浏览全部资源
扫码关注微信
中国科学技术大学 国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学重点实验室 合肥 230026
[ "田富成,男,1992年出生. 2015年本科毕业于郑州大学工程力学专业,2020年博士毕业于中国科学技术大学核科学与技术专业. 2020~2022年在中国科学技术大学工程科学学院从事博士后研究. 2023年1月至今,受日本学术振兴会(JSPS)资助在北海道大学从事软材料动态断裂失稳方面的研究." ]
[ "李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员、兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家自然科学基金杰出青年基金资助. 担任Macromolecules副主编,Polym. Cryst.、Chinese J. Polym. Sci.、J. Polym. Sci.和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究." ]
纸质出版日期:2025-02-20,
网络出版日期:2025-01-09,
收稿日期:2024-08-27,
录用日期:2024-10-23
移动端阅览
田富成, 冀家乐, 陈树昱, 李良彬. 软材料大变形断裂的相场建模与应用[J]. 高分子学报, 2025,56(2):179-199.
FU-CHENG TIAN, JIA-LE JI, SHU-YU CHEN, LIANG-BIN LI. Large Deformation Fracture in Soft Materials: Phase-field Modeling and Applications. [J]. Acta polymerica sinica, 2025, 56(2): 179-199.
田富成, 冀家乐, 陈树昱, 李良彬. 软材料大变形断裂的相场建模与应用[J]. 高分子学报, 2025,56(2):179-199. DOI: 10.11777/j.issn1000-3304.2024.24224. CSTR: 32057.14.GFZXB.2024.7308.
FU-CHENG TIAN, JIA-LE JI, SHU-YU CHEN, LIANG-BIN LI. Large Deformation Fracture in Soft Materials: Phase-field Modeling and Applications. [J]. Acta polymerica sinica, 2025, 56(2): 179-199. DOI: 10.11777/j.issn1000-3304.2024.24224. CSTR: 32057.14.GFZXB.2024.7308.
软材料具有承受大应变和高可恢复性的独特特性,使其在生命科学和软机器人等前沿领域具有不可替代的作用. 了解此类材料的复杂断裂行为不仅具有迫切的应用需求,也是材料科学、物理学和连续介质力学等基础学科的研究重点. 本文介绍了作者在断裂相场模型方面所做的一些工作,主要关注软材料的大变形断裂相场建模、算法实施以及应用. 在有限变形理论框架下,作者发展一种新的混合多场断裂相场模型,用于模拟近不可压缩软材料的大变形断裂. 从物理裂纹拓扑的角度清楚阐述了不可压缩性与扩散裂纹张开之间的内在矛盾. 为了解决这个问题,该模型利用相场退化函数放松了损伤材料的不可压缩性约束,而不影响完好材料的不可压缩性. 通过修改经典的摄动拉格朗日乘子方法,导出了用于近不可压缩大变形断裂问题的新型多场混合变分格式. 虽然该混合格式切实有效,但通常需要采用满足inf-sup条件的混合有限元(FE)配置,这进一步加剧了本已昂贵的相场断裂建模的计算负担. 为了能够使用具有数值优势的低阶线性单元,作者采用压力投影技术开发了一种稳定的混合公式. 该公式的优点在于其简单性和多功能性,允许对所有场变量采用低阶单元离散. 考虑到这一特性,作者进一步设计了一种高效的自适应网格划分策略,从而大幅提高了计算效率. 为了更好地应对涉及裂纹成核的自适应场景,提出了一种新的基于能量的网格细化判据. 此外,本文也完整阐述了稳定混合有限元公式的数值处理,以及自适应网格细化,删除技术的核心操作. 所提出的格式的准确性、效率和稳健性已经通过一系列具有代表性的数值案例得到了充分的验证.
