based on uniform core/shell colloidal particles. J. Colloid Interface Sci., 2021, 584, 145-153. doi:10.1016/j.jcis.2020.09.084http://dx.doi.org/10.1016/j.jcis.2020.09.084
Li M. M.; Peng B. L.; Lyu Q. Q.; Chen X. D.; Hu Z.; Zhang X. J.; Xiong B. J.; Zhang L. B.; Zhu J. T.Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids. Nat. Commun., 2024, 15(1), 1874. doi:10.1038/s41467-024-46237-4http://dx.doi.org/10.1038/s41467-024-46237-4
Yu X. Q.; Wu J.; Wang J. W.; Zhang N. X.; Qing R. K.; Li G. X.; Li Q.; Chen S.Facile access to high solid content monodispersed microspheres via dual-component surfactants regulation toward high-performance colloidal photonic crystals. Adv. Mater., 2024, 36(24), 2312879. doi:10.1002/adma.202312879http://dx.doi.org/10.1002/adma.202312879
Dalmis R.; Birlik I.; Ak Azem N. F.; Çelik E.Modification of the sedimentation method for PMMA photonic crystal coatings. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 577, 194-201. doi:10.1016/j.colsurfa.2019.05.068http://dx.doi.org/10.1016/j.colsurfa.2019.05.068
Mayoral R.; Requena J.; Moya J. S.; López C.; Cintas A.; Miguez H.; Meseguer F.; Vázquez L.; Holgado M.; Blanco Á.3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure. Adv. Mater., 1997, 9(3), 257-260. doi:10.1002/adma.19970090318http://dx.doi.org/10.1002/adma.19970090318
Bresson F.; Chen C. C.; Chi G. C.; Chen Y. W.Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range. Appl. Surf. Sci., 2003, 217(1-4), 281-288. doi:10.1016/s0169-4332(03)00558-0http://dx.doi.org/10.1016/s0169-4332(03)00558-0
Sacks, M. D.; Tseng, T. Y. Preparation of SiO2 glass from model powder compacts: II, sintering. J. Am. Ceram. Soc., 1984, 67(8), 532-537. doi:10.1111/j.1151-2916.1984.tb19165.xhttp://dx.doi.org/10.1111/j.1151-2916.1984.tb19165.x
Ballato J.; James A.A ceramic photonic crystal temperature sensor. J. Am. Ceram. Soc., 1999, 82(8), 2273-2275. doi:10.1111/j.1151-2916.1999.tb02078.xhttp://dx.doi.org/10.1111/j.1151-2916.1999.tb02078.x
Hu C.; Chen Y.Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem. Eng. J., 2015, 271, 128-134. doi:10.1016/j.cej.2015.02.051http://dx.doi.org/10.1016/j.cej.2015.02.051
Liu J. R.; Nero M.; Jansson K.; Willhammar T.; Sipponen M. H.Photonic crystals with rainbow colors by centrifugation-assisted assembly of colloidal lignin nanoparticles. Nat. Commun., 2023, 14, 3099. doi:10.1038/s41467-023-38819-5http://dx.doi.org/10.1038/s41467-023-38819-5
Xu Y.Centrifugation and spin-coating method for fabrication of three-dimensional opal and inverse-opal structures as photonic crystal devices. J. Microlith. Microfab., 2004, 3(1), 168. doi:10.1117/1.1631005http://dx.doi.org/10.1117/1.1631005
Jiang P.; McFarland M. J.Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc., 2004, 126(42), 13778-13786. doi:10.1021/ja0470923http://dx.doi.org/10.1021/ja0470923
Giuliani M.; González-Viñas W.; Poduska K. M.; Yethiraj A.Dynamics of crystal structure formation in spin-coated colloidal films. J. Phys. Chem. Lett., 2010, 1(9), 1481-1486. doi:10.1021/jz1002605http://dx.doi.org/10.1021/jz1002605
