浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 北京 100029
[ "俞丙然,男,1983年生. 北京化工大学材料科学与工程学院教授,博士生导师. 2006年、2010年、2013年于兰州大学分别获学士、硕士、博士学位. 2014年加入北京化工大学材料科学与工程学院. 在基于药物、基因控释生物材料以及抗菌抗感染生物医用材料等方面开展了广泛的研究,目前在J. Am. Chem. Soc.,Adv. Mater.,Biomaterials等国际期刊上发表论文60余篇. 2021年获批国家自然基金优秀青年基金,并主持国家自然基金面上项目2项,青年基金项目1项. 参与国家自然基金重点项目1项,重点研发计划1项." ]
[ "徐福建,男,1976年生. 北京化工大学材料科学与工程学院院长,生物医用材料北京实验室执行主任,天然高分子医用材料教育部重点实验室主任,博士生导师. 1999年于华东理工大学获学士学位,2002年于中国科学院过程工程研究所获硕士学历,2006年于新加坡国立大学获博士学位. 2013年获国家杰出青年科学基金资助;2014年入选“长江学者奖励计划”特聘教授;2018年入选北京高校卓越青年科学家计划;担任Biomater. Sci.副主编,Mater. Today Bio.,Chinese J. Polym. Sci.,Sci. China Chem.及《中国科学:化学》编委. 主要从事医用高分子材料应用基础研究,在药物控释载体、抗菌材料以及多糖功能化方面开展了广泛应用基础研究. 在Chem. Rev.,Nat. Commun.,Adv. Mater.等期刊发表论文250余篇,他引8000余次,申请/授权发明专利60余项." ]
纸质出版日期:2025-02-20,
网络出版日期:2025-01-10,
收稿日期:2024-09-18,
录用日期:2024-10-24
移动端阅览
赵亚琪, 孙玉洁, 俞丙然, 徐福建. 基于开环反应构建高性能可降解阳离子聚合物及其生物应用[J]. 高分子学报, 2025,56(2):200-214.
YA-QI ZHAO, YU-JIE SUN, BING-RAN YU, FU-JIAN XU. High-performance Degradable Cationic Polymers Based on Ring-opening Reactions and Their Biological Applications. [J]. Acta polymerica sinica, 2025, 56(2): 200-214.
赵亚琪, 孙玉洁, 俞丙然, 徐福建. 基于开环反应构建高性能可降解阳离子聚合物及其生物应用[J]. 高分子学报, 2025,56(2):200-214. DOI: 10.11777/j.issn1000-3304.2024.24242. CSTR: 32057.14.GFZXB.2024.7318.
YA-QI ZHAO, YU-JIE SUN, BING-RAN YU, FU-JIAN XU. High-performance Degradable Cationic Polymers Based on Ring-opening Reactions and Their Biological Applications. [J]. Acta polymerica sinica, 2025, 56(2): 200-214. DOI: 10.11777/j.issn1000-3304.2024.24242. CSTR: 32057.14.GFZXB.2024.7318.
不可降解的阳离子聚合物会在体内累积,会对人类健康造成潜在危害,限制了阳离子聚合物的应用. 因此,开发生物相容性高、可降解性能好的阳离子聚合物材料具有重要意义. 开环反应是获得可降解阳离子聚合物的方法之一,使阳离子聚合物具有更好的可降解性能及生物安全性. 本文主要介绍了3种基于开环反应的可降解阳离子聚合物的构建策略,包括“一锅法”多胺基多环氧的开环反应、
N
-羧基环内酸酐(NCA)开环聚合和双硫交换反应,不同的构建策略制备出具有独特结构的可降解阳离子聚合物,包括支化阳离子聚合物、多肽阳离子聚合物、聚二硫化物,不同的结构赋予了可降解阳离子聚合物更高的性能. 此外,对高性能可降解阳离子聚合物在核酸递送、抗菌等方面的生物应用进行了总结.