Soft materials possess unique traits
such as the ability to withstand large strains and high recoverability
rendering them indispensable in cutting-edge fields like life sciences and soft robotics. Understanding the complex fracture behaviors of such materials is not only crucial for practical applications but also a key research focus in fundamental disciplines such as materials science
physics
and continuum mechanics. This paper presents the authors' work on fracture phase field models
primarily focusing on modeling the large deformation fracture of soft materials
algorithm implementation
and applications. Within the framework of finite deformation theory
a novel hybrid multi-field fracture phase field model is developed to simulate the large deformation fracture of nearly incompressible soft materials. The inherent conflict between incompressibility and diffusive crack opening is clearly elucidated from the perspective of physical crack topology. To address this issue
the model employs phase field degradation functions to relax the incompressibility constraint of damaged materials without affecting the incompressibility of intact materials. By modifying the classical perturbed Lagrange multiplier method
a novel hybrid variational formulation is derived for nearly incompressible large deformation fracture problems. Although this hybrid formulation is effective
it typically requires the use of mixed finite element (FE) configurations that satisfy the inf-sup condition
further increasing the computational burden of the already expensive phase field fracture modeling. To enable the use of numerically advantageous low-order linear elements
the authors further develop a stable hybrid formulation by employing a pressure projection technique. The advantage of this formulation lies in its simplicity and versatility
allowing low-order element discretization for all field variables. Considering this feature
the authors design an efficient adaptive mesh refinement strategy
significantly enhancing computational efficiency. To better address adaptive scenarios involving crack nucleation
a new energy-based mesh refinement criterion is proposed. Additionally
this paper comprehensively elaborates on the numerical treatment of the stable hybrid finite element formulation and the core operations of adaptive mesh refinement and deletion techniques. The accuracy
efficiency
and robustness of the proposed formulation are verified through a series of representative numerical cases.
相场模型软材料大变形断裂复杂裂纹不可压缩约束
Phase field modelSoft materialsLarge deformation fractureComplex cracksIncompressibility constraint
Gong J. P.; Katsuyama Y.; Kurokawa T.; Osada Y.Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 2003, 15(14), 1155-1158. doi:10.1002/adma.200304907http://dx.doi.org/10.1002/adma.200304907
Gong J. P.Materials both tough and soft. Science, 2014, 344, 161-162. doi:10.1126/science.1252389http://dx.doi.org/10.1126/science.1252389
Creton C.; Ciccotti M.Fracture and adhesion of soft materials: a review. Rep. Prog. Phys., 2016, 79(4), 046601. doi:10.1088/0034-4885/79/4/046601http://dx.doi.org/10.1088/0034-4885/79/4/046601
Creton, C. 50th Anniversary perspective: Networks and gels: soft but dynamic and tough. Macromolecules, 2017, 50(21), 8297-8316. doi:10.1021/acs.macromol.7b01698http://dx.doi.org/10.1021/acs.macromol.7b01698
