浏览全部资源
扫码关注微信
1.陕西科技大学轻工科学与工程学院(柔性电子学院) 西安 710021
2.西安工业大学材料与化工学院 西安 710021
E-mail: liuhanbin@sust.edu.cn
收稿日期:2024-09-14,
录用日期:2024-10-24,
网络出版日期:2025-01-10,
纸质出版日期:2025-03-20
移动端阅览
袁桂梓, 舒勤思, 杜世宇, 李志健, 周宏伟, 刘汉斌. 可降解高分子的摩擦电特性研究与器件应用探索. 高分子学报, 2025, 56(3), 465-475
Yuan, G. Z.; Shu, Q. S.; Du, S. Y.; Li, Z. J.; Zhou, H. W.; Liu, H. B. Friction electrical characteristic of the degradable polymers and application exploration of their devices. Acta Polymerica Sinica, 2025, 56(3), 465-475
袁桂梓, 舒勤思, 杜世宇, 李志健, 周宏伟, 刘汉斌. 可降解高分子的摩擦电特性研究与器件应用探索. 高分子学报, 2025, 56(3), 465-475 DOI: 10.11777/j.issn1000-3304.2024.24239. CSTR: 32057.14.GFZXB.2024.7316.
Yuan, G. Z.; Shu, Q. S.; Du, S. Y.; Li, Z. J.; Zhou, H. W.; Liu, H. B. Friction electrical characteristic of the degradable polymers and application exploration of their devices. Acta Polymerica Sinica, 2025, 56(3), 465-475 DOI: 10.11777/j.issn1000-3304.2024.24239. CSTR: 32057.14.GFZXB.2024.7316.
基于不同的可降解高分子材料作为摩擦层,铜片为电极层组装了系列摩擦纳米发电机(TENG),在相同摩擦层厚度及器件尺寸条件下,系统地研究了器件的输出性能,获得了这些可降解高分子材料的摩擦电极性排序,发现以海藻酸钠(SA)与聚丁二酸丁二醇酯(PBS)作为摩擦层的TENG表现出最佳输出性能,其最大输出电压达到46 V,电流0.7 μA,转移电荷量4.68 nC. 为进一步研究电极材料的影响,以SA与PBS作为摩擦层,石墨烯纸(GC-paper)作为电极构建了TENG器件,其输出电压达到88 V,电流1.25 μA,转移电荷量14.6 nC. 该TENG器件可以应用在能量收集与自供能传感等领域. 本研究对环境友好型TENG器件的发展具有一定的参考价值.
A series of triboelectric nanogenerators (TENG) devices were assembled using different degradable polymers as the friction layer and copper sheets as the electrode layer. Under the conditions of the same friction layer thickness and device size
the output performance of the devices was systematically investigated
and the friction electrode property ordering of these degradable polymer materials was obtained. It was found that the TENG with sodium alginate (SA) and polybutylene succinate (PBS) as the friction layer showed the best output performance
with the maximum output voltage reaching 46 V
current 0.7 μA
and the transferred charge 4.68 nC. To further investigate the effect of electrode materials
a TENG device was constructed with SA and PBS as the friction layer and graphene paper (GC-paper) as the electrode
which achieved an output voltage of 88 V
a current of 1.25 μA
and a transferred charge of 14.6 nC. TENG device can be applied in the fields of energy harvesting and self-supplied sensing. This study is of reference value for the development of environmentally friendly TENG devices.
