浏览全部资源
扫码关注微信
中山大学化学学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
纸质出版日期:2025-02-20,
网络出版日期:2024-12-12,
收稿日期:2024-08-22,
录用日期:2024-10-17
移动端阅览
李俊伟, 张泽平, 容敏智, 章明秋. 基于图案化方法制备高导热氮化硼/液晶环氧复合材料[J]. 高分子学报, 2025,56(2):306-321.
JUN-WEI LI, ZE-PING ZHANG, MIN-ZHI RONG, MING-QIU ZHANG. Preparation of Boron Nitride/Liquid Crystal Epoxy Composites with High Thermal Conductivity Based on Patterning Method. [J]. Acta polymerica sinica, 2025, 56(2): 306-321.
李俊伟, 张泽平, 容敏智, 章明秋. 基于图案化方法制备高导热氮化硼/液晶环氧复合材料[J]. 高分子学报, 2025,56(2):306-321. DOI: 10.11777/j.issn1000-3304.2024.24217. CSTR: 32057.14.GFZXB.2024.7309.
JUN-WEI LI, ZE-PING ZHANG, MIN-ZHI RONG, MING-QIU ZHANG. Preparation of Boron Nitride/Liquid Crystal Epoxy Composites with High Thermal Conductivity Based on Patterning Method. [J]. Acta polymerica sinica, 2025, 56(2): 306-321. DOI: 10.11777/j.issn1000-3304.2024.24217. CSTR: 32057.14.GFZXB.2024.7309.
环氧树脂作为传统覆铜板的绝缘基板,其导热性能相对较差,无法满足日益增长的散热需求. 本工作采用两步丝网印刷方法制备了具有高导热性能的图案化氮化硼/液晶环氧复合材料. 首先,以低氮化硼含量(10 wt%~30 wt%)的液晶环氧涂膜液作为基体印刷非图案区域,再以高氮化硼含量(60 wt%~80 wt%)的液晶环氧涂膜液填充图案化区域(点、线和网格),通过图案点阵与基体中氮化硼的相互协同构建良好的面外和面内导热通路,获得了一系列高导热氮化硼/液晶环氧图案化复合材料,并深入探讨了图案化参数对材料性能的影响. 结果表明,丝网印刷的图案化复合材料在26.36 wt%氮化硼填料含量下实现了11.5和20.5 W/(m·K)的面外和面内热导率. 同时,在41.52 wt%氮化硼填料含量下的面外和面内热导率甚至可以达到26.0 W/(m·K)和36.6 W/(m·K),分别是相同氮化硼含量的氮化硼/液晶环氧共混复合材料的10.8倍和11.8倍.
Epoxy resin
traditionally used as the insulating substrate in copper clad laminates
exhibits relatively low thermal conductivity
which has emerged as a critical factor impeding effective heat dissipation. In this work
a two-step silk print approach was employed to fabricate hexagonal boron nitride (h-BN)/liquid crystal epoxy resin (LCER) composites with high thermal conductivity. Firstly
the non-patterned matrix was printed using a coating solution composed of LCER and lower content of (3-aminopropyl)triethoxysilane-modified h-BN sheets (h-BN@KH550
10 wt%-30 wt%)
followed by the filling of patterned regions (dots
lines and grids) with a LCER coating solution containing high content of h-BN@KH550 (60 wt%-80 wt%). By making use of the synergistic interactions among the h-BN@KH550 within patterned array and matrix
efficient through-plane and in-plane heat conduction pathways were successfully constructed. In addition
the influence of patterning parameters on material properties was explored. The resultant h-BN@KH550/LCER patterned composites containing 26.36 wt% h-BN@KH550 exhibited through-plane and in-plane thermal conductivities of 11.5 and 20.5 W/(m·K)
respectively. Furthermore
the through-plane and in-plane thermal conductivities can even reach 26.0 and 36.6 W/(m·K) at a h-BN@KH550 content of 41.52 wt%
which are 10.8 and 11.8 times those of boron nitride/LCER blend composites with identical weight ratio of h-BN@KH550 sheets.