Elmukashfi E.; Kroon M.Numerical analysis of dynamic crack propagation in biaxially strained rubber sheets. Eng. Fract. Mech., 2014, 124, 1-17. doi:10.1016/j.engfracmech.2014.04.025http://dx.doi.org/10.1016/j.engfracmech.2014.04.025
Elmukashfi E.; Kroon M.Numerical analysis of dynamic crack propagation in rubber. Int. J. Fract., 2012, 177(2), 163-178. doi:10.1007/s10704-012-9761-8http://dx.doi.org/10.1007/s10704-012-9761-8
Trapper P.; Volokh K.Cracks in rubber. Int. J. Solids Struct., 2008, 45, 6034-6044. doi:10.1016/j.ijsolstr.2008.07.016http://dx.doi.org/10.1016/j.ijsolstr.2008.07.016
Legrain G.; Moës N.; Verron E.Stress analysis around crack tips in finite strain problems using the eXtended finite element method. Int. J. Numer. Meth. Eng., 2005, 63(2), 290-314. doi:10.1002/nme.1291http://dx.doi.org/10.1002/nme.1291
Hocine N. A.; Abdelaziz M. N.; Mesmacque G.Experimental and numerical investigation on single specimen methods of determination of J in rubber materials. Int. J. Fract., 1998, 94(4), 321-338. doi:10.1023/a:1007520003294http://dx.doi.org/10.1023/a:1007520003294
Bourdin B.; Francfort G. A.; Marigo J. J.The variational approach to fracture. J. Elast., 2008, 91(1), 5-148. doi:10.1007/s10659-007-9107-3http://dx.doi.org/10.1007/s10659-007-9107-3
Tanné E.; Li T.; Bourdin B.; Marigo J. J.; Maurini C.Crack nucleation in variational phase-field models of brittle fracture. J. Mech. Phys. Solids, 2018, 110, 80-99. doi:10.1016/j.jmps.2017.09.006http://dx.doi.org/10.1016/j.jmps.2017.09.006
Ambati M.; Gerasimov T.; De Lorenzis L.A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech., 2015, 55(2), 383-405. doi:10.1007/s00466-014-1109-yhttp://dx.doi.org/10.1007/s00466-014-1109-y
Bui T. Q.; Hu X. F.A review of phase-field models, fundamentals and their applications to composite laminates. Eng. Fract. Mech., 2021, 248, 107705. doi:10.1016/j.engfracmech.2021.107705http://dx.doi.org/10.1016/j.engfracmech.2021.107705
Cervera M.; Barbat G. B.; Chiumenti M.; Wu J. Y.A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Meth. Eng., 2022, 29(2), 1009-1083. doi:10.1007/s11831-021-09604-8http://dx.doi.org/10.1007/s11831-021-09604-8
Francfort G. A.; Marigo J. J.Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 1998, 46(8), 1319-1342. doi:10.1016/s0022-5096(98)00034-9http://dx.doi.org/10.1016/s0022-5096(98)00034-9
Aranson I. S.; Kalatsky V. A.; Vinokur V. M.Continuum field description of crack propagation. Phys. Rev. Lett., 2000, 85(1), 118-121. doi:10.1103/physrevlett.85.118http://dx.doi.org/10.1103/physrevlett.85.118
Karma A.; Kessler D. A.; Levine H.Phase-field model of mode III dynamic fracture. Phys. Rev. Lett., 2001, 87(4), 045501. doi:10.1103/physrevlett.87.045501http://dx.doi.org/10.1103/physrevlett.87.045501
Hakim V.; Karma A.Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids, 2009, 57(2), 342-368. doi:10.1016/j.jmps.2008.10.012http://dx.doi.org/10.1016/j.jmps.2008.10.012
Bourdin B.; Francfort G. A.; Marigo J. J.Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 2000, 48(4), 797-826. doi:10.1016/s0022-5096(99)00028-9http://dx.doi.org/10.1016/s0022-5096(99)00028-9
Miehe C.; Welschinger F.; Hofacker M.Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng., 2010, 83(10), 1273-1311. doi:10.1002/nme.2861http://dx.doi.org/10.1002/nme.2861
Wilson Z. A.; Landis C. M.Phase-field modeling of hydraulic fracture. J. Mech. Phys. Solids, 2016, 96, 264-290. doi:10.1016/j.jmps.2016.07.019http://dx.doi.org/10.1016/j.jmps.2016.07.019