Pozas R.; Mihi A.; Ocaña M.; Míguez H.Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mater., 2006, 18(9), 1183-1187. doi:10.1002/adma.200502263http://dx.doi.org/10.1002/adma.200502263
Wang A. J.; Chen S. L.; Dong P.; Cai X. G.; Zhou Q.; Yuan G. M.; Hu C. T.; Zhang D. Z.Fabrication of colloidal photonic crystals with heterostructure by spin-coating method. Chin. Phys. Lett., 2009, 26(2), 024210. doi:10.1088/0256-307x/26/2/024210http://dx.doi.org/10.1088/0256-307x/26/2/024210
Wang H.; Yan K. P.; Xie J.; Duan M.Fabrication of ZnO colloidal photonic crystal by spin-coating method. Mater. Sci. Semicond. Process., 2008, 11(2), 44-47. doi:10.1016/j.mssp.2008.08.005http://dx.doi.org/10.1016/j.mssp.2008.08.005
Zhang K. Q.; Liu X. Y.In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature, 2004, 429(6993), 739-743. doi:10.1038/nature02630http://dx.doi.org/10.1038/nature02630
Han M. G.; Shin C. G.; Jeon S. J.; Shim H.; Heo C. J.; Jin H. S.; Kim J. W.; Lee S.Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv. Mater., 2012, 24(48), 6438-6444. doi:10.1002/adma.201203211http://dx.doi.org/10.1002/adma.201203211
Liu L. J.; Karuturi S. K.; Su L. T.; Wang Q.; Tok A. I. Y.Electrochromic photonic crystal displays with versatile color tunability. Electrochem. Commun., 2011, 13(11), 1163-1165. doi:10.1016/j.elecom.2011.09.007http://dx.doi.org/10.1016/j.elecom.2011.09.007
Puzzo D.; Arsenault A.; Manners I.; Ozin G.Electroactive inverse opal: a single material for all colors. Angew. Chem. Int. Ed., 2009, 48(5), 943-947. doi:10.1002/anie.200804391http://dx.doi.org/10.1002/anie.200804391
Shim T. S.; Kim S. H.; Sim J. Y.; Lim J. M.; Yang S. M.Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv. Mater., 2010, 22(40), 4494-4498. doi:10.1002/adma.201001227http://dx.doi.org/10.1002/adma.201001227
Ueno K.; Sakamoto J.; Takeoka Y.; Watanabe M.Electrochromism based on structural colour changes in a polyelectrolyte gel. J. Mater. Chem., 2009, 19(27), 4778-4783. doi:10.1039/b900261hhttp://dx.doi.org/10.1039/b900261h
Fu Q. Q.; Zhu H. M.; Ge J. P.Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors. Adv. Funct. Mater., 2018, 28(43), 1804628. doi:10.1002/adfm.201804628http://dx.doi.org/10.1002/adfm.201804628
Fang Y. Q.; Fei W. W.; Shen X. Q.; Guo J.; Wang C. C.Magneto-sensitive photonic crystal ink for quick printing of smart devices with structural colors. Mater. Horiz., 2021, 8(7), 2079-2087. doi:10.1039/d1mh00577dhttp://dx.doi.org/10.1039/d1mh00577d
Ge J. P.; Hu Y. X.; Yin Y. D.Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. Int. Ed., 2007, 46(39), 7428-7431. doi:10.1002/anie.200701992http://dx.doi.org/10.1002/anie.200701992
Ge J. P.; Yin Y. D.Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater., 2008, 20(18), 3485-3491. doi:10.1002/adma.200800657http://dx.doi.org/10.1002/adma.200800657