Non-degradable cationic polymers can accumulate in the body
which can cause potential harm to human h
ealth and limit the application of cationic polymers. Therefore
it is important to develop cationic polymer materials with high biocompatibility and good degradability. Ring-opening reaction is one of the methods to obtain degradable cationic polymers with better degradability and biosafety. In this review
three strategies for the construction of degradable cationic polymers based on ring-opening reactions are presented
including the one-pot poly-amine and poly-epoxy ring-opening reaction
the ring-opening polymerization of
N
-carboxyanhydride (NCA)
and the bisulfide-exchange reaction. The degradable cationic polymers with unique structures were prepared by the different construction strategies
including branched cationic polymers
peptide cationic polymers
and polydisulfides. Different structures endowed the degradable cationic polymers with higher performance. In addition
the biological applications of high performance degradable cationic polymers in nucleic acid delivery and antibacterial applications are summarized in this review.
阳离子聚合物开环反应可降解递送载体抗菌材料
Cationic polymersRing-opening reactionDegradableNucleic acid delivery vectorAntibacterial materials
Casper J.; Schenk S. H.; Parhizkar E.; Detampel P.; Dehshahri A.; Huwyler J.Polyethylenimine (PEI) in gene therapy: current status and clinical applications. J. Control. Release, 2023, 362, 667-691. doi:10.1016/j.jconrel.2023.09.001http://dx.doi.org/10.1016/j.jconrel.2023.09.001
Fattahi N.; Gorgannezhad L.; Masoule S. F.; Babanejad N.; Ramazani A.; Raoufi M.; Sharifikolouei E.; Foroumadi A.; Khoobi M.PEI-based functional materials: fabrication techniques, properties, and biomedical applications. Adv. Colloid Interface Sci., 2024, 325, 103119. doi:10.1016/j.cis.2024.103119http://dx.doi.org/10.1016/j.cis.2024.103119
Li J. C.; Yu X. R.; Shi X. Y.; Shen M. W.Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems. Prog. Mater. Sci., 2022, 124, 100871. doi:10.1016/j.pmatsci.2021.100871http://dx.doi.org/10.1016/j.pmatsci.2021.100871
Dai Y.; Zhang X. J.Cationic polycarbonates via ring-opening polymerization: design, synthesis, and applications. Polym. Chem., 2019, 10(3), 296-305. doi:10.1039/c8py01365ahttp://dx.doi.org/10.1039/c8py01365a
Tempelaar S.; Mespouille L.; Coulembier O.; Dubois P.; Dove A. P.Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev., 2013, 42(3), 1312-1336. doi:10.1039/c2cs35268khttp://dx.doi.org/10.1039/c2cs35268k
Yu W.; Maynard E.; Chiaradia V.; Arno M. C.; Dove A. P.Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials. Chem. Rev., 2021, 121(18), 10865-10907. doi:10.1021/acs.chemrev.0c00883http://dx.doi.org/10.1021/acs.chemrev.0c00883
Yin M. L.; Wan S. S.; Ren X. H.; Chu C. C.Development of inherently antibacterial, biodegradable, and biologically active chitosan/pseudo-protein hybrid hydrogels as biofunctional wound dressings. ACS Appl. Mater. Interfaces, 2021, 13(12), 14688-14699. doi:10.1021/acsami.0c21680http://dx.doi.org/10.1021/acsami.0c21680