Hu T. C.; Guilleminot J.; Dolbow J. E.A phase-field model of fracture with frictionless contact and random fracture properties: application to thin-film fracture and soil desiccation. Comput. Meth. Appl. Mech. Eng., 2020, 368, 113106. doi:10.1016/j.cma.2020.113106http://dx.doi.org/10.1016/j.cma.2020.113106
Wu J. Y.; Huang Y. L.; Zhou H.; Nguyen V. P.Three-dimensional phase-field modeling of mode I + II/III failure in solids. Comput. Meth. Appl. Mech. Eng., 2021, 373, 113537. doi:10.1016/j.cma.2020.113537http://dx.doi.org/10.1016/j.cma.2020.113537
Borden M. J.; Verhoosel C. V.; Scott M. A.; Hughes T. J. R.; Landis C. M.A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng., 2012, 217, 77-95. doi:10.1016/j.cma.2012.01.008http://dx.doi.org/10.1016/j.cma.2012.01.008
Ambati M.; Gerasimov T.; De Lorenzis L.Phase-field modeling of ductile fracture. Comput. Mech., 2015, 55(5), 1017-1040. doi:10.1007/s00466-015-1151-4http://dx.doi.org/10.1007/s00466-015-1151-4
Hu T. C.; Talamini B.; Stershic A. J.; Tupek M. R.; Dolbow J. E.A variational phase-field model For ductile fracture with coalescence dissipation. Comput. Mech., 2021, 68(2), 311-335. doi:10.1007/s00466-021-02033-1http://dx.doi.org/10.1007/s00466-021-02033-1
Samaniego C.; Ulloa J.; Rodríguez P.; Houzeaux G.; Vázquez M.; Samaniego E.A phase-field model for ductile fracture with shear bands: a parallel implementation. Int. J. Mech. Sci., 2021, 200, 106424. doi:10.1016/j.ijmecsci.2021.106424http://dx.doi.org/10.1016/j.ijmecsci.2021.106424
Wu J.; McAuliffe C.; Waisman H.; Deodatis G.Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method. Comput. Meth. Appl. Mech. Eng., 2016, 312, 596-634. doi:10.1016/j.cma.2016.06.010http://dx.doi.org/10.1016/j.cma.2016.06.010
Mao Y. W.; Anand L.Fracture of elastomeric materials by crosslink failure. J. Appl. Mech., 2018, 85(8), 081008. doi:10.1115/1.4040100http://dx.doi.org/10.1115/1.4040100
Tang S.; Zhang G.; Guo T. F.; Guo X.; Liu W. K.Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition. Comput. Meth. Appl. Mech. Eng., 2019, 347, 477-494. doi:10.1016/j.cma.2018.12.035http://dx.doi.org/10.1016/j.cma.2018.12.035
Zhang G.; Guo T. F.; Zhou Z. H.; Tang S.; Guo X.A phase-field model for fracture in water-containing soft solids. Eng. Fract. Mech., 2019, 212, 180-196. doi:10.1016/j.engfracmech.2019.02.035http://dx.doi.org/10.1016/j.engfracmech.2019.02.035
Peng F.; Huang W.; Zhang Z. Q.; Tian F. G.; Ma Y. E.Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method. Eng. Fract. Mech., 2020, 238, 107233. doi:10.1016/j.engfracmech.2020.107233http://dx.doi.org/10.1016/j.engfracmech.2020.107233
Shen R. L.; Waisman H.; Guo L. C.Fracture of viscoelastic solids modeled with a modified phase field method. Comput. Meth. Appl. Mech. Eng., 2019, 346, 862-890. doi:10.1016/j.cma.2018.09.018http://dx.doi.org/10.1016/j.cma.2018.09.018
Yin B.; Kaliske M.Fracture simulation of viscoelastic polymers by the phase-field method. Comput. Mech., 2020, 65(2), 293-309. doi:10.1007/s00466-019-01769-1http://dx.doi.org/10.1007/s00466-019-01769-1
Zhang P.; Hu X. F.; Bui T. Q.; Yao W. A.Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci., 2019, 161, 105008. doi:10.1016/j.ijmecsci.2019.07.007http://dx.doi.org/10.1016/j.ijmecsci.2019.07.007
Miehe C.; Schänzel L. M.Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids, 2014, 65, 93-113. doi:10.1016/j.jmps.2013.06.007http://dx.doi.org/10.1016/j.jmps.2013.06.007
Hesch C.; Weinberg K.Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int. J. Numer. Meth. Eng., 2014, 99(12), 906-924. doi:10.1002/nme.4709http://dx.doi.org/10.1002/nme.4709