Luo W.; Cui Q.; Fang K.; Chen K.; Ma H. R.; Guan J. G.Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett., 2020, 20(2), 803-811. doi:10.1021/acs.nanolett.7b04218http://dx.doi.org/10.1021/acs.nanolett.7b04218
Grant A.; Lonergan A.; O'Dwyer C.Thickness control of dispersion in opal photonic crystals. Opt. Mater., 2023, 142, 114053. doi:10.1016/j.optmat.2023.114053http://dx.doi.org/10.1016/j.optmat.2023.114053
Bigdeli M. B.; Tsai P. A.Making photonic crystals via evaporation of nanoparticle-laden droplets on superhydrophobic microstructures. Langmuir, 2020, 36(17), 4835-4841. doi:10.1021/acs.langmuir.0c00193http://dx.doi.org/10.1021/acs.langmuir.0c00193
Wang J. Z.; Yang L.; Lin D. F.; Luo Y. H.; Li D. M.; Meng Q. B.Optical studies of random disorder of colloidal photonic crystals and its evolution in evaporation induced self-assembly. J. Chem. Phys., 2012, 137(23), 234111. doi:10.1063/1.4772095http://dx.doi.org/10.1063/1.4772095
Zhang C.; Li W. B.; Wang Y. R.Ultrafast self-assembly of colloidal photonic crystals during low-pressure-assisted evaporation of droplets. J. Phys. Chem. Lett., 2022, 13(17), 3776-3780. doi:10.1021/acs.jpclett.2c00534http://dx.doi.org/10.1021/acs.jpclett.2c00534
Zhou L.; Wu Y. J.; Chai L. Q.; Liu G. J.; Fan Q. G.; Shao J. Z.Study on the formation of three-dimensionally ordered SiO2 photonic crystals on polyester fabrics by vertical deposition self-assembly. Text. Res. J., 2016, 86(18), 1973-1987. doi:10.1177/0040517515619350http://dx.doi.org/10.1177/0040517515619350
Yang Q. X.; Ling W.; Xu Y. K.; Chen H. H.; Guo H.; Zhong L. B.; Qiu Y. J.Large-scale production of high-quality elastic structural color films based on hydrogen bond and colloidal charge co-driven silica microsphere self-assembly. Chem. Eng. J., 2023, 455, 140591. doi:10.1016/j.cej.2022.140591http://dx.doi.org/10.1016/j.cej.2022.140591
Droguet B. E.; Liang H. L.; Frka-Petesic B.; Parker R. M.; De Volder M. F. L.; Baumberg J. J.; Vignolini S.Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater., 2022, 21(3), 352-358. doi:10.1038/s41563-021-01135-8http://dx.doi.org/10.1038/s41563-021-01135-8
Bansal L.; Seth P.; Murugappan B.; Basu S.Suppression of coffee ring: (particle) size matters. Applied Phy. Lett., 2018, 112(21), 211605. doi:10.1063/1.5034119http://dx.doi.org/10.1063/1.5034119
Hertaeg M. J.; Rees-Zimmerman C.; Tabor R. F.; Routh A. F.; Garnier G.Predicting coffee ring formation upon drying in droplets of particle suspensions. J. Colloid Interface Sci., 2021, 591, 52-57. doi:10.1016/j.jcis.2021.01.092http://dx.doi.org/10.1016/j.jcis.2021.01.092
Xiong H. B.; Wang Q. C.; Yuan L. J.; Liang J. K.; Lin J. Z.Modeling and experiments of droplet evaporation with micro or nano particles in coffee ring or coffee splat. Nanomaterials, 2023, 13(10), 1609. doi:10.3390/nano13101609http://dx.doi.org/10.3390/nano13101609
Ju X. J.; Yang W. Y.; Gao S.; Li Q.Direct writing of microfluidic three-dimensional photonic crystal structures for terahertz technology applications. ACS Appl. Mater. Interfaces, 2019, 11(44), 41611-41616. doi:10.1021/acsami.9b10561http://dx.doi.org/10.1021/acsami.9b10561
