浏览全部资源
扫码关注微信
盐城工学院数理学院 盐城 224051
E-mail: phyqwj@ycit.edu.cn;
收稿日期:2024-09-18,
录用日期:2024-12-12,
网络出版日期:2025-01-23,
纸质出版日期:2025-03-20
移动端阅览
邱文娟, 莫兆文, 邢玉恒. 体相结构为六角柱的ABC星型三嵌段共聚物纳米球受限相行为的理论研究. 高分子学报, 2025, 56(3), 501-514
Qiu, W. J.; Mo, Z. W.; Xing, Y. H. Theoretical study of the phase behavior of cylinder-forming ABC star triblock copolymers under spherical confinement. Acta Polymerica Sinica, 2025, 56(3), 501-514
邱文娟, 莫兆文, 邢玉恒. 体相结构为六角柱的ABC星型三嵌段共聚物纳米球受限相行为的理论研究. 高分子学报, 2025, 56(3), 501-514 DOI: 10.11777/j.issn1000-3304.2024.24232. CSTR: 32057.14.GFZXB.2024.7329.
Qiu, W. J.; Mo, Z. W.; Xing, Y. H. Theoretical study of the phase behavior of cylinder-forming ABC star triblock copolymers under spherical confinement. Acta Polymerica Sinica, 2025, 56(3), 501-514 DOI: 10.11777/j.issn1000-3304.2024.24232. CSTR: 32057.14.GFZXB.2024.7329.
利用自洽场理论方法,实现了对A、B两嵌段之间有着一对非常微弱相互作用的A
0.33
B
0.33
C
0.34
星型三嵌段共聚物在纳米球受限下相结构转变行为的研究. 对A
0.33
B
0.33
C
0.34
星型三嵌段共聚物体相结构和纳米球表面属性及空间受限程度对相结构的影响依次给予了计算分析. 结果显示,在表面场中性和选择C嵌段两种纳米球受限环境下,随纳米球空间增大,体相结构为六角柱的A
0.33
B
0.33
C
0.34
星型三嵌段共聚物均呈现由各种非球对称性受挫相结构向具有六角柱体相结构特征的相结构演化的转化规律. 不同于前2种受限情况,在表面场选择A嵌段和同时选择A及B两嵌段的纳米球受限环境下,在中等大纳米球空间受限区域里,同心球形层结构均有出现. 被表面场选择的嵌段润湿或占据纳米球内表面的能力随纳米球空间增大和表面场属性由选择C嵌段变为选择A嵌段变为同时选择A及B两嵌段的顺序均呈现增强趋势,但A
0.33
B
0.33
C
0.34
星型共聚物润湿能力没有在相同受限环境下线型两嵌段的润湿能力强. 相比在相同纳米球受限环境下有着对称性相互作用的A
0.33
B
0.33
C
0.34
星型三嵌段共聚物,本研究中的A
0.33
B
0.33
C
0.34
星型共聚物呈现出更多新颖有趣的相结构及转变行为. 本研究有助于全面理解星型三嵌段共聚物自组装行为机理,也为解读复杂相结构的形成机理打下理论基础.
In this paper
the morphologies and phase behavior of spherically confined A
0.33
B
0.33
C
0.34
star triblock copolymers with a pair of very weak interaction parameters between A and B blocks are studied by using continuous self-consistent field theory. In this study
the bulk phase structure of A
0.33
B
0.33
C
0.34
star triblock copolymer melts and the influence of the surface property and confinement dimension of the confining nanosphere on the phase structure of the confined copolymers are calculated and analyzed
respectively. The results show that as the confinement dimension of nanospheres increases
the morphologies of hexagonally packed cylinder-forming A
0.33
B
0.33
C
0.34
star triblock copolymers under spherical confinement with a neutral surface or the surface preference/selectivity for C blocks evolve from various frustrated phase structures to the confined phase structures with a similar structural characteristic to its bulk phase structure. Different from the previous two surface field cases
concentrically spherical layer structures appear in nanospheres of the medium confinement dimension where the nanosphere surface field has a preference for block A or for both A and B blocks. The ability of the segments liked by the surface field to occupy or wet the inner surface of the nanosphere is enhanced with increasing confinement dimension of nanospheres or the changing sequence of the surface field properties from preference for block C to selectivity for block A to preference for both A and B blocks. However
the wetting ability of A
0.33
B
0.33
C
0.34
star triblock copolymers is weaker than that of linear diblock copolymers under the same confinement environment. Compared with the traditional A
0.33
B
0.33
C
0.34
star triblock copolymers with symmetric interactions under the same nanosphere confinement
the A
0.33
B
0.33
C
0.34
star triblock copolymers in this paper show a more complex and interesting phase behavior. This study in
this paper has successfully been realized to extend the previous studies on ABC star triblock copolymers limited by symmetric interactions or three pairs of relatively strong interactions to systems with a pair of very weak or approximately zero interaction. Therefore
this work is helpful to fully understand the self-assembly behavior mechanism of star triblock copolymers. It also lays a theoretical foundation for the interpretation of the forming mechanism of complex phase structure.