Borden M. J.; Hughes T. J. R.; Landis C. M.; Anvari A.; Lee I. J.A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Meth. Appl. Mech. Eng., 2016, 312, 130-166. doi:10.1016/j.cma.2016.09.005http://dx.doi.org/10.1016/j.cma.2016.09.005
Mandal T. K.; Nguyen V. P.; Wu J. Y.A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. Int. J. Mech. Sci., 2020, 188, 105941. doi:10.1016/j.ijmecsci.2020.105941http://dx.doi.org/10.1016/j.ijmecsci.2020.105941
Swamynathan S.; Jobst S.; Keip M. A.An energetically consistent tension—compression split for phase-field models of fracture at large deformations. Mech. Mater., 2021, 157, 103802. doi:10.1016/j.mechmat.2021.103802http://dx.doi.org/10.1016/j.mechmat.2021.103802
Tian F. C.; Tang X. L.; Xu T. Y.; Li L. B.An adaptive edge-based smoothed finite element method (ES-FEM) for phase-field modeling of fractures at large deformations. Comput. Meth. Appl. Mech. Eng., 2020, 372, 113376. doi:10.1016/j.cma.2020.113376http://dx.doi.org/10.1016/j.cma.2020.113376
Wriggers P.Nonlinear Finite Element Methods. Berlin, Heidelberg: Springer Science & Business Media, 2008. doi:10.1007/978-3-540-71001-1_2http://dx.doi.org/10.1007/978-3-540-71001-1_2
Zimmermann T.The finite element method. Linear static and dynamic finite element analysis. Comput. Meth. Appl. Mech. Eng., 1987, 65(2), 191. doi:10.1016/0045-7825(87)90013-2http://dx.doi.org/10.1016/0045-7825(87)90013-2
de Souza Neto E. A.; Perić D.; Dutko M.; Owen D. R. J.Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int. J. Solids Struct., 1996, 33(20-22), 3277-3296. doi:10.1016/0020-7683(95)00259-6http://dx.doi.org/10.1016/0020-7683(95)00259-6
de Souza Neto E. A.; Andrade Pires F. M.; Owen D. R. J.F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part I: formulation and benchmarking. Int. J. Numer. Meth. Eng., 2005, 62(3), 353-383. doi:10.1002/nme.1187http://dx.doi.org/10.1002/nme.1187
Bijalwan A.; Patel B. P.; Marieswaran M.; Kalyanasundaram D.Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament. J. Biomech., 2018, 73, 1-8. doi:10.1016/j.jbiomech.2018.03.016http://dx.doi.org/10.1016/j.jbiomech.2018.03.016
Wriggers P.; Korelc J.On enhanced strain methods for small and finite deformations of solids. Comput. Mech., 1996, 18(6), 413-428. doi:10.1007/s004660050159http://dx.doi.org/10.1007/s004660050159
Simo J. C.; Taylor R. L.; Pister K. S.Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Meth. Appl. Mech. Eng., 1985, 51(1-3), 177-208. doi:10.1016/0045-7825(85)90033-7http://dx.doi.org/10.1016/0045-7825(85)90033-7
Chen J. S.; Han W.; Wu C. T.; Duan W.On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput. Meth. Appl. Mech. Eng., 1997, 142(3-4), 335-351. doi:10.1016/s0045-7825(96)01139-5http://dx.doi.org/10.1016/s0045-7825(96)01139-5
Ma Z.; Feng X.; Hong W.Fracture of soft elastic foam. Int. J. Appl. Mech., 2016, 83(3), 031007. doi:10.1115/1.4032050http://dx.doi.org/10.1115/1.4032050
Li B.; Bouklas N.A variational phase-field model for brittle fracture in polydisperse elastomer networks. Int. J. Solids Struct., 2020, 182, 193-204. doi:10.1016/j.ijsolstr.2019.08.012http://dx.doi.org/10.1016/j.ijsolstr.2019.08.012
Ye J. Y.; Zhang L. W.; Reddy J. N.Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition. J. Mech. Phys. Solids, 2020, 139, 103939. doi:10.1016/j.jmps.2020.103939http://dx.doi.org/10.1016/j.jmps.2020.103939