Huang Y. J.; Hu H.; Li R. Q.; Yu B. R.; Xu F. J.Versatile types of MRI-visible cationic nanoparticles involving pullulan polysaccharides for multifunctional gene carriers. ACS Appl. Mater. Interfaces, 2016, 8(6), 3919-3927. doi:10.1021/acsami.5b11016http://dx.doi.org/10.1021/acsami.5b11016
Wang L. S.; Duan L.; Liu G.; Sun J. F.; Shahbazi M. A.; Kundu S. C.; Reis R. L.; Xiao B.; Yang X.Bioinspired polyacrylic acid-based dressing: wet adhesive, self-healing, and multi-biofunctional coacervate hydrogel accelerates wound healing. Adv. Sci., 2023, 10(16), 2207352. doi:10.1002/advs.202207352http://dx.doi.org/10.1002/advs.202207352
Wu Q. M.; Hu Y.; Yu B.; Hu H.; Xu F. J.Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J. Control. Release, 2023, 362, 19-43. doi:10.1016/j.jconrel.2023.08.019http://dx.doi.org/10.1016/j.jconrel.2023.08.019
van Bruggen C.; Hexum J. K.; Tan Z.; Dalal R. J.; Reineke T. M.Nonviral gene delivery with cationic glycopolymers. Acc. Chem. Res., 2019, 52(5), 1347-1358. doi:10.1021/acs.accounts.8b00665http://dx.doi.org/10.1021/acs.accounts.8b00665
Jin M.; Liu B. H.; Zhang Z.; Mu Y. L.; Ma L.; Yao H.; Wang D. A.Catechin-functionalized cationic lipopolymer based multicomponent nanomicelles for lung-targeting delivery. Adv. Mater., 2024, 36(17), 2302985. doi:10.1002/adma.202302985http://dx.doi.org/10.1002/adma.202302985
Hu Y. Z.; Nie W.; Lyu L.; Zhang X. F.; Wang W. Y.; Zhang Y. C.; He S.; Guo A. J.; Liu F.; Wang B. L.; Qian Z. Y.; Gao X.Tumor-microenvironment-activatable nanoparticle mediating immunogene therapy and M2 macrophage-targeted inhibitor for synergistic cancer immunotherapy. ACS Nano, 2024, 18(4), 3295-3312. doi:10.1021/acsnano.3c10037http://dx.doi.org/10.1021/acsnano.3c10037
Schneider P.; Zhang H. Y.; Simic L.; Dai Z. Q.; Schrörs B.; Akilli-Öztürk Ö.; Lin J.; Durak F.; Schunke J.; Bolduan V.; Bogaert B.; Schwiertz D.; Schäfer G.; Bros M.; Grabbe S.; Schattenberg J. M.; Raemdonck K.; Koynov K.; Diken M.; Kaps L.; Barz M.Multicompartment polyion complex micelles based on triblock polypept(o)ides mediate efficient siRNA delivery to cancer-associated fibroblasts for antistromal therapy of hepatocellular carcinoma. Adv. Mater., 2024, 36(41), 2404784.
陈华, 崔力允, 李圆凤, 刘勇, 马如江, 史林启. 苯硼酸功能化聚合物纳米载体用于蛋白质药物胞内递送. 高分子学报, 2023, 54(4), 451-466.
Wong K. H.; Guo Z. P.; Jiang D.; Zhou X. Z.; Lin L. Z.; Zhao D. G.; Chen M. W.Linear-like polypeptide-based micelle with pH-sensitive detachable PEG to deliver dimeric camptothecin for cancer therapy. Asian J. Pharm. Sci., 2023, 18(1), 100773. doi:10.1016/j.ajps.2022.100773http://dx.doi.org/10.1016/j.ajps.2022.100773
Qian Y. P.; Sun Y. J.; Zhang L. D.; Zhu Y. W.; Li N. Y.; Dong F.; Xu C.; An N.; Chen H.; Sun Y. C.; Yu B. R.; Wang Y. G.; Xu F. J.Oxygen-free polycationic photosensitizers for treatment of periodontal inflammation. Adv. Funct. Mater., 2024, 34(7), 2310636. doi:10.1002/adfm.202310636http://dx.doi.org/10.1002/adfm.202310636
周睿毅, 佘蕴芮, 武月铭, 张君宇, 王靖, 刘润辉. 促内皮化β-多肽聚合物修饰的聚氨酯表面抗菌功能研究. 高分子学报, 2023, 54(7), 1055-1063.