Hamley I. W. Ordering in thin films of block copolymers: fundamentals to potential applications . Prog. Polym. Sci. , 2009 , 34 ( 11 ), 1161 - 1210 . doi: 10.1016/j.progpolymsci.2009.06.003 http://dx.doi.org/10.1016/j.progpolymsci.2009.06.003
Yabu H. ; Higuchi T. ; Jinnai H. Frustrated phases: polymeric self-assemblies in a 3D confinement . Soft Matter , 2014 , 10 ( 17 ), 2919 - 2931 . doi: 10.1039/c3sm52821a http://dx.doi.org/10.1039/c3sm52821a
Schacher F. H. ; Rupar P. A. ; Manners I. Functional block copolymers: nanostructured materials with emerging applications . Angew. Chem. Int. Ed. , 2012 , 51 ( 32 ), 7898 - 7921 . doi: 10.1002/anie.201200310 http://dx.doi.org/10.1002/anie.201200310
Stewart-Sloan C. R. ; Thomas E. L. Interplay of symmetries of block polymers and confining geometries . Eur. Polym. J. , 2011 , 47 ( 4 ), 630 - 646 . doi: 10.1016/j.eurpolymj.2010.10.013 http://dx.doi.org/10.1016/j.eurpolymj.2010.10.013
Wang S. H. ; Tong C. H. ; Zhu Y. J. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application . J. Chem. Phys. , 2014 , 140 ( 14 ), 144907 . doi: 10.1063/1.4870468 http://dx.doi.org/10.1063/1.4870468
Mu D. ; Li J. Q. ; Feng S. Y. Mechanistic investigations of confinement effects on the self-assembly of symmetric amphiphilic copolymers in thin films . Phys. Chem. Chem. Phys. , 2017 , 19 ( 33 ), 21938 - 21945 . doi: 10.1039/C7CP02019H http://dx.doi.org/10.1039/C7CP02019H
Kim J. K. ; Yang S. Y. ; Lee Y. ; Kim Y. Functional nanomaterials based on block copolymer self-assembly . Prog. Polym. Sci. , 2010 , 35 ( 11 ), 1325 - 1349 . doi: 10.1016/j.progpolymsci.2010.06.002 http://dx.doi.org/10.1016/j.progpolymsci.2010.06.002
Skandalis A. ; Sentoukas T. ; Giaouzi D. ; Kafetzi M. ; Pispas S. Latest advances on the synthesis of linear ABC-type triblock terpolymers and star-shaped polymers by RAFT polymerization . Polymers , 2021 , 13 ( 11 ), 1698 . doi: 10.3390/polym13111698 http://dx.doi.org/10.3390/polym13111698
Li H. ; Wei Y. Y. ; Wang Z. Y. ; Wang N. ; Zhang L. ; Chen Z. B. ; Lin Q. L. ; Liu H. Self-assembly of triblock copolymers in the slits of neutral plates to form porous membranes and the pore size distribution: dissipative particle dynamics simulation . Polym. Int. , 2022 , 71 ( 9 ), 1134 - 1142 . doi: 10.1002/pi.6391 http://dx.doi.org/10.1002/pi.6391
Luo C. X. ; Huang W. H. ; Han Y. C. Formation of two kinds of hexagonally arranged structures in ABC triblock copolymer thin films induced by a strongly selective solvent vapor . Macromol. Rapid Commun. , 2009 , 30 ( 22 ), 1917 - 1921 . doi: 10.1002/marc.200900427 http://dx.doi.org/10.1002/marc.200900427
Qiu W. J. ; Li S. B. ; Ji Y. Y. ; Zhang L. X. Self-assembly of linear triblock copolymers under cylindrical nanopore confinements . Chinese J. Polym. Sci. , 2013 , 31 ( 1 ), 122 - 138 . doi: 10.1007/s10118-013-1183-1 http://dx.doi.org/10.1007/s10118-013-1183-1
Qiu W. J. ; He L. L. ; Ji Y. Y. ; Wang X. H. ; Li S. B. Phase diagrams of ABC linear triblock copolymers under nanopore confinements . Polymer , 2012 , 53 ( 15 ), 3392 - 3402 . doi: 10.1016/j.polymer.2012.05.026 http://dx.doi.org/10.1016/j.polymer.2012.05.026