导热复合材料液晶环氧图案化氮化硼
Thermally conductive compositesLiquid crystal epoxyPatterningBoron nitride
Moore A. L.; Shi L.Emerging challenges and materials for thermal management of electronics. Mater. Today, 2014, 17(4), 163-174. doi:10.1016/j.mattod.2014.04.003http://dx.doi.org/10.1016/j.mattod.2014.04.003
Huang X. Y.; Jiang P. K.; Tanaka T.A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag., 2011, 27(4), 8-16. doi:10.1109/mei.2011.5954064http://dx.doi.org/10.1109/mei.2011.5954064
Shiota A.; Ober C. K.Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. J. Polym. Sci. A Polym. Chem., 1996, 34(7), 1291-1303. doi:10.1002/(sici)1099-0518(199605)34:7<1291::aid-pola16>3.0.co;2-4http://dx.doi.org/10.1002/(sici)1099-0518(199605)34:7<1291::aid-pola16>3.0.co;2-4
Ruan K. P.; Guo Y. Q.; Gu J. W.Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules, 2021, 54(10), 4934-4944. doi:10.1021/acs.macromol.1c00686http://dx.doi.org/10.1021/acs.macromol.1c00686
Fan X. R.; Liu Z.; Wang S. S.; Gu J. W.Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat, 2023, 3(6), 877-893. doi:10.1002/sus2.172http://dx.doi.org/10.1002/sus2.172
Zhang J. L.; Dang L.; Zhang F. Y.; Zhang K.; Kong Q. Q.; Gu J. W.Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au, 2023, 3(12), 3424-3435. doi:10.1021/jacsau.3c00582http://dx.doi.org/10.1021/jacsau.3c00582
Yuan S. J.; Peng Z. Q.; Rong M. Z.; Zhang M. Q.Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks. Mater. Chem. Front., 2022, 6(9), 1137-1149. doi:10.1039/D2QM00090Chttp://dx.doi.org/10.1039/D2QM00090C
Xu Y. S.; Chung D. D. L.Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interfaces, 2000, 7(4), 243-256. doi:10.1163/156855400750244969http://dx.doi.org/10.1163/156855400750244969
Lei L.; Xia Z. B.; Zhang L.; Zhang Y. H.; Zhong L.Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions. Prog. Org. Coat., 2016, 97, 19-27. doi:10.1016/j.porgcoat.2016.03.011http://dx.doi.org/10.1016/j.porgcoat.2016.03.011
Wu H. Y.; Chiang S.; Han W.; Tang Y. H.; Kang F. Y.; Yang C.Surface iodination: a simple and efficient protocol to improve the isotropically thermal conductivity of silver-epoxy pastes. Compos. Sci. Technol., 2014, 99, 109-116. doi:10.1016/j.compscitech.2014.04.021http://dx.doi.org/10.1016/j.compscitech.2014.04.021
Warzoha R. J.; Fleischer A. S.Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials. Appl. Energy, 2015, 154, 271-276. doi:10.1016/j.apenergy.2015.04.121http://dx.doi.org/10.1016/j.apenergy.2015.04.121
Chen H. Y.; Ginzburg V. V.; Yang J.; Yang Y. F.; Liu W.; Huang Y.; Du L. B.; Chen B.Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci., 2016, 59, 41-85. doi:10.1016/j.progpolymsci.2016.03.001http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001
Chen J.; Xu X. F.; Zhou J.; Li B. W.Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys., 2022, 94(2), 025002. doi:10.1103/revmodphys.94.025002http://dx.doi.org/10.1103/revmodphys.94.025002
Xiao H.; Zhang Z. P.; Huang Z. X.; Rong M. Z.; Zhang M. Q.Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos. Commun., 2021, 23, 100584. doi:10.1016/j.coco.2020.100584http://dx.doi.org/10.1016/j.coco.2020.100584
Mehra N.; Mu L. W.; Ji T.; Yang X. T.; Kong J.; Gu J. W.; Zhu J. H.Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today, 2018, 12, 92-130. doi:10.1016/j.apmt.2018.04.004http://dx.doi.org/10.1016/j.apmt.2018.04.004
Rahman M. M.; Puthirath A. B.; Adumbumkulath A.; Tsafack T.; Robatjazi H.; Barnes M.; Wang Z. X.; Kommandur S.; Susarla S.; Sajadi S. M.; Salpekar D.; Yuan F. S.; Babu G.; Nomoto K.; Islam S.; Verduzco R.; Yee S. K.; Xing H. G.; Ajayan P. M.Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater., 2019, 29(28), 1900056. doi:10.1002/adfm.201900056http://dx.doi.org/10.1002/adfm.201900056