Feng Y.; Guo Z.; Chen J.; Zhang S.; Wu J.; Tian H.; Chen X.Cationic polymer synergizing with a disulfide-containing enhancer achieved efficient nucleic acid and protein delivery. Biomater. Sci., 2022, 10(21), 6230-6243. doi:10.1039/d2bm01211ahttp://dx.doi.org/10.1039/d2bm01211a
刘畅, 陈宇欣, 王江帆, 罗萱, 黄宇迪, 徐瑾蕾, 鄢国平, 陈思, 张先正. 基于枝化多肽的多功能药物递送系统用于肿瘤细胞核的精准靶向治疗. 高分子学报, 2018, 49(6), 682-691.
范玲玲, 黎槟瑞, 张浩伟, 方艳. 表面抗菌功能涂层的构建及在生物医用材料中的应用研究. 高分子学报, 2021, 52(3), 253-271.
Khodadadi Yazdi M.; Zarrintaj P.; Saeb M. R.; Mozafari M.; Bencherif S. A.Progress in ATRP-derived materials for biomedical applications. Prog. Mater. Sci., 2024, 143, 101248. doi:10.1016/j.pmatsci.2024.101248http://dx.doi.org/10.1016/j.pmatsci.2024.101248
Ahmed M.; Narain R.Progress of RAFT based polymers in gene delivery. Prog. Polym. Sci., 2013, 38(5), 767-790. doi:10.1016/j.progpolymsci.2012.09.008http://dx.doi.org/10.1016/j.progpolymsci.2012.09.008
Mather B. D.; Viswanathan K.; Miller K. M.; Long T. E.Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 2006, 31(5), 487-531. doi:10.1016/j.progpolymsci.2006.03.001http://dx.doi.org/10.1016/j.progpolymsci.2006.03.001
Pesenti T.; Nicolas J.100th Anniversary of macromolecular science viewpoint: degradable polymers from radical ring-opening polymerization: latest advances, new directions, and ongoing challenges. ACS Macro Lett., 2020, 9(12), 1812-1835. doi:10.1021/acsmacrolett.0c00676http://dx.doi.org/10.1021/acsmacrolett.0c00676
Huang Y. J.; Ding X. K.; Qi Y.; Yu B. R.; Xu F. J.Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability. Biomaterials, 2016, 106, 134-143. doi:10.1016/j.biomaterials.2016.08.025http://dx.doi.org/10.1016/j.biomaterials.2016.08.025
Song Z. Y.; Han Z. Y.; Lv S. X.; Chen C. Y.; Chen L.; Yin L. C.; Cheng J. J.Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev., 2017, 46(21), 6570-6599. doi:10.1039/c7cs00460ehttp://dx.doi.org/10.1039/c7cs00460e
Tao X. F.; Li M. H.; Ling J.α-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(α-amino acid)s. Eur. Polym. J., 2018, 109, 26-42. doi:10.1016/j.eurpolymj.2018.08.039http://dx.doi.org/10.1016/j.eurpolymj.2018.08.039
Feng H.; Fabrizi J.; Li J.; Mayer C.Syntheses of polypeptides and their biomedical application for anti-tumor drug delivery. Int. J. Mol. Sci., 2022, 23(9), 5042. doi:10.3390/ijms23095042http://dx.doi.org/10.3390/ijms23095042
Zhang Q.; Qu D. H.; Feringa B. L.; Tian H.Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc., 2022, 144(5), 2022-2033. doi:10.1021/jacs.1c10359http://dx.doi.org/10.1021/jacs.1c10359
Zheng B.; Bai T.; Tao X.; Ling J.An inspection into multifarious ways to synthesize poly(amino acid)s. Macromol. Rapid Commun., 2021, 42(22), e2100453. doi:10.1002/marc.202100453http://dx.doi.org/10.1002/marc.202100453
王元琛, 王俊凯, 俞丙然, 徐福建. 基于胺基与环氧的开环反应构建医用阳离子聚合物. 高分子学报, 2022, 53(7), 828-841