Ma P. ; Zhu H. R. ; Lu H. ; Zeng Y. M. ; Zheng N. ; Wang Z. L. ; Cao X. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection . Nano Energy , 2021 , 86 , 106032 . doi: 10.1016/j.nanoen.2021.106032 http://dx.doi.org/10.1016/j.nanoen.2021.106032
Lee Y. ; Kang S. G. ; Jeong J. Sliding triboelectric nanogenerator with staggered electrodes . Nano Energy , 2021 , 86 , 106062 . doi: 10.1016/j.nanoen.2021.106062 http://dx.doi.org/10.1016/j.nanoen.2021.106062
Zhang W. X. ; Zhang Y. ; Yang G. Z. ; Hao X. Y. ; Lv X. ; Wu F. ; Liu J. L. ; Zhang Y. H. Wearable and self-powered sensors made by triboelectric nanogenerators assembled from antibacterial bromobutyl rubber . Nano Energy , 2021 , 82 , 105769 . doi: 10.1016/j.nanoen.2021.105769 http://dx.doi.org/10.1016/j.nanoen.2021.105769
Shi L. ; Jin H. ; Dong S. R. ; Huang S. Y. ; Kuang H. Z. ; Xu H. S. ; Chen J. K. ; Xuan W. P. ; Zhang S. M. ; Li S. J. ; Wang X. Z. ; Luo J. K. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting . Nano Energy , 2021 , 80 , 105599 . doi: 10.1016/j.nanoen.2020.105599 http://dx.doi.org/10.1016/j.nanoen.2020.105599
Wang H. L. ; Guo Z. H. ; Zhu G. ; Pu X. ; Wang Z. L. Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting . ACS Nano , 2021 , 15 ( 4 ), 7513 - 7521 . doi: 10.1021/acsnano.1c00914 http://dx.doi.org/10.1021/acsnano.1c00914
Cai Y. W. ; Zhang X. N. ; Wang G. G. ; Li G. Z. ; Zhao D. Q. ; Sun N. ; Li F. ; Zhang H. Y. ; Han J. C. ; Yang Y. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin . Nano Energy , 2021 , 81 , 105663 . doi: 10.1016/j.nanoen.2020.105663 http://dx.doi.org/10.1016/j.nanoen.2020.105663
Liu H. B. ; Shu Q. S. ; Xiang H. C. ; Wu H. W. ; Li Z. J. ; Zhou H. W. Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance . Nano Energy , 2023 , 108 , 108223 . doi: 10.1016/j.nanoen.2023.108223 http://dx.doi.org/10.1016/j.nanoen.2023.108223
Qiu H. J. ; Song W. Z. ; Wang X. X. ; Zhang J. ; Fan Z. Y. ; Yu M. ; Ramakrishna S. ; Long Y. Z. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator . Nano Energy , 2019 , 58 , 536 - 542 . doi: 10.1016/j.nanoen.2019.01.069 http://dx.doi.org/10.1016/j.nanoen.2019.01.069
Nazari-Vanani R. ; Vafaiee M. ; Zamanpour F. ; Asadian E. ; Mohammadpour R. ; Rafii-Tabar H. ; Sasanpour P. Flexible triboelectric nanogenerator for promoting the proliferation and migration of human fibroblast cells . ACS Appl. Mater. Interfaces , 2024 , 16 ( 13 ), 15773 - 15782 . doi: 10.1021/acsami.3c17915 http://dx.doi.org/10.1021/acsami.3c17915
Wu Y. H. ; Luo Y. ; Qu J. K. ; Daoud W. A. ; Qi T. Nanogap and environmentally stable triboelectric nanogenerators based on surface self-modified sustainable films . ACS Appl. Mater. Interfaces , 2020 , 12 ( 49 ), 55444 - 55452 . doi: 10.1021/acsami.0c16671 http://dx.doi.org/10.1021/acsami.0c16671
Yang Y. ; Yang Y. C. ; Huang J. Y. ; Li S. H. ; Meng Z. Y. ; Cai W. L. ; Lai Y. K. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency . Adv. Fiber Mater. , 2023 , 5 ( 4 ), 1505 - 1518 . doi: 10.1007/s42765-023-00299-z http://dx.doi.org/10.1007/s42765-023-00299-z
Yu B. ; Yu H. ; Huang T. ; Wang H. Z. ; Zhu M. F. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density . Nano Energy , 2018 , 48 , 464 - 470 . doi: 10.1016/j.nanoen.2018.03.064 http://dx.doi.org/10.1016/j.nanoen.2018.03.064
Sukumaran C. ; Vivekananthan V. ; Mohan V. ; Alex Z. C. ; Chandrasekhar A. ; Kim S. J. Triboelectric nanogenerators from reused plastic: an approach for vehicle security alarming and tire motion monitoring in rover . Appl. Mater. Today , 2020 , 19 , 100625 . doi: 10.1016/j.apmt.2020.100625 http://dx.doi.org/10.1016/j.apmt.2020.100625
Yuan M. ; Li C. H. ; Liu H. M. ; Xu Q. H. ; Xie Y. N. A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing . Nano Energy , 2021 , 85 , 105962 . doi: 10.1016/j.nanoen.2021.105962 http://dx.doi.org/10.1016/j.nanoen.2021.105962
汪延成 , 鲁映彤 , 丁文 , 梅德庆 . 柔性触觉传感器的三维打印制造技术研究进展 . 机械工程学报 , 2020 , 56 ( 19 ), 239 - 252 .