Han J. K.; Du G. L.; Gao W. W.; Bai H.An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater., 2019, 29(13), 1900412. doi:10.1002/adfm.201900412http://dx.doi.org/10.1002/adfm.201900412
Zeng X. L.; Yao Y. M.; Gong Z. Y.; Wang F. F.; Sun R.; Xu J. B.; Wong C. P.Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small, 2015, 11(46), 6205-6213. doi:10.1002/smll.201502173http://dx.doi.org/10.1002/smll.201502173
Guo Y. Q.; Ruan K. P.; Gu J. W.Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys., 2021, 20, 100449. doi:10.1016/j.mtphys.2021.100449http://dx.doi.org/10.1016/j.mtphys.2021.100449
Mehra N.; Jeske M.; Yang X. T.; Gu J. W.; Kashfipour M. A.; Li Y. F.; Baughman J. A.; Zhu J. H.Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction. ACS Appl. Polym. Mater., 2019, 1(6), 1291-1300. doi:10.1021/acsapm.9b00111http://dx.doi.org/10.1021/acsapm.9b00111
Chen X. L.; Lim J. S. K.; Yan W. L.; Guo F.; Liang Y. N.; Chen H.; Lambourne A.; Hu X.Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces, 2020, 12(14), 16987-16996. doi:10.1021/acsami.0c04882http://dx.doi.org/10.1021/acsami.0c04882
Xiao H.; Huang Z. X.; Zhang Z. P.; Rong M. Z.; Zhang M. Q.Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites. Compos. Sci. Technol., 2022, 230, 109087. doi:10.1016/j.compscitech.2021.109087http://dx.doi.org/10.1016/j.compscitech.2021.109087
He Q. X.; Qin M. M.; Zhang H.; Yue J. W.; Peng L. Q.; Liu G. J.; Feng Y. Y.; Feng W.Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz., 2024, 11(2), 531-544. doi:10.1039/d3mh01498chttp://dx.doi.org/10.1039/d3mh01498c
Han Y. X.; Ruan K. P.; He X. Y.; Tang Y. S.; Guo H.; Guo Y. Q.; Qiu H.; Gu J. W.Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed, 2024, 63(17), e202401538. doi:10.1002/anie.202401538http://dx.doi.org/10.1002/anie.202401538
Zhong X.; He M. K.; Zhang C. Y.; Guo Y. Q.; Hu J. W.; Gu J. W.Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater., 2024, 34(19), 2313544. doi:10.1002/adfm.202313544http://dx.doi.org/10.1002/adfm.202313544
Harada M.; Hamaura N.; Ochi M.; Agari Y.Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos. Part B Eng., 2013, 55, 306-313. doi:10.1016/j.compositesb.2013.06.031http://dx.doi.org/10.1016/j.compositesb.2013.06.031
Zhang T. D.; Wang C. H.; Liu G.; Yao C.; Zhang X. L.; Zhang C. H.; Chi Q. G.High thermal conductivity and low dielectric loss of three-dimensional boron nitride nanosheets/epoxy composites. Compos. Commun., 2024, 50, 102007. doi:10.1016/j.coco.2024.102007http://dx.doi.org/10.1016/j.coco.2024.102007
Ribera D.; Mantecón A.; Serra A.Synthesis and crosslinking of a series of dimeric liquid crystalline epoxy resins containing imine mesogens. Macromol. Chem. Phys., 2001, 202(9), 1658-1671. doi:10.1002/1521-3935(20010601)202:9<1658::aid-macp1658>3.0.co;2-0http://dx.doi.org/10.1002/1521-3935(20010601)202:9<1658::aid-macp1658>3.0.co;2-0
Gu J. W.; Zhang Q. Y.; Dang J.; Xie C.Thermal conductivity epoxy resin composites filled with boron nitride. Polym. Adv. Technol., 2012, 23(6), 1025-1028. doi:10.1002/pat.2063http://dx.doi.org/10.1002/pat.2063
Zhang R. H.; Shi X. T.; Tang L.; Liu Z.; Zhang J. L.; Guo Y. Q.; Gu J. W.Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chinese J. Polym. Sci., 2020, 38(7), 730-739. doi:10.1007/s10118-020-2391-0http://dx.doi.org/10.1007/s10118-020-2391-0
Agari Y.; Uno T.Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci., 1986, 32(7), 5705-5712. doi:10.1002/app.1986.070320702http://dx.doi.org/10.1002/app.1986.070320702
Song J. B.; Zhang K. L.; Guo Z. H.; Liang T. Q.; Chen C.; Liu J.; Shi D. A.H-BN orientation degree on the thermal conductivity anisotropy of their silicone rubber composites: a quantitative study. Compos. Part A Appl. Sci. Manuf., 2023, 166, 107389. doi:10.1016/j.compositesa.2022.107389http://dx.doi.org/10.1016/j.compositesa.2022.107389
