浏览全部资源
扫码关注微信
1.江南大学 纺织科学与工程学院 江苏省纺织品数字喷墨印花工程技术研究中心 无锡 214122
2.延京纺织科技(江苏)有限公司 苏州 215200
E-mail: winter36@jiangnan.edu.cn;
E-mail: shaohaifu@jiangnan.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2025-01-07,
收稿日期:2024-08-26,
录用日期:2024-12-06
移动端阅览
罗巧玲, 邵力文, 林琴, 王冬, 付少海. 原液着色生物基尼龙56纤维的制备及其可见光-近红外光谱性能[J]. 高分子学报, 2025,56(2):322-330.
QIAO-LING LUO, LI-WEN SHAO, QIN LIN, DONG WANG, SHAO-HAI FU. Study on Preparation and Visible Near Infrared Spectral Performance of Dope Dyeing Biobased Polyamide 56 Fiber. [J]. Acta polymerica sinica, 2025, 56(2): 322-330.
罗巧玲, 邵力文, 林琴, 王冬, 付少海. 原液着色生物基尼龙56纤维的制备及其可见光-近红外光谱性能[J]. 高分子学报, 2025,56(2):322-330. DOI: 10.11777/j.issn1000-3304.2024.24222. CSTR: 32057.14.GFZXB.2024.7327.
QIAO-LING LUO, LI-WEN SHAO, QIN LIN, DONG WANG, SHAO-HAI FU. Study on Preparation and Visible Near Infrared Spectral Performance of Dope Dyeing Biobased Polyamide 56 Fiber. [J]. Acta polymerica sinica, 2025, 56(2): 322-330. DOI: 10.11777/j.issn1000-3304.2024.24222. CSTR: 32057.14.GFZXB.2024.7327.
为了模拟绿色植被的光谱特征,以亚甲基双萘磺酸钠(NNO)为分散剂,采用喷雾干燥技术制备了自分散纳米颜料绿,通过熔融共混法制备了生物基尼龙56 (PA56)原液着色纤维,探究纤维的微观结构、以及热、力学、可见光-近红外光谱性能. 结果表明当颜料蓝-6124和颜料黄-1103复配质量比为2:1时,研制的自分散颜料绿能够较好地模拟绿色植被在可见光-近红外(400~1200 nm)的光谱特性;自分散颜料绿在PA56纤维内分散均匀,相容性好,且纤维的热性能基本保持不变,力学性能稳定;原液着色PA56纤维的光谱距离小于0.65、光谱角度小于0.13 rad,光谱相关系数高于0.98,达到了GJB 1411-2015二级光学伪装和二级光谱伪装的要求;颜色可以很好地模拟GBJ 1082A-2021中伪装网颜色MG1151与DG0730 (色差<3);耐晒牢度>6级,耐水洗牢度和耐汗渍牢度均为4~5级.
In order to simulate the spectral characteristics of green vegetations
self dispersed nano-sized pigment green was prepared by a spray drying with sodium salt of polynaphthalene sulphonic acid (NNO) as the dispersant
which was used to prepare PA56 dope dyeing fibers by the melt blending. Moreover
the microcosmic structure
thermal
mechanical
visible-near infrared spectral properties of the fibers were investigated. When the mass ratio of pigment blue-6124 to pigment yellow-1103 was 2:1
the self-dispersed nano-sized pigment green could well simulate the spectral characteristics of green vegetation in visible near infrared (400-1200 nm) region. The self-dispersed nano-sized pigment green is uniformly dispersed in PA56 fibers
with a good compatibility. In addition
the thermal properties of the fibers remain basically unchanged
and the mechanical properties are stable. The spectral distance of the PA56 dope dyeing fibers is less than 0.65
the spectral angle is less than 0.13 rad
and the spectral correlation coefficient is higher than 0.98
which meets the requirements of GJB 1411-2015 for secondary optical camouflage and secondary spectral camouflage. The color of PA56 dope dyeing fibers can simulate the camouflage net colors MG1151 and DG0730 in GBJ 1082A-2021 very well (color difference <3). The sun fastness of PA56 dope dyeing fibers is greater than level 6
and the wash fastness and sweat fastness are both level 4-5.