Duan S.; Yu B.; Gao C.; Yuan W.; Ma J.; Xu F. J.A facile strategy to prepare hyperbranched hydroxyl-rich polycations for effective gene therapy. ACS Appl. Mater. Interfaces, 2016, 8(43), 29334-29342. doi:10.1021/acsami.6b11029http://dx.doi.org/10.1021/acsami.6b11029
Mou Q. B.; Ma Y.; Jin X.; Zhu X. Y.Designing hyperbranched polymers for gene delivery. Mol. Syst. Des. Eng., 2016, 1(1), 25-39. doi:10.1039/c5me00015ghttp://dx.doi.org/10.1039/c5me00015g
Su M. R.; Hu Z. C.; Sun Y. J.; Qi Y.; Yu B. R.; Xu F. J.Hydroxyl-rich branched polycations for nucleic acid delivery. Biomater. Sci., 2024, 12(3), 581-595. doi:10.1039/d3bm01394dhttp://dx.doi.org/10.1039/d3bm01394d
Qi Y.; Song H.; Xiao H.; Cheng G.; Yu B.; Xu F. J.Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), e1803061. doi:10.1002/smll.201803061http://dx.doi.org/10.1002/smll.201803061
Ye W. J.; Chen Y. M.; Tang W. X.; Zhang N.; Li Z. H.; Liu Z. J.; Yu B. R.; Xu F. J.Reduction-responsive nucleic acid delivery systems to prevent in-stent restenosis in rabbits. ACS Appl. Mater. Interfaces, 2019, 11(31), 28307-28316. doi:10.1021/acsami.9b08544http://dx.doi.org/10.1021/acsami.9b08544
Qi Y.; Liu Y.; Yu B.; Hu Y.; Zhang N.; Zheng Y.; Yang M.; Xu F. J.A lactose-derived CRISPR/Cas9 delivery system for efficient genome editing in vivo to treat orthotopic hepatocellular carcinoma. Adv. Sci., 2020, 7(17), 2001424. doi:10.1002/advs.202001424http://dx.doi.org/10.1002/advs.202001424
Xiao Y.; Fang H.; Zhu Y.; Zhou J.; Dai Z.; Wang H.; Xia Z.; Tu Z.; Leong K. W.Multifunctional cationic hyperbranched polyaminoglycosides that target multiple mediators for severe abdominal trauma management. Adv. Sci., 2024, 11(1), e2305273. doi:10.1002/advs.202305273http://dx.doi.org/10.1002/advs.202305273
Su M. R.; Wang J. K.; Zhao N. N.; Yu B. R.; Wang Y. G.; Xu F. J.Genetically light-enhanced immunotherapy mediated by a fluorinated reduction-sensitive delivery system. Biomaterials, 2024, 305, 122433. doi:10.1016/j.biomaterials.2023.122433http://dx.doi.org/10.1016/j.biomaterials.2023.122433
Wu T.; Qi Y.; Xu C.; Sui D. D.; Xu F. J.HSC-targeted delivery of shRNA-Tgfβ1 by vitamin A-functionalized polyaminoglycoside for hepatic fibrosis therapy. Nano Today, 2023, 50, 101887. doi:10.1016/j.nantod.2023.101887http://dx.doi.org/10.1016/j.nantod.2023.101887
Pan Y. Q.; Shao M. Y.; Li P.; Xu C.; Nie J. J.; Zhang K.; Wu S.; Sui D. D.; Xu F. J.Polyaminoglycoside-mediated cell reprogramming system for the treatment of diabetes mellitus. J. Control. Release, 2022, 343, 420-433. doi:10.1016/j.jconrel.2022.01.041http://dx.doi.org/10.1016/j.jconrel.2022.01.041
Song H. Q.; Dou X. B.; Li R. Q.; Yu B. R.; Zhao N. N.; Xu F. J.A general strategy to prepare different types of polysaccharide-graft-poly(aspartic acid) as degradable gene carriers. Acta Biomater., 2015, 12, 156-165. doi:10.1016/j.actbio.2014.10.041http://dx.doi.org/10.1016/j.actbio.2014.10.041
Wu Y. M.; Zhang D. F.; Ma P. C.; Zhou R. Y.; Hua L.; Liu R. H.Lithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides. Nat. Commun., 2018, 9, 5297. doi:10.1038/s41467-018-07711-yhttp://dx.doi.org/10.1038/s41467-018-07711-y