Li G.; Cheng R.; Cheng H. Y.; Yu X. Q.; Ling L. T.; Wang C. F.; Chen S.Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chem. Eng. J., 2021, 405, 126539. doi:10.1016/j.cej.2020.126539http://dx.doi.org/10.1016/j.cej.2020.126539
Li G. X.; Shen H. X.; Li Q.; Tian Y.; Wang C. F.; Chen S.Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique. Mater. Lett., 2019, 242, 179-182. doi:10.1016/j.matlet.2019.01.093http://dx.doi.org/10.1016/j.matlet.2019.01.093
Liu K. Z.; Tian Y.; Li Q.; Du X. Y.; Zhang J.; Wang C. F.; Chen S.Microfluidic printing directing photonic crystal bead 2D code patterns. J. Mater. Chem. C, 2018, 6(9), 2336-2341. doi:10.1039/c7tc05355jhttp://dx.doi.org/10.1039/c7tc05355j
Cai Z. Y.; Li Z. W.; Ravaine S.; He M. X.; Song Y. L.; Yin Y. D.; Zheng H. B.; Teng J. H.; Zhang A.From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev., 2021, 50(10), 5898-5951. doi:10.1039/d0cs00706dhttp://dx.doi.org/10.1039/d0cs00706d
Ruhl T.; Hellmann G. P.Colloidal crystals in latex films: rubbery opals. Macromol. Chem. Phys., 2001, 202(18), 3502-3505. doi:10.1002/1521-3935(20011201)202:18<3502::aid-macp3502>3.0.co;2-6http://dx.doi.org/10.1002/1521-3935(20011201)202:18<3502::aid-macp3502>3.0.co;2-6
Ruhl T.; Spahn P.; Hellmann G. P.Artificial opals prepared by melt compression. Polymer, 2003, 44(25), 7625-7634. doi:10.1016/j.polymer.2003.09.047http://dx.doi.org/10.1016/j.polymer.2003.09.047
Ruhl T.; Spahn P.; Winkler H.; Hellmann G. P.Large area monodomain order in colloidal crystals. Macromol. Chem. Phys., 2004, 205(10), 1385-1393. doi:10.1002/macp.200400009http://dx.doi.org/10.1002/macp.200400009
Ahles M.; Ruhl T.; Hellmann G. P.; Winkler H.; Schmechel R.; von Seggern H.Spectroscopic ellipsometry on opaline photonic crystals. Opt. Commun., 2005, 246(1-3), 1-7. doi:10.1016/j.optcom.2004.10.050http://dx.doi.org/10.1016/j.optcom.2004.10.050
Viel B.; Ruhl T.; Hellmann G. P.Reversible deformation of opal elastomers. Chem. Mater., 2007, 19(23), 5673-5679. doi:10.1021/cm062582ahttp://dx.doi.org/10.1021/cm062582a
Spahn P.; Finlayson C. E.; Etah W. M.; Snoswell D. R. E.; Baumberg J. J.; Hellmann G. P.Modification of the refractive-index contrast in polymer opal films. J. Mater. Chem., 2011, 21(24), 8893-8897. doi:10.1039/c1jm00063bhttp://dx.doi.org/10.1039/c1jm00063b
Zhao Q. B.; Finlayson C. E.; Schaefer C. G.; Spahn P.; Gallei M.; Herrmann L.; Petukhov A. V.; Baumberg J. J.Nanoassembly of polydisperse photonic crystals based on binary and ternary polymer opal alloys. Adv. Opt. Mater., 2016, 4(10), 1494-1500. doi:10.1002/adom.201600328http://dx.doi.org/10.1002/adom.201600328
Zhao Q. B.; Finlayson C. E.; Snoswell D. R. E.; Haines A.; Schäfer C.; Spahn P.; Hellmann G. P.; Petukhov A. V.; Herrmann L.; Burdet P.; Midgley P. A.; Butler S.; Mackley M.; Guo Q. X.; Baumberg J. J.Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat. Commun., 2016, 7, 11661. doi:10.1038/ncomms11661http://dx.doi.org/10.1038/ncomms11661