可见光-近红外光谱生物基尼龙56原液着色光谱反射率颜色相似度
Visible near infrared spectroscopyBiobased polyamide 56Dope dyeingSpectral reflectanceColor similarity
Zhao J. L.; Zhou B.; Wang G. L.; Ying J. J.; Liu J.; Chen Q.Spectral camouflage characteristics and recognition ability of targets based on visible/near-infrared hyperspectral images. Photonics, 2022, 9(12), 957. doi:10.3390/photonics9120957http://dx.doi.org/10.3390/photonics9120957
Su Y.; Yu B.; Zhao X. M.Research status and development of infrared camouflage textile materials. Text. Res. J., 2023, 93(21-22), 5047-5082. doi:10.1177/00405175231170323http://dx.doi.org/10.1177/00405175231170323
Hossain M. A.UV-Visible-NIR camouflage textiles with natural plant based natural dyes on natural fibre against woodland combat background for defence protection. Sci. Rep., 2023, 13(1), 5021. doi:10.1038/s41598-023-31725-2http://dx.doi.org/10.1038/s41598-023-31725-2
Lin Y. P.; Ren L. Q.; Yang X. D.; Yuan H. Y.Design and application of bionic camouflage materials simulating spectral reflection characteristics of plants: a review. Appl. Sci., 2024, 14(11), 4404. doi:10.3390/app14114404http://dx.doi.org/10.3390/app14114404
Fu S. Q.; Liang Z. D.; Qian X.; Zhang W.; Qiu Y. L.; Ling X.; Liu Q. L.; Zhang D.Ultrawide spectra camouflage coatings from metallic flake powder. ACS Appl. Mater. Interfaces, 2024, 16(21), 27627-27639. doi:10.1021/acsami.4c02504http://dx.doi.org/10.1021/acsami.4c02504
Zhou S. H.; Dong S. K.; Guo Y. M.; Shuai Y.; Xu H. X.; Hu G. W.Colored thermal camouflage and anti-counterfeiting with programmable In3SbTe2platform. Nanophotonics, 2024, 13(6), 945-954. doi:10.1515/nanoph-2023-0924http://dx.doi.org/10.1515/nanoph-2023-0924
Li N. Q.; Cui Z. S.; Yue X. L.; Zhang Y. J.; Ren Z. H.; Guan Z. H.Molecular hard-segment engineered polyurethane with thermochromism, shape memory, humidity-driven, and self-healing capabilities. Sens. Actuat. B Chem., 2024, 404, 135266. doi:10.1016/j.snb.2023.135266http://dx.doi.org/10.1016/j.snb.2023.135266
祖梅, 鄢峰, 甘沅丰, 刘雪梅, 刘东青, 李铭洋, 程海峰. 模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展. 红外技术, 2022, 44(10), 1018-1026.
Lu Q. X.; Li M.; Tian A. L.; Fu S. H.Green plant leaf-inspired smart camouflage fabrics for visible light and near-infrared stealth. J. Bionic Eng., 2022, 19(3), 788-798. doi:10.1007/s42235-022-00156-6http://dx.doi.org/10.1007/s42235-022-00156-6
张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能. 纺织学报, 2023, 44(1), 142-148. doi:10.13475/j.fzxb.20211003407http://dx.doi.org/10.13475/j.fzxb.20211003407
Hossain M. A.Spectral simulation and materials design for camouflage textiles coloration against materials of multidimensional combat backgrounds in visible and near infrared spectrums. MRS Commun., 2023, 13(2), 306-319. doi:10.1557/s43579-023-00344-3http://dx.doi.org/10.1557/s43579-023-00344-3
Yang, H. Y.; Liu, W. T. Bio-based polyamide 56: recent advances in basic and applied research. Polym. Eng. Sci., 2023, 63(8), 2484-2497. doi:10.1002/pen.26390http://dx.doi.org/10.1002/pen.26390
Eltahir Y. A.; Saeed H. A. M.; Xia Y. M.; Yong H.; Wang Y. M.Mechanical properties, moisture absorption, and dyeability of polyamide5, 6 fibers. J. Text. Inst., 2016, 107(2), 208-214. doi:10.1080/00405000.2015.1020678http://dx.doi.org/10.1080/00405000.2015.1020678
Zhang S. Y.Characterization and compatibility of bio-based PA56/PET. e-Polymers, 2023, 23(1), 20228082. doi:10.1515/epoly-2022-8082http://dx.doi.org/10.1515/epoly-2022-8082
Gong X. R.; Zhang S. Y.Development and characterization of biobased polyamide 56/polyethylene terephthalate composite fibers. J. Biobased Mater. Bioenergy, 2021, 15(4), 521-527. doi:10.1166/jbmb.2021.2078http://dx.doi.org/10.1166/jbmb.2021.2078
Ghosh S.; Hall J.; Joshi V.Study of chameleon nylon and polyester fabrics using photochromic ink. J. Text. Inst., 2018, 109(6), 723-729. doi:10.1080/00405000.2017.1366252http://dx.doi.org/10.1080/00405000.2017.1366252
宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用. 纺织学报, 2021, 42(10), 8-14.
