浏览全部资源
扫码关注微信
1.华南理工大学材料科学与工程学院 发光材料与器件国家重点实验室 广州 510610
2.东华大学材料科学与工程学院 先进低维材料中心 上海 201620
E-mail: msjzhang@scut.edu.cn;
E-mail: mwang@dhu.edu.cn;
E-mail: msfhuang@scut.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-12-25,
收稿日期:2024-08-27,
录用日期:2024-09-22
移动端阅览
蔡厚继, 谭若兮, 董方亮, 张杰, 胡正伟, 赵海洋, 刘春晨, 王明, 黄飞, 曹镛. 基于苯并二吲哚二酮的低聚物共轭长度调节及应用:共轭聚合物构建及载流子传输性能调控[J]. 高分子学报, 2025,56(2):286-298.
HOU-JI CAI, RUO-XI TAN, FANG-LIANG DONG, JIE ZHANG, ZHENG-WEI HU, HAI-YANG ZHAO, CHUN-CHEN LIU, MING WANG, FEI HUANG, YONG CAO. Conjugation Length Adjustment and Application of Oligomers Based on Benzodiindodione: Conjugated Polymer Construction and Carrier Transport Performance Regulation. [J]. Acta polymerica sinica, 2025, 56(2): 286-298.
蔡厚继, 谭若兮, 董方亮, 张杰, 胡正伟, 赵海洋, 刘春晨, 王明, 黄飞, 曹镛. 基于苯并二吲哚二酮的低聚物共轭长度调节及应用:共轭聚合物构建及载流子传输性能调控[J]. 高分子学报, 2025,56(2):286-298. DOI: 10.11777/j.issn1000-3304.2024.24225. CSTR: 32057.14.GFZXB.2024.7299.
HOU-JI CAI, RUO-XI TAN, FANG-LIANG DONG, JIE ZHANG, ZHENG-WEI HU, HAI-YANG ZHAO, CHUN-CHEN LIU, MING WANG, FEI HUANG, YONG CAO. Conjugation Length Adjustment and Application of Oligomers Based on Benzodiindodione: Conjugated Polymer Construction and Carrier Transport Performance Regulation. [J]. Acta polymerica sinica, 2025, 56(2): 286-298. DOI: 10.11777/j.issn1000-3304.2024.24225. CSTR: 32057.14.GFZXB.2024.7299.
有机共轭聚合物的载流子传输性能与共轭结构息息相关. 然而,在分子水平上理解分子共轭长度与材料及器件性能的关系仍缺乏相关依据,设计和开发新型且共轭长度连续可控的结构单元在合成上面临挑战. 基于此,本研究提供了一种新的分子设计和合成思路,通过氧化偶联的方式合成了一系列分子共轭长度可控的苯并二吲哚二酮衍生物的共轭低聚物,并将其构建成相应的聚合物,展示了其可调控的电子传输性能. 随着中间构筑单元共轭长度的增加,材料的最低未占分子轨道(LUMO)能级逐渐降低,带隙变窄,传输性质由p型传输转变为双极型传输. 含有单个苯并二吲哚二酮构筑单元的聚合物PBIDI-4F-T表现出了9.05×10
-2
cm
2
·V
-1
·s
-1
的最大电子迁移率和4.21×10
-3
cm
2
·V
-1
·s
-1
的最大空穴迁移率. 本工作为探索电子受体低聚物单元共轭长度与聚合物载流子电荷传输性能之间的构效关系提供了新的参考.
The carrier transport performance of organic conjugated polymers is closely related to the conjugated structure. However
there is still a lack of relevant principle for understanding the relationship between molecular conjugate length and the properties of materials and devices at the molecular level
and the design and development of units with continuous and controllable conjugate length faces challenges in synthesis. Based on this
this paper provides a new molecular design strategy and synthesis method
and synthesized a series of oligomers and corresponding polymers with controllable molecular conjugate lengths of benzodiindodione derivatives by oxidative coupling
and demonstrates their tunable charge transport performance. With the increase of the conjugate length of the intermediate building block
the lowest unoccupied molecular orbital
(
LUMO) energy level of the materials decreases gradually
the band gap narrows
and the charger carrier transport property changes from p-type to ambipolar transport characteristics. The polymer PBIDI-4F-T containing a single benzodiindodione building
block exhibits the highest electron mobility of 9.05×10
-2
cm
2
·V
-1
·s
-1
and a hole mobility of 4.21×10
-3
cm
2
·V
-1
·s
-1
. This work provides a new reference for exploring the structure- property relationship between the conjugate length of the acceptor oligomer units and the charge carrier transport performance of polymers.