Wu Y. M.; Chen K.; Wu X.; Liu L. Q.; Zhang W. W.; Ding Y.; Liu S. Q.; Zhou M.; Shao N.; Ji Z. M.; Chen J. C.; Zhu M. H.; Liu R. H.Superfast and water-insensitive polymerization on α-amino acid N-carboxyanhydrides to prepare polypeptides using tetraalkylammonium carboxylate as the initiator. Angew. Chem. Int. Ed., 2021, 60(50), 26063-26071. doi:10.1002/anie.202103540http://dx.doi.org/10.1002/anie.202103540
Shi Z.; Zhang X.; Yu Z.; Yang F.; Liu H.; Xue R.; Luan S.; Tang H.Facile synthesis of imidazolium-based block copolypeptides with excellent antimicrobial activity. Biomacromolecules, 2021, 22(6), 2373-2381. doi:10.1021/acs.biomac.1c00126http://dx.doi.org/10.1021/acs.biomac.1c00126
Zhang Z. Y.; Wang X. D.; Liu J. Y.; Yang H. W.; Tang H. Y.; Li J.; Luan S. F.; Yin J. H.; Wang L.; Shi H. C.Structural element of vitamin U-mimicking antibacterial polypeptide with ultrahigh selectivity for effectively treating MRSA infections. Angew. Chem. Int. Ed., 2024, 63(7), e202318011. doi:10.1002/anie.202318011http://dx.doi.org/10.1002/anie.202318011
Jiang W. N.; Zhou M.; Cong Z. H.; Xie J. Y.; Zhang W. J.; Chen S.; Zou J. C.; Ji Z. M.; Shao N.; Chen X.; Li M. Q.; Liu R. H.Short guanidinium-functionalized poly(2-oxazoline)s displaying potent therapeutic efficacy on drug-resistant fungal infections. Angew. Chem. Int. Ed., 2022, 61(17), e202200778. doi:10.1002/anie.202200778http://dx.doi.org/10.1002/anie.202200778
Jiang W. N.; Zhou M.; Chen S.; Xie J. Y.; Chen M. Z.; Zhang H. D.; Wu Y. M.; Chen X.; Liu R. H.Peptide-mimicking poly(2-oxazoline)s possessing potent antifungal activity and BBB penetrating property to treat invasive infections and meningitis. J. Am. Chem. Soc., 2023, 145(47), 25753-25765. doi:10.1021/jacs.3c09240http://dx.doi.org/10.1021/jacs.3c09240
Zhu Y. W.; Lin M. Y.; Hu W. T.; Wang J. K.; Zhang Z. G.; Zhang K.; Yu B. R.; Xu F. J.Controllable disulfide exchange polymerization of polyguanidine for effective biomedical applications by thiol-mediated uptake. Angew. Chem. Int. Ed., 2022, 61(23), e202200535. doi:10.1002/anie.202200535http://dx.doi.org/10.1002/anie.202200535
Yu D.; Wang Y. C.; Qu S.; Zhang N.; Nie K. L.; Wang J. K.; Huang Y. C.; Sui D. D.; Yu B. R.; Qin M.; Xu F. J.Controllable star cationic poly(disulfide)s achieve genetically cascade catalytic therapy by delivering bifunctional fusion plasmids. Adv. Mater., 2023, 35(52), 2307190. doi:10.1002/adma.202307190http://dx.doi.org/10.1002/adma.202307190
Mu S. W.; Zhu Y. W.; Wang Y.; Qu S.; Huang Y. C.; Zheng L.; Duan S.; Yu B. R.; Qin M.; Xu F. J.Cationic polysaccharide conjugates as antibiotic adjuvants resensitize multidrug-resistant bacteria and prevent resistance. Adv. Mater., 2022, 34(41), 2204065. doi:10.1002/adma.202204065http://dx.doi.org/10.1002/adma.202204065
0
浏览量
85
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构