Vickreva O.; Kalinina O.; Kumacheva E.Colloid crystal growth under oscillatory shear. Adv. Mater., 2000, 12(2), 110-112. doi:10.1002/(sici)1521-4095(200001)12:2<110::aid-adma110>3.0.co;2-xhttp://dx.doi.org/10.1002/(sici)1521-4095(200001)12:2<110::aid-adma110>3.0.co;2-x
Huang H. W.; Li H. T.; Yin J. M.; Gu K.; Guo J.; Wang C. C.Butterfly-inspired tri-state photonic crystal composite film for multilevel information encryption and anti-counterfeiting. Adv. Mater., 2023, 35(17), 2211117. doi:10.1002/adma.202211117http://dx.doi.org/10.1002/adma.202211117
Shen X. Q.; Wu P.; Schäfer C. G.; Guo J.; Wang C. C.Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: a new platform for quick detection of solution compositions. Nanoscale, 2019, 11(3), 1253-1261. doi:10.1039/c8nr08544ghttp://dx.doi.org/10.1039/c8nr08544g
Shen X. Q.; Du J. Y.; Sun J. X.; Guo J.; Hu X. H.; Wang C. C.Transparent and UV blocking structural colored hydrogel for contact lenses. ACS Appl. Mater. Interfaces, 2020, 12(35), 39639-39648. doi:10.1021/acsami.0c10763http://dx.doi.org/10.1021/acsami.0c10763
Huang H. W.; Li H. T.; Shen X. Q.; Gu K.; Guo J.; Wang C. C.Gecko-inspired smart photonic crystal films with versatile color and brightness variation for smart windows. Chem. Eng. J., 2022, 429, 132437. doi:10.1016/j.cej.2021.132437http://dx.doi.org/10.1016/j.cej.2021.132437
Guo, Q. L.; Wang, X. L.; Guo, J.; Wang, C. C. 3D printing of non-iridescent structural color inks for optical anti-counterfeiting. Nanoscale, 2023, 15(46), 18825-18831. doi:10.1039/d3nr05036jhttp://dx.doi.org/10.1039/d3nr05036j
He J.; Shen X. Q.; Li H. T.; Yao Y.; Guo J.; Wang C. C.Scalable and sensitive humidity-responsive polymer photonic crystal films for anticounterfeiting application. ACS Appl. Mater. Interfaces, 2022, 14, 27251-27261. doi:10.1021/acsami.2c06273http://dx.doi.org/10.1021/acsami.2c06273
Huang H. W.; Yin J. M.; Zhou Q. W.; Li H. T.; Yang J. Y.; Wang Y. B.; Xu M.; Wang C. C.Firefly-inspired bipolar information indication system actuated by white light. Nat. Commun., 2024, 15(1), 3999. doi:10.1038/s41467-024-48473-0http://dx.doi.org/10.1038/s41467-024-48473-0
Guo Q. L.; Chen S. P.; Li H. T.; Wang X. L.; He J.; Chu J.; Guo J.; Wang C. C.Non-iridescent magnetite photonic crystal films and pigments with enhanced magnetic coupling effect. Chem. Eng. J., 2024, 488, 150969. doi:10.1016/j.cej.2024.150969http://dx.doi.org/10.1016/j.cej.2024.150969
Ertman S.; Lesiak P.; Woliński T. R.Optofluidic photonic crystal fiber-based sensors. J. Light. Technol., 2017, 35(16), 3399-3405. doi:10.1109/jlt.2016.2596540http://dx.doi.org/10.1109/jlt.2016.2596540
Chen S.; Ren Q.; Zhang K.; Sha W. E. I.; Hao T. T.; Xu H. B.; Zhao J. P.; Li Y.A highly sensitive and flexible photonic crystal oxygen sensor. Sens. Actuat. B Chem., 2022, 355, 131326. doi:10.1016/j.snb.2021.131326http://dx.doi.org/10.1016/j.snb.2021.131326
Hu Y.; Tian Z. Q.; Ma D. K.; Qi C. Z.; Yang D. P.; Huang S. M.Smart colloidal photonic crystal sensors. Adv. Colloid Interface Sci., 2024, 324, 103089. doi:10.1016/j.cis.2024.103089http://dx.doi.org/10.1016/j.cis.2024.103089