低聚物共轭聚合物有机场效应晶体管氧化偶联一锅法共轭延展
OligomerConjugated polymersOrganic field-effect transistorOxidative couplingOne-pot synthesisConjugation extension
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
王思怡, 钟文楷, 黄飞. 可拉伸高分子光电器件的研究进展. 高分子学报, 2024, 55(9), 1091-1110. doi:10.11777/j.issn1000-3304.2024.24131http://dx.doi.org/10.11777/j.issn1000-3304.2024.24131
Liu C. C.; Shao L.; Chen S. H.; Hu Z. W.; Cai H. J.; Huang F.Recent progress in π-conjugated polymers for organic photovoltaics: solar cells and photodetectors. Prog. Polym. Sci., 2023, 143, 101711. doi:10.1016/j.progpolymsci.2023.101711http://dx.doi.org/10.1016/j.progpolymsci.2023.101711
Song J. J.; Liu H.; Zhao Z. Y.; Lin P.; Yan F.Flexible organic transistors for biosensing: devices and applications. Adv. Mater., 2024, 36(20), 2300034. doi:10.1002/adma.202300034http://dx.doi.org/10.1002/adma.202300034
Shen Z. Q.; Huang W.; Li L.; Li H. Z.; Huang J.; Cheng J. G.; Fu Y. Y.Research progress of organic field-effect transistor based chemical sensors. Small, 2023, 19(41), 2302406. doi:10.1002/smll.202370340http://dx.doi.org/10.1002/smll.202370340
An C. B.; Dong W. J.; Yu R. J.; Xu C. H.; Pei D. D.; Wang X. M.; Chen H. P.; Chi C. Y.; Han Y.; Geng Y. H.High-performance n-type stretchable semiconductor blends for organic thin-film transistors and artificial synapses. Chem. Mater., 2024, 36(1), 450-460. doi:10.1021/acs.chemmater.3c02417http://dx.doi.org/10.1021/acs.chemmater.3c02417
Zeng X. Y.; Tang Y. Q.; Cai X. Y.; Tang J. X.; Li Y. Q.Solution-processed OLEDs for printing displays. Mater. Chem. Front., 2023, 7(7), 1166-1196. doi:10.1039/d2qm01241chttp://dx.doi.org/10.1039/d2qm01241c
Ding L.; Yu Z. D.; Wang X. Y.; Yao Z. F.; Lu Y.; Yang C. Y.; Wang J. Y.; Pei J.Polymer semiconductors: synthesis, processing, and applications. Chem. Rev., 2023, 123(12), 7421-7497. doi:10.1021/acs.chemrev.2c00696http://dx.doi.org/10.1021/acs.chemrev.2c00696
Wei W. K.; Zhou X.; Pang S. T.; Zhou J. D.; Yuan X. Y.; Li J. Y.; Chen Y. T.; Pan L. H.; Xie Z. Q.; Wu H. B.; Huang F.; Cao Y.; Duan C. H.A-D-A'-D—a type nonfused ring electron acceptors for efficient organic solar cells via synergistic molecular packing and orientation control. Aggregate, 2024, 5(2), e488. doi:10.1002/agt2.488http://dx.doi.org/10.1002/agt2.488
He Y. L.; Zhang J. Q.; Ma C. Y.; Liu J. K.; Guo J. J.; Han T.; Hu R. R.; Li B. S.; Tang B. Z.Multifaceted regulation of chiroptical properties and self-assembly behaviors of chiral fluorescent polymers. Aggregate, 2024, e642. doi:10.1002/agt2.642http://dx.doi.org/10.1002/agt2.642
Wang C. L.; Dong H. L.; Hu W. P.; Liu Y. Q.; Zhu D. B.Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev., 2012, 112(4), 2208-2267. doi:10.1021/cr100380zhttp://dx.doi.org/10.1021/cr100380z
Holliday S.; Donaghey J. E.; McCulloch I.Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater., 2014, 26(1), 647-663. doi:10.1021/cm402421phttp://dx.doi.org/10.1021/cm402421p