Tian F. C.; Zeng J.; Zhang M. N.; Li L. B.Mixed displacement—pressure-phase field framework for finite strain fracture of nearly incompressible hyperelastic materials. Comput. Meth. Appl. Mech. Eng., 2022, 394, 114933. doi:10.1016/j.cma.2022.114933http://dx.doi.org/10.1016/j.cma.2022.114933
Tian F. C.; Zhang M. N.; Zeng J.; Li B.; Li L. B.Adaptive stabilized mixed formulation for phase field fracture modeling of nearly incompressible finite elasticity. Int. J. Mech. Sci., 2022, 236, 107753. doi:10.1016/j.ijmecsci.2022.107753http://dx.doi.org/10.1016/j.ijmecsci.2022.107753
Nakshatrala K. B.; Masud A.; Hjelmstad K. D.On finite element formulations for nearly incompressible linear elasticity. Comput. Mech., 2008, 41(4), 547-561. doi:10.1007/s00466-007-0212-8http://dx.doi.org/10.1007/s00466-007-0212-8
Masud A.; Truster T. J.A framework for residual-based stabilization of incompressible finite elasticity: stabilized formulations and F methods for linear triangles and tetrahedra. Comput. Meth. Appl. Mech. Eng., 2013, 267, 359-399. doi:10.1016/j.cma.2013.08.010http://dx.doi.org/10.1016/j.cma.2013.08.010
Klaas O.; Maniatty A.; Shephard M. S.A stabilized mixed finite element method for finite elasticity. Formulation for linear displacement and pressure interpolation. Comput. Meth. Appl. Mech. Eng., 1999, 180(1-2), 65-79. doi:10.1016/s0045-7825(99)00059-6http://dx.doi.org/10.1016/s0045-7825(99)00059-6
Maniatty A. M.; Liu Y.; Klaas O.; Shephard M. S.Higher order stabilized finite element method for hyperelastic finite deformation. Comput. Meth. Appl. Mech. Eng., 2002, 191(13-14), 1491-1503. doi:10.1016/s0045-7825(01)00335-8http://dx.doi.org/10.1016/s0045-7825(01)00335-8
Wu J. Y.; Nguyen V. P.; Nguyen C. T.; Sutula D.; Sinaie S.; Bordas S. P. A.Phase-field modeling of fracture. Adv. Appl. Mech., 2020, 53, 1-183. doi:10.1016/bs.aams.2019.08.001http://dx.doi.org/10.1016/bs.aams.2019.08.001
Kumar A.; Bourdin B.; Francfort G. A.; Lopez-Pamies O.Revisiting nucleation in the phase-field approach to brittle fracture. J. Mech. Phys. Solids, 2020, 142, 104027. doi:10.1016/j.jmps.2020.104027http://dx.doi.org/10.1016/j.jmps.2020.104027
Bourdin B.; Marigo J. J.; Maurini C.; Sicsic P.Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys. Rev. Lett., 2014, 112, 014301. doi:10.1103/physrevlett.112.014301http://dx.doi.org/10.1103/physrevlett.112.014301
Pham K. H.; Ravi-Chandar K.; Landis C. M.Experimental validation of a phase-field model for fracture. Int. J. Fract., 2017, 205(1), 83-101. doi:10.1007/s10704-017-0185-3http://dx.doi.org/10.1007/s10704-017-0185-3
Kuhn C.; Schlüter A.; Müller R.On degradation functions in phase field fracture models. Comput. Mater. Sci., 2015, 108, 374-384. doi:10.1016/j.commatsci.2015.05.034http://dx.doi.org/10.1016/j.commatsci.2015.05.034
Brink U.; Stein E.On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech., 1996, 19(1), 105-119. doi:10.1007/bf02824849http://dx.doi.org/10.1007/bf02824849
Gwinner J.Non-linear elastic deformations. Acta Appl. Math., 1988, 11(2), 191-193. doi:10.1007/bf00047287http://dx.doi.org/10.1007/bf00047287
Holzapfel G. A.Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica, 2002, 37(4), 489-490. doi:10.1023/a:1020843529530http://dx.doi.org/10.1023/a:1020843529530
Fortin M.; Brezzi F.Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991. doi:10.1007/978-1-4612-3172-1http://dx.doi.org/10.1007/978-1-4612-3172-1