Pang Y. K. ; Chen S. E. ; An J. C. ; Wang K. L. ; Deng Y. M. ; Benard A. ; Lajnef N. ; Cao C. Y. Multilayered cylindrical triboelectric nanogenerator to harvest kinetic energy of tree branches for monitoring environment condition and forest fire . Adv. Funct. Mater. , 2020 , 30 ( 32 ), 2003598 . doi: 10.1002/adfm.202070216 http://dx.doi.org/10.1002/adfm.202070216
Guan Q. B. ; Lin G. H. ; Gong Y. Z. ; Wang J. F. ; Tan W. Y. ; Bao D. Q. ; Liu Y. N. ; You Z. W. ; Sun X. H. ; Wen Z. ; Pan Y. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics . J. Mater. Chem. A , 2019 , 7 ( 23 ), 13948 - 13955 . doi: 10.1039/c9ta02711d http://dx.doi.org/10.1039/c9ta02711d
Wang C. F. ; Peng Z. ; Huang X. ; Yan C. ; Yang T. ; Zhang C. L. ; Lu J. ; Yang W. Q. Expecting the unexpected: high pressure crystallization significantly boosts up triboelectric outputs of microbial polyesters . J. Mater. Chem. A , 2021 , 9 ( 10 ), 6306 - 6315 . doi: 10.1039/d0ta11283f http://dx.doi.org/10.1039/d0ta11283f
Wang N. N. ; Feng Y. G. ; Zheng Y. B. ; Zhang L. Q. ; Feng M. ; Li X. J. ; Zhou F. ; Wang D. A. New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances . Adv. Funct. Mater. , 2021 , 31 ( 14 ), 2009172 . doi: 10.1002/adfm.202009172 http://dx.doi.org/10.1002/adfm.202009172
Sarkar P. ; Kamilya T. ; Acharya S. Introduction of triboelectric positive bioplastic for powering portable electronics and self-powered gait sensor . ACS Appl. Energy Mater. , 2019 , 2 ( 8 ), 5507 - 5514 . doi: 10.1021/acsaem.9b00677 http://dx.doi.org/10.1021/acsaem.9b00677
Wang N. N. ; Zheng Y. B. ; Feng Y. G. ; Zhou F. ; Wang D. A. Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment . Nano Energy , 2020 , 77 , 105088 . doi: 10.1016/j.nanoen.2020.105088 http://dx.doi.org/10.1016/j.nanoen.2020.105088
He X. ; Zou H. Y. ; Geng Z. S. ; Wang X. F. ; Ding W. B. ; Hu F. ; Zi Y. L. ; Xu C. ; Zhang S. L. ; Yu H. ; Xu M. Y. ; Zhang W. ; Lu C. H. ; Wang Z. L. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products . Adv. Funct. Mater. , 2018 , 28 ( 45 ), 1805540 . doi: 10.1002/adfm.201805540 http://dx.doi.org/10.1002/adfm.201805540
Bai Z. Q. ; Xu Y. L. ; Zhang Z. ; Zhu J. J. ; Gao C. ; Zhang Y. ; Jia H. ; Guo J. S. Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator . Nano Energy , 2020 , 75 , 104884 . doi: 10.1016/j.nanoen.2020.104884 http://dx.doi.org/10.1016/j.nanoen.2020.104884
武世豪 , 李程龙 , 李刚 , 李国栋 , 刘温霞 . 基于纤维素纳米纤维的摩擦纳米发电机 . 中国造纸学报 , 2021 , 36 ( 4 ), 105 - 110 .