Tang H. R.; Cai H. J.; Zhao H. Y.; Liu Z. Y.; Tan R. X.; Huang F.A solution-processed n-type conducting polymer without side chains formed via nonmetal-participated polymerization and in situ n-doping. CCS Chem., 2023, 5(11), 2534-2544. doi:10.31635/ccschem.023.202202363http://dx.doi.org/10.31635/ccschem.023.202202363
Zhu M. L.; Guo Y. L.; Liu Y. Q.A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Sci. China Chem., 2022, 65(7), 1225-1264. doi:10.1007/s11426-022-1239-0http://dx.doi.org/10.1007/s11426-022-1239-0
Lei T.; Cao Y.; Fan Y. L.; Liu C. J.; Yuan S. C.; Pei J.High-performance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. J. Am. Chem. Soc., 2011, 133(16), 6099-6101. doi:10.1021/ja111066rhttp://dx.doi.org/10.1021/ja111066r
Lei T.; Dou J. H.; Pei J.Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater., 2012, 24(48), 6457-6461. doi:10.1002/adma.201202689http://dx.doi.org/10.1002/adma.201202689
Mei J. G.; Wu H. C.; Diao Y.; Appleton A.; Wang H.; Zhou Y.; Lee W. Y.; Kurosawa T.; Chen W. C.; Bao Z. N.Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films. Adv. Funct. Mater., 2015, 25(23), 3455-3462. doi:10.1002/adfm.201500684http://dx.doi.org/10.1002/adfm.201500684
Lei T.; Dou J. H.; Ma Z. J.; Yao C. H.; Liu C. J.; Wang J. Y.; Pei J.Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J. Am. Chem. Soc., 2012, 134(49), 20025-20028. doi:10.1021/ja310283fhttp://dx.doi.org/10.1021/ja310283f
Lei T.; Dou J. H.; Ma Z. J.; Liu C. J.; Wang J. Y.; Pei J.Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem. Sci., 2013, 4(6), 2447-2452. doi:10.1039/c3sc50245ghttp://dx.doi.org/10.1039/c3sc50245g
Gao Y.; Deng Y. F.; Tian H. K.; Zhang J. D.; Yan D. H.; Geng Y. H.; Wang F. S.Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo. Adv. Mater., 2017, 29(13), 1606217. doi:10.1002/adma.201606217http://dx.doi.org/10.1002/adma.201606217
Kim G.; Kang S. J.; Dutta G. K.; Han Y. K.; Shin T. J.; Noh Y. Y.; Yang C.A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc., 2014, 136(26), 9477-9483. doi:10.1021/ja504537vhttp://dx.doi.org/10.1021/ja504537v
Wei C. Y.; Tang Z. H.; Zhang W. F.; Huang J. Y.; Zhou Y. K.; Wang L. P.; Yu G.Molecular engineering of (E)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors. Polym. Chem., 2020, 11(46), 7340-7348.
Lei T.; Dou J. H.; Cao X. Y.; Wang J. Y.; Pei J.Electron-deficient poly(p-phenylene vinylene) provides electron mobility over1 cm2 v-1 s-1 under ambient conditions. J. Am. Chem. Soc., 2013, 135(33), 12168-12171. doi:10.1021/ja403624ahttp://dx.doi.org/10.1021/ja403624a
Yan Z. Q.; Sun B.; Li Y. N.Novel stable (3e, 7e)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2, 6(3H, 7H)-dione based donor-acceptor polymer semiconductors for n-type organic thin film transistors. Chem. Commun., 2013, 49(36), 3790.