Wu J. ; Chen S. T. ; Li S. B. ; Liu L. M. ; Wang X. H. ; Lang W. C. Simulation of surface-induced morphology transition and phase diagram of linear triblock copolymers under spherical confinement . Chinese J. Polym. Sci. , 2023 , 41 ( 1 ), 166 - 178 . doi: 10.1007/s10118-022-2812-3 http://dx.doi.org/10.1007/s10118-022-2812-3
Wu J. ; Huang Z. H. ; Lang W. C. ; Wang X. H. ; Li S. B. Surface-induced nanostructures and phase diagrams of ABC linear triblock copolymers under spherical confinement: a self-consistent field theory simulation . Polymers , 2018 , 10 ( 11 ), 1276 . doi: 10.3390/polym10111276 http://dx.doi.org/10.3390/polym10111276
Yan M. ; Zhang Y. T. ; Wang X. H. Nanoparticle-filled ABC star triblock copolymers: a dissipative particle dynamics study . Chinese J. Polym. Sci. , 2023 , 41 ( 9 ), 1462 - 1476 . doi: 10.1007/s10118-023-3021-4 http://dx.doi.org/10.1007/s10118-023-3021-4
Kim H. ; Arras M. M. L. ; Mahalik J. P. ; Wang W. Y. ; Yu D. M. ; Chernyy S. ; Goswami M. ; Kumar R. ; Sumpter B. G. ; Hong K. L. ; Smith G. S. ; Russell T. P. Studies on the 3-lamellar morphology of miktoarm terpolymers . Macromolecules , 2018 , 51 ( 19 ), 7491 - 7499 . doi: 10.1021/acs.macromol.8b01548 http://dx.doi.org/10.1021/acs.macromol.8b01548
Jiang K. ; Zhang J. ; Liang Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts . J. Phys. Chem. B , 2015 , 119 ( 45 ), 14551 - 14562 . doi: 10.1021/acs.jpcb.5b08187 http://dx.doi.org/10.1021/acs.jpcb.5b08187
Zhang Y. ; Cao M. J. ; Han G. ; Guo T. Y. ; Ying T. Y. ; Zhang W. Q. Topology affecting block copolymer nanoassemblies: Linear Block copolymers versus star block copolymers under PISA conditions . Macromolecules , 2018 , 51 ( 14 ), 5440 - 5449 . doi: 10.1021/acs.macromol.8b01121 http://dx.doi.org/10.1021/acs.macromol.8b01121
Zhong Q. ; Mi L. ; Metwalli E. ; Bießmann L. ; Philipp M. ; Miasnikova A. ; Laschewsky A. ; Papadakis C. M. ; Cubitt R. ; Schwartzkopf M. ; Roth S. V. ; Wang J. P. ; Müller-Buschbaum P. Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)- block -polystyrene) 3 block copolymer films . Soft Matter , 2018 , 14 ( 31 ), 6582 - 6594 . doi: 10.1039/c8sm00965a http://dx.doi.org/10.1039/c8sm00965a
Saraei M. ; Sarvari R. ; Massoumi B. ; Agbolaghi S. Co-delivery of methotrexate and doxorubicin via nanocarriers of s tar-like poly(DMAEMA- block -HEMA- block -AAc) terpolymers . Polym. Int. , 2019 , 68 ( 10 ), 1795 - 1803 . doi: 10.1002/pi.5890 http://dx.doi.org/10.1002/pi.5890
Kong W. X. ; Li B. H. ; Jin Q. H. ; Ding D. T. ; Shi A. C. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers . J. Am. Chem. Soc. , 2009 , 131 ( 24 ), 8503 - 8512 . doi: 10.1021/ja900405r http://dx.doi.org/10.1021/ja900405r
Lin B. ; Zhang H. D. ; Qiu F. ; Yang Y. L. Self-Assembly of ABC Star Triblock Copolymer Thin Films Confined with a Preferential Surface: A Self-Consistent Mean Field Theory . Langmuir , 2010 , 26 ( 24 ), 19033 - 19044 . doi: 10.1021/la102519f http://dx.doi.org/10.1021/la102519f
Jiang W. B. ; Lang W. C. ; Li S. B. ; Wang X. H. Morphologies of core-shell-cylinder-forming ABC star triblock copolymers in nanopores . Chin. J. Chem. Phys. , 2014 , 27 ( 3 ), 337 - 342 . doi: 10.1063/1674-0068/27/03/337-342 http://dx.doi.org/10.1063/1674-0068/27/03/337-342