林嫦妹 ; 华梓锋 ; 兰金鑫 ; 曹石林 ; 马晓娟 . 纤维改性提高纤维素纸基摩擦纳米发电机的输出性能 . 林产工业 , 2022 , 59 ( 3 ), 6 - 12 . doi: 10.19531/j.issn1001-5299.202203002 http://dx.doi.org/10.19531/j.issn1001-5299.202203002
Wang Q. H. ; Pan X. F. ; Guo J. J. ; Huang L. L. ; Chen L. H. ; Ma X. J. ; Cao S. L. ; Ni Y. H. Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors . Chem. Eng. J. , 2021 , 414 , 128903 . doi: 10.1016/j.cej.2021.128903 http://dx.doi.org/10.1016/j.cej.2021.128903
Cai C. C. ; Mo J. L. ; Lu Y. X. ; Zhang N. ; Wu Z. Y. ; Wang S. F. ; Nie S. X. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment . Nano Energy , 2021 , 83 , 105833 . doi: 10.1016/j.nanoen.2021.105833 http://dx.doi.org/10.1016/j.nanoen.2021.105833
Pao Y. P. ; Yu C. C. ; Lin Y. Z. ; Chatterjee S. ; Saha S. ; Tiwari N. ; Huang Y. T. ; Wu C. C. ; Choi D. ; Lin Z. H. Carbohydrate-protein interactions studied by solid-liquid contact electrification and its use for label-free bacterial detection . Nano Energy , 2021 , 85 , 106008 . doi: 10.1016/j.nanoen.2021.106008 http://dx.doi.org/10.1016/j.nanoen.2021.106008
Singh M. ; Sheetal A. ; Singh H. ; Sawhney R. S. ; Kaur J. Animal hair-based triboelectric nanogenerator (TENG): a substitute for the positive polymer layer in TENG . J. Electron. Mater. , 2020 , 49 ( 5 ), 3409 - 3416 . doi: 10.1007/s11664-020-08031-y http://dx.doi.org/10.1007/s11664-020-08031-y
Gogurla N. ; Roy B. ; Park J. Y. ; Kim S. Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing . Nano Energy , 2019 , 62 , 674 - 681 . doi: 10.1016/j.nanoen.2019.05.082 http://dx.doi.org/10.1016/j.nanoen.2019.05.082
Dudem B. ; Graham S. A. ; Dharmasena R. D. I. G. ; Silva S. R. P. ; Yu J. S. Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications . Nano Energy , 2021 , 83 , 105819 . doi: 10.1016/j.nanoen.2021.105819 http://dx.doi.org/10.1016/j.nanoen.2021.105819
Charoonsuk T. ; Pongampai S. ; Pakawanit P. ; Vittayakorn N. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: influence of morphology and molecular structure . Nano Energy , 2021 , 89 , 106430 . doi: 10.1016/j.nanoen.2021.106430 http://dx.doi.org/10.1016/j.nanoen.2021.106430
Han J. ; Li J. Y. ; Zhang X. ; Zhao L. W. ; Wang C. C. Enhancing the performance of triboelectric nanogenerator via chitosan films surface modification . Chem. Eng. J. , 2024 , 489 , 151493 . doi: 10.1016/j.cej.2024.151493 http://dx.doi.org/10.1016/j.cej.2024.151493
Chen Y. D. ; Jie Y. ; Wang J. ; Ma J. M. ; Jia X. T. ; Dou W. ; Cao X. Triboelectrification on natural rose petal for harvesting environmental mechanical energy . Nano Energy , 2018 , 50 , 441 - 447 . doi: 10.1016/j.nanoen.2018.05.021 http://dx.doi.org/10.1016/j.nanoen.2018.05.021