Thenmozhi H.; Mani Rajan M.; Devika V.; Vigneswaran D.; Ayyanar N.D-glucose sensor using photonic crystal fiber. Optik, 2017, 145, 489-494. doi:10.1016/j.ijleo.2017.08.039http://dx.doi.org/10.1016/j.ijleo.2017.08.039
Snapp P.; Kang P.; Leem J.; Nam S.Hybrid sensors: colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater., 2019, 29(33), 1970229. doi:10.1002/adfm.201970229http://dx.doi.org/10.1002/adfm.201970229
Chiappini A.; Tran L. T. N.; Trejo-García P. M.; Zur L.; Lukowiak A.; Ferrari M.; Righini G. C.Photonic crystal stimuli-responsive chromatic sensors: a short review. Micromachines, 2020, 11(3), 290. doi:10.3390/mi11030290http://dx.doi.org/10.3390/mi11030290
Zhang R.; Wang Q.; Zheng X.Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties. J. Mater. Chem. C, 2018, 6(13), 3182-3199. doi:10.1039/c8tc00202ahttp://dx.doi.org/10.1039/c8tc00202a
Aly A. H.; Mohamed B. A.; Al-Dossari M.; Mohamed D.A temperature sensor based on Si/PS/SiO2 photonic crystals. Sci. Rep., 2023, 13, 21560. doi:10.1038/s41598-023-48836-5http://dx.doi.org/10.1038/s41598-023-48836-5
Ye S. Y.; Fu Q. Q.; Ge J. P.Invisible photonic prints shown by deformation. Adv. Funct. Mater., 2014, 24(41), 6430-6438. doi:10.1002/adfm.201401562http://dx.doi.org/10.1002/adfm.201401562
Hu H. B.; Tang J.; Zhong H.; Xi Z.; Chen C. L.; Chen Q. W.Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Sci. Rep., 2013, 3, 1484. doi:10.1038/srep01484http://dx.doi.org/10.1038/srep01484
Lee H. S.; Shim T. S.; Hwang H.; Yang S. M.; Kim S. H.Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater., 2013, 25(13), 2684-2690. doi:10.1021/cm4012603http://dx.doi.org/10.1021/cm4012603
Hou J.; Zhang H. C.; Su B.; Li M. Z.; Yang Q.; Jiang L.; Song Y. L.Four-dimensional screening anti-counterfeiting pattern by inkjet printed photonic crystals. Chem. Asian J., 2016, 11(19), 2680-2685. doi:10.1002/asia.201600433http://dx.doi.org/10.1002/asia.201600433
Arsenault A. C.; Puzzo D. P.; Manners I.; Ozin G. A.Photonic-crystal full-colour displays. Nat. Photonics, 2007, 1, 468-472. doi:10.1038/nphoton.2007.140http://dx.doi.org/10.1038/nphoton.2007.140
Zhu C.; Xu W. Y.; Chen L. S.; Zhang W. D.; Xu H.; Gu Z. Z.Magnetochromatic microcapsule arrays for displays. Adv. Funct. Mater., 2011, 21(11), 2043-2048. doi:10.1002/adfm.201002296http://dx.doi.org/10.1002/adfm.201002296
Lee S. Y.; Kim S. H.; Hwang H.; Sim J. Y.; Yang S. M.Controlled pixelation of inverse opaline structures towards reflection-mode displays. Adv. Mater., 2014, 26(15), 2391-2397. doi:10.1002/adma.201304654http://dx.doi.org/10.1002/adma.201304654
Kuang M. X.; Wang J. X.; Bao B.; Li F. Y.; Wang L. B.; Jiang L.; Song Y. L.Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line. Adv. Opt. Mater., 2014, 2(1), 34-38. doi:10.1002/adom.201300369http://dx.doi.org/10.1002/adom.201300369
0
浏览量
260
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构