Liu B. C.; Li Y. B.; Fei T.; Han S.; Xia C. B.; Shan Z. H.; Jiang J. L.Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem. Eng. J., 2020, 385, 123829. doi:10.1016/j.cej.2019.123829http://dx.doi.org/10.1016/j.cej.2019.123829
Zeng X. L.; Ye L.; Yu S. H.; Li H.; Sun R.; Xu J. B.; Wong C. P.Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale, 2015, 7(15), 6774-6781. doi:10.1039/c5nr00228ahttp://dx.doi.org/10.1039/c5nr00228a
Hu J. T.; Huang Y.; Yao Y. M.; Pan G. R.; Sun J. J.; Zeng X. L.; Sun R.; Xu J. B.; Song B.; Wong C. P.Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces, 2017, 9(15), 13544-13553. doi:10.1021/acsami.7b02410http://dx.doi.org/10.1021/acsami.7b02410
Gurijala A.; Zando R. B.; Faust J. L.; Barber J. R.; Zhang L.; Erb R. M.Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport. Matter, 2020, 2(4), 1015-1024. doi:10.1016/j.matt.2020.02.001http://dx.doi.org/10.1016/j.matt.2020.02.001
Yu C. P.; Zhang J.; Li Z.; Tian W.; Wang L. J.; Luo J.; Li Q. L.; Fan X. D.; Yao Y. G.Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A Appl. Sci. Manuf., 2017, 98, 25-31. doi:10.1016/j.compositesa.2017.03.012http://dx.doi.org/10.1016/j.compositesa.2017.03.012
Zhu Z. J.; Wang P. X.; Lv P.; Xu T. H.; Zheng J. J.; Ma C.; Yu K. H.; Feng W.; Wei W.; Chen L. Y.Densely packed polymer/boron nitride composite for superior anisotropic thermal conductivity. Polym. Compos., 2018, 39(S3), E1653-E1658. doi:10.1002/pc.24615http://dx.doi.org/10.1002/pc.24615
Song W. L.; Wang P.; Cao L.; Anderson A.; Meziani M. J.; Farr A. J.; Sun Y. P.Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew. Chem. Int. Ed., 2012, 51(26), 6498-6501. doi:10.1002/anie.201201689http://dx.doi.org/10.1002/anie.201201689
Zhang J.; Wang X. N.; Yu C. P.; Li Q. L.; Li Z.; Li C. W.; Lu H. F.; Zhang Q. C.; Zhao J. X.; Hu M.; Yao Y. G.A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Compos. Sci. Technol., 2017, 149, 41-47. doi:10.1016/j.compscitech.2017.06.008http://dx.doi.org/10.1016/j.compscitech.2017.06.008
Zhu Z. Z.; Li C. W.; Songfeng E.; Xie L. Y.; Geng R. J.; Lin C. T.; Li L. Q.; Yao Y. G.Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol., 2019, 170, 93-100. doi:10.1016/j.compscitech.2018.11.035http://dx.doi.org/10.1016/j.compscitech.2018.11.035
Oh H.; Kim J.Fabrication of polymethyl methacrylate composites with silanized boron nitride by in situ polymerization for high thermal conductivity. Compos. Sci. Technol., 2019, 172, 153-162. doi:10.1016/j.compscitech.2019.01.021http://dx.doi.org/10.1016/j.compscitech.2019.01.021
Liang Z. Q.; Pei Y.; Chen C. J.; Jiang B.; Yao Y. G.; Xie H.; Jiao M. L.; Chen G. G.; Li T. Y.; Yang B.; Hu L. B.General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano, 2019, 13(11), 12653-12661. doi:10.1021/acsnano.9b04202http://dx.doi.org/10.1021/acsnano.9b04202
Liu D. Y.; Lei C. X.; Wu K.; Fu Q.A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion. ACS Nano, 2020, 14(11), 15738-15747. doi:10.1021/acsnano.0c06680http://dx.doi.org/10.1021/acsnano.0c06680
Wu N.; Che S.; Shen P. D.; Chen N.; Chen F. J.; Ma G.; Liu H. C.; Yang W.; Wang X. B.; Li Y. F.A binder-free ice template method for vertically aligned 3D boron nitride polymer composites towards thermal management. J. Colloid Interface Sci., 2023, 647, 43-51. doi:10.1016/j.jcis.2023.05.141http://dx.doi.org/10.1016/j.jcis.2023.05.141
Chen F.; Pang X. Y.; Zhang Z. P.; Rong M. Z.; Zhang M. Q.Thermally conductive, healable glass fiber cloth reinforced polymer composite based on β-hydroxyester bonds crosslinked epoxy with improved heat resistance. Chinese J. Polym. Sci., 2024, 42(5), 643-654. doi:10.1007/s10118-024-3076-xhttp://dx.doi.org/10.1007/s10118-024-3076-x
Chen F.; Xiao H.; Peng Z.; Zhang Z.; Rong M.; Zhang M.Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater., 2021, 4, 1048-1058. doi:10.1007/s42114-021-00303-3http://dx.doi.org/10.1007/s42114-021-00303-3
0
浏览量
86
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构