Saqib Q. M. ; Chougale M. Y. ; Khan M. U. ; Ali Shaukat R. ; Kim J. ; Bae J. ; Lee H. W. ; Park J. I. ; Kim M. S. ; Lee B. G. Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator . Nano Energy , 2021 , 89 , 106458 . doi: 10.1016/j.nanoen.2021.106458 http://dx.doi.org/10.1016/j.nanoen.2021.106458
Jiang D. D. ; Liu G. X. ; Li W. J. ; Bu T. Z. ; Wang Y. P. ; Zhang Z. ; Pang Y. K. ; Xu S. H. ; Yang H. ; Zhang C. A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting . IEEE Trans. Power Electron. , 2020 , 35 ( 1 ), 25 - 32 . doi: 10.1109/tpel.2019.2921152 http://dx.doi.org/10.1109/tpel.2019.2921152
Li L. W. ; Jin Z. H. ; Wang C. X. ; Wang Y. C. Valorization of food waste: utilizing natural porous materials derived from pomelo-peel biomass to develop triboelectric nanogenerators for energy harvesting and self-powered sensing . ACS Appl. Mater. Interfaces , 2024 , 16 ( 29 ), 37806 - 37817 . doi: 10.1021/acsami.4c02319 http://dx.doi.org/10.1021/acsami.4c02319
Zhao Y. F. ; Zhang S. H. ; Liu M. J. ; Chen Q. ; Zhang Y. P. ; Huang Z. X. ; Qu J. P. Multifunctional bamboo-based composites in situ coated with graphene via continuous steam explosion . Chem. Eng. J. , 2024 , 484 , 149389 . doi: 10.1016/j.cej.2024.149389 http://dx.doi.org/10.1016/j.cej.2024.149389
Kliem S. ; Kreutzbruck M. ; Bonten C. Review on the biological degradation of polymers in various environments . Materials , 2020 , 13 ( 20 ), 4586 . doi: 10.3390/ma13204586 http://dx.doi.org/10.3390/ma13204586
Zaaba N. F. ; Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation . Polym. Eng. Sci. , 2020 , 60 ( 9 ), 2061 - 2075 . doi: 10.1002/pen.25511 http://dx.doi.org/10.1002/pen.25511
Folino A. ; Karageorgiou A. ; Calabrò P. S. ; Komilis D. Biodegradation of wasted bioplastics in natural and industrial environments: a review . Sustainability , 2020 , 12 ( 15 ), 6030 . doi: 10.3390/su12156030 http://dx.doi.org/10.3390/su12156030
Agarwal S. Biodegradable polymers: present opportunities and challenges in providing a microplastic-free environment . Macromol. Chem. Phys. , 2020 , 221 ( 6 ), 2000017 . doi: 10.1002/macp.202000017 http://dx.doi.org/10.1002/macp.202000017
Meng H. Y. ; Yu Q. ; Liu Z. ; Gai Y. S. ; Xue J. T. ; Bai Y. ; Qu X. C. ; Tan P. C. ; Luo D. ; Huang W. W. ; Nie K. X. ; Bai W. ; Hou Z. S. ; Tang R. P. ; Xu H. X. ; Zhang Y. ; Cai Q. ; Yang X. Z. ; Wang Z. L. ; Li Z. Triboelectric performances of biodegradable polymers . Matter , 2023 , 6 ( 12 ), 4274 - 4290 . doi: 10.1016/j.matt.2023.09.017 http://dx.doi.org/10.1016/j.matt.2023.09.017
0
浏览量
61
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构