Liu Z. Y. ; Wang Z. ; Yin Y. H. ; Jiang R. ; Li B. H. A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces . Soft Matter , 2021 , 17 ( 21 ), 5336 - 5348 . doi: 10.1039/d1sm00271f http://dx.doi.org/10.1039/d1sm00271f
Lv Z. Y. ; Wu J. ; Ji Y. Y. ; Li S. B. ; Wang X. H. Morphologies and phase diagrams of ABC star triblock copolymers in cylindrical nanotubes with homogenous and patterned surfaces . Polymer , 2016 , 95 , 62 - 76 . doi: 10.1016/j.polymer.2016.03.012 http://dx.doi.org/10.1016/j.polymer.2016.03.012
Jiang W. B. ; Ji Y. Y. ; Lang W. C. ; Li S. B. ; Wang X. H. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities . Chinese J. Polym. Sci. , 2015 , 33 ( 11 ), 1503 - 1515 . doi: 10.1007/s10118-015-1706-z http://dx.doi.org/10.1007/s10118-015-1706-z
Li S. B. ; Jiang Y. ; Chen J. Z. Y. Morphologies and phase diagrams of ABC star triblock copolymers confined in a spherical cavity . Soft Matter , 2013 , 9 ( 19 ), 4843 - 4854 . doi: 10.1039/c3sm27770d http://dx.doi.org/10.1039/c3sm27770d
Matsushita Y. ; Hayashida K. ; Takano A. Jewelry box of morphologies with mesoscopic length scales-ABC star-shaped terpolymers . Macromol. Rapid Commun. , 2010 , 31 ( 18 ), 1579 - 1587 . doi: 10.1002/marc.201000169 http://dx.doi.org/10.1002/marc.201000169
Nunns A. ; Ross C. A. ; Manners I. Synthesis and bulk self-assembly of ABC star terpolymers with a polyferrocenylsilane metalloblock . Macromolecules , 2013 , 46 ( 7 ), 2628 - 2635 . doi: 10.1021/ma302602u http://dx.doi.org/10.1021/ma302602u
Liu M. J. ; Li W. H. ; Qiu F. Segmented helical structures formed by ABC star copolymers in nanopores . J. Chem. Phys. , 2013 , 138 ( 10 ), 104904 . doi: 10.1063/1.4794785 http://dx.doi.org/10.1063/1.4794785
Drolet F. ; Fredrickson G. H. Optimizing chain bridging in complex block copolymers . Macromolecules , 2001 , 34 ( 15 ), 5317 - 5324 . doi: 10.1021/ma0100753 http://dx.doi.org/10.1021/ma0100753
Chen H. Y. ; Fredrickson G. H. Morphologies of ABC triblock copolymer thin films . J. Chem. Phys. , 2002 , 116 ( 3 ), 1137 - 1146 . doi: 10.1063/1.1426414 http://dx.doi.org/10.1063/1.1426414
Li W. ; Xu Y. ; Zhang G. ; Qiu F. ; Yang Y. ; Shi A. C. Real-space self-consistent mean-field theory study of ABC star triblock copolymers . J. Chem. Phys. , 2010 , 133 ( 6 ), 064904 . doi: 10.1063/1.3469857 http://dx.doi.org/10.1063/1.3469857
Zhang G. J. ; Qiu F. ; Zhang H. D. ; Yang Y. L. ; Shi A. C. SCFT study of tiling patterns in ABC star terpolymers . Macromolecules , 2010 , 43 ( 6 ), 2981 - 2989 . doi: 10.1021/ma902735t http://dx.doi.org/10.1021/ma902735t
Chen P. ; Liang H. J. ; Shi A. C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement . Macromolecules , 2008 , 41 ( 22 ), 8938 - 8943 . doi: 10.1021/ma800443h http://dx.doi.org/10.1021/ma800443h
Tang P. ; Qiu F. ; Zhang H. D. ; Yang Y. L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers . J. Phys. Chem. B , 2004 , 108 ( 24 ), 8434 - 8438 . doi: 10.1021/jp037911q http://dx.doi.org/10.1021/jp037911q
Juan Y. T. ; Lai Y. F. ; Li X. Y. ; Tai T. C. ; Lin C. H. ; Huang C. F. ; Li B. H. ; Shi A. C. ; Hsueh H. Y. Self-assembly of gyroid-forming diblock copolymers under spherical confinement . Macromolecules , 2023 , 56 ( 2 ), 457 - 469 . doi: 10.1021/acs.macromol.2c02086 http://dx.doi.org/10.1021/acs.macromol.2c02086
0
浏览量
95
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构