Hao L. Y.; Cai Y. Q.; Wang R.Preparation of ultrafine pigment dispersion and investigation of its adsorption performance on cationized flax substrate. Adsorpt. Sci. Technol., 2011, 29(9), 875-885. doi:10.1260/0263-6174.29.9.875http://dx.doi.org/10.1260/0263-6174.29.9.875
Yang T. T.; Gao Y. B.; Wang X. L.; Ma B. M.; He Y.Hydrogen bonding and crystalline structure of bio-based PA56. Polymer, 2021, 237, 124356. doi:10.1016/j.polymer.2021.124356http://dx.doi.org/10.1016/j.polymer.2021.124356
Gan D. S.; Liu Y. J.; Hu T. H.; Fan S. H.; Cui L. N.; Liao G. K.; Xie Z. Y.; Zhu X. Y.; Yang K. J.Pseudo-eutectic of isodimorphism to design biaxially-oriented bio-based PA56/512 with high strength, toughness and barrier performances. Polymers, 2024, 16(8), 1176. doi:10.3390/polym16081176http://dx.doi.org/10.3390/polym16081176
He L. L.; An T. F.; He M.; Fan Q.; Yang J. F.; Liu Y. F.; Qin S. H.; Yu J.Achieving anti-moisture absorption and high thermal properties in bio-based polyamide 56/F-based heat-resistant agent composites through crystal regulation. J. Appl. Polym. Sci., 2023, 140(34), e54301. doi:10.1002/app.54301http://dx.doi.org/10.1002/app.54301
Wang Y.; Kang H. L.; Wang R.; Liu R. G.; Hao X. M.Crystallization of polyamide 56/polyamide 66 blends: Non-isothermal crystallization kinetics. J. Appl. Polym. Sci., 2018, 135(26), 46409. doi:10.1002/app.46409http://dx.doi.org/10.1002/app.46409
来悦, 王煜, 王莉莉, 李璇, 赵京波, 董侠, 王笃金. PA56球晶生长的光学偏振反转现象. 高分子学报, 2020, 51(11): 1267-1274. doi:10.11777/j.issn1000-3304.2020.20057http://dx.doi.org/10.11777/j.issn1000-3304.2020.20057
Morales-Gámez L.; Ricart A.; Franco L.; Puiggalí J.Study on the brill transition and melt crystallization of nylon 65: a polymer able to adopt a structure with two hydrogen-bonding directions. Eur. Polym. J., 2010, 46(10), 2063-2077. doi:10.1016/j.eurpolymj.2010.07.010http://dx.doi.org/10.1016/j.eurpolymj.2010.07.010
Xun Z. J.; He G. C.; Huang Y.; Yu R. B.Effect of sio2 particles on the crystallization and formation of hydrogen bonding in biobased polyamide 56. ACS Appl. Polym. Mater., 2022, 4949-4960. doi:10.1021/acsapm.2c00505http://dx.doi.org/10.1021/acsapm.2c00505
Luo K. M.; Liu J. X.; Abbay K.; Mei Y. J.; Guo X. W.; Song Y. H.; Guan Q. B.; You Z. W.The relationships between the structure and properties of PA56 and PA66 and their fibers. Polymers, 2023, 15(13), 2877. doi:10.3390/polym15132877http://dx.doi.org/10.3390/polym15132877
Kang H. L.; Wang Z.; Lin N.; Hao X. M.; Liu R. G.Influence of drawing and annealing on the structure and properties of bio-based polyamide 56 fibers. J. Appl. Polym. Sci., 2022, 139(48), e53221. doi:10.1002/app.53221http://dx.doi.org/10.1002/app.53221
Wang Z.; Lin N.; Kang H. L.; Hao X. M.; Liu R. G.Isodimorphism in polyamide56/polyamide 66blends with controllable thermal and mechanical properties. ACS Appl. Polym. Mater., 2022, 4(12), 9407-9416. doi:10.1021/acsapm.2c01683http://dx.doi.org/10.1021/acsapm.2c01683
Wang Z.; Lin N.; Kang H. L.; Hao X. M.; Liu R. G.Miscibility, crystallization and properties of bio-based polyamide 56/polyamide 6 blends. Polymer, 2023, 265, 125603. doi:10.1016/j.polymer.2022.125603http://dx.doi.org/10.1016/j.polymer.2022.125603
0
浏览量
64
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构