Yu Z. D.; Lu Y.; Wang Z. Y.; Un H. I.; Zelewski S. J.; Cui Y.; You H. Y.; Liu Y.; Xie K. F.; Yao Z. F.; He Y. C.; Wang J. Y.; Hu W. B.; Sirringhaus H.; Pei J.High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv., 9(8), eadf3495. doi:10.1126/sciadv.adf3495http://dx.doi.org/10.1126/sciadv.adf3495
Lu Y.; Yu Z. D.; Un H. I.; Yao Z. F.; You H. Y.; Jin W. L.; Li L.; Wang Z. Y.; Dong B. W.; Barlow S.; Longhi E.; Di C. A.; Zhu D. B.; Wang J. Y.; Silva C.; Marder S. R.; Pei J.Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv. Mater., 2021, 33(2), 2005946. doi:10.1002/adma.202005946http://dx.doi.org/10.1002/adma.202005946
Yao Z. F.; Wang J. Y.; Pei J.High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem. Sci., 2020, 12(4), 1193-1205. doi:10.1039/d0sc06497ahttp://dx.doi.org/10.1039/d0sc06497a
Yang J.; Wang H. L.; Chen J. Y.; Huang J. Y.; Jiang Y. Y.; Zhang J. Q.; Shi L. X.; Sun Y. L.; Wei Z. X.; Yu G.; Guo Y. L.; Wang S.; Liu Y. Q.Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater., 2017, 29(22), 1606162. doi:10.1002/adma.201606162http://dx.doi.org/10.1002/adma.201606162
Wang Y. F.; Guo H.; Ling S. H.; Arrechea-Marcos I.; Wang Y. X.; López Navarrete J. T.; Ortiz R. P.; Guo X. G.Ladder-type heteroarenes: up to 15 rings with five imide groups. Angew. Chem., 2017, 129(33), 10056-10061. doi:10.1002/ange.201702225http://dx.doi.org/10.1002/ange.201702225
Yu Y. P.; Xue N.; Xiao C. Y.; Ravva M. K.; Guo Y. J.; Wu L. Y.; Zhang L.; Li Z. K.; Yue W.; Wang Z. H.Effect of conjugation length on the properties of fused perylene diimides with variable isoindigos. J. Mater. Chem. C, 2019, 7(39), 12263-12269. doi:10.1039/c9tc04078ahttp://dx.doi.org/10.1039/c9tc04078a
Jiang Y.; Zheng X. H.; Deng D. Y.; Tian D. H.; Ding P. J.; Xie P. Z.; Geng P. Y.; Wang P. F.Fused isoindigo ribbons with absorption bands reaching near-infrared. Angew. Chem. Int. Ed., 2018, 57(32), 10283-10287. doi:10.1002/anie.201800512http://dx.doi.org/10.1002/anie.201800512
Cao Y.; Yuan J. S.; Zhou X.; Wang X. Y.; Zhuang F. D.; Wang J. Y.; Pei J.N-Fused BDOPV: a tetralactam derivative as a building block for polymer field-effect transistors. Chem. Commun., 2015, 51(52), 10514-10516. doi:10.1039/c5cc02026chttp://dx.doi.org/10.1039/c5cc02026c
Yue W.; Larsen-Olsen T. T.; Hu X. L.; Shi M. M.; Chen H. Z.; Hinge M.; Fojan P.; Krebs F. C.; Yu D. H.Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers. J. Mater. Chem. A, 2013, 1(5), 1785-1793. doi:10.1039/c2ta00695bhttp://dx.doi.org/10.1039/c2ta00695b
Zhang T.; Chen Z.; Zhang W.; Wang L.; Yu G.Recent progress of fluorinated conjugated polymers. Adv. Mater., 2024, n/a(n/a), 2403961. doi:10.1002/adma.202403961http://dx.doi.org/10.1002/adma.202403961
Liu M. H.; Han X.; Chen H.; Peng Q.; Huang H.A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nat. Commun., 2023, 14(1), 2500. doi:10.1038/s41467-023-38078-4http://dx.doi.org/10.1038/s41467-023-38078-4
Noriega R.; Rivnay J.; Vandewal K.; Koch F. P. V.; Stingelin N.; Smith P.; Toney M. F.; Salleo A.A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater., 2013, 12(11), 1038-1044. doi:10.1038/nmat3722http://dx.doi.org/10.1038/nmat3722
邱红, 钟知鸣, 李美静, 应磊, 俞钢, 黄飞, 曹镛. 基于膜厚与分子量优化策略实现高效近红外有机光探测器. 高分子学报, 2022, 53(4), 433-440.
Tsao H. N.; Müllen K.Improving polymer transistor performance via morphology control. Chem. Soc. Rev., 2010, 39(7), 2372-2386. doi:10.1039/b918151mhttp://dx.doi.org/10.1039/b918151m
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构