Mang K.; Wick T.; Wollner W.A phase-field model for fractures in nearly incompressible solids. Comput. Mech., 2020, 65(1), 61-78. doi:10.1007/s00466-019-01752-whttp://dx.doi.org/10.1007/s00466-019-01752-w
Tian F. C.; Zeng J.; Tang X. L.; Xu T. Y.; Li L. B.A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials. Int. J. Solids Struct., 2020, 202, 685-698. doi:10.1016/j.ijsolstr.2020.07.004http://dx.doi.org/10.1016/j.ijsolstr.2020.07.004
Taylor C.; Hood P.A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids, 1973, 1(1), 73-100. doi:10.1016/0045-7930(73)90027-3http://dx.doi.org/10.1016/0045-7930(73)90027-3
Kadapa C.; Li Z. F.; Hossain M.; Wang J.On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. J. Mech. Phys. Solids, 2021, 148, 104289. doi:10.1016/j.jmps.2020.104289http://dx.doi.org/10.1016/j.jmps.2020.104289
Karabelas E.; Haase G.; Plank G.; Augustin C. M.Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics. Comput. Mech., 2020, 65(1), 193-215. doi:10.1007/s00466-019-01760-whttp://dx.doi.org/10.1007/s00466-019-01760-w
Loew P. J.; Peters B.; Beex L. A. A.Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification. J. Mech. Phys. Solids, 2019, 127, 266-294. doi:10.1016/j.jmps.2019.03.022http://dx.doi.org/10.1016/j.jmps.2019.03.022
Tian F. C.; Tang X. L.; Xu T. Y.; Yang J. S.; Li L. B.A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture. Int. J. Numer. Meth. Eng., 2019, 120(9), 1108-1125. doi:10.1002/nme.6172http://dx.doi.org/10.1002/nme.6172
Zeng J.; Zhang M. N.; Yang E. J.; Tian F. C.; Li L. B.A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. Int. J. Numer. Meth. Eng., 2022, 123(3), 844-865. doi:10.1002/nme.6879http://dx.doi.org/10.1002/nme.6879
Chen L, Holst M. Efficient mesh optimization schemes based on optimal Delaunay triangulations. Comput. Meth. Appl. Mech. Eng., 2011, 200, 967-984. doi:10.1016/j.cma.2010.11.007http://dx.doi.org/10.1016/j.cma.2010.11.007
Reese S.; Wriggers P.; Reddy B. D.A new locking-free brick element technique for large deformation problems in elasticity. Comput. Struct., 2000, 75(3), 291-304. doi:10.1016/s0045-7949(99)00137-6http://dx.doi.org/10.1016/s0045-7949(99)00137-6
Hocine N. A.; Abdelaziz M. N.; Imad A.Fracture problems of rubbers: J-integral estimation based upon η factors and an investigation on the strain energy density distribution as a local criterion. Int. J. Fract., 2002, 117(1), 1-23. doi:10.1023/a:1020967429222http://dx.doi.org/10.1023/a:1020967429222
Yuk H.; Zhang T.; Lin S. T.; Parada G. A.; Zhao X. H.Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater., 2016, 15(2), 190-196. doi:10.1038/nmat4463http://dx.doi.org/10.1038/nmat4463
Lu Y. N.; Qi Y.; Tenardi M.; Long R.Mixed-mode fracture in a soft elastomer. Extreme Mech. Lett., 2021, 48, 101380. doi:10.1016/j.eml.2021.101380http://dx.doi.org/10.1016/j.eml.2021.101380
Bai R. B.; Chen B. H.; Yang J. W.; Suo Z. G.Tearing a hydrogel of complex rheology. J. Mech. Phys. Solids, 2019, 125, 749-761. doi:10.1016/j.jmps.2019.01.017http://dx.doi.org/10.1016/j.jmps.2019.01.017
Scovazzi G.; Carnes B.; Zeng X. Y.; Rossi S.A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int. J. Numer. Meth. Eng., 2016, 106(10), 799-839. doi:10.1002/nme.5138http://dx.doi.org/10.1002/nme.5138
Castañar I.; Baiges J.; Codina R.A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation. Comput. Meth. Appl. Mech. Eng., 2020, 368, 113164. doi:10.1016/j.cma.2020.113164http://dx.doi.org/10.1016/j.cma.2020.113164
0
浏览量
67
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构