浏览全部资源
扫码关注微信
中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
E-mail: houwm@mail.sysu.edu.cn;
E-mail: shiyi6@mail.sysu.edu.cn
收稿日期:2024-10-29,
录用日期:2024-11-25,
网络出版日期:2025-02-21,
纸质出版日期:2025-04-20
移动端阅览
蒋希晗, 周英庆, 游世超, 殷秀哲, 侯王蒙, 石毅, 陈永明. 具有“反应增强中间体活性”机制的CuAAC点击反应结合收敛法超快制备核-壳结构树形大分子. 高分子学报, 2025, 56(4), 575-589
Jiang, X. H.; Zhou, Y. Q.; You, S. C.; Yin, X. Z.; Hou, W. M.; Shi, Y.; Chen, Y. M. Ultrafast synthesis of core-shell dendrimers by CuAAC click reaction with “reaction-enhanced reactivity of intermediates” mechanism via a convergent strategy. Acta Polymerica Sinica, 2025, 56(4), 575-589
蒋希晗, 周英庆, 游世超, 殷秀哲, 侯王蒙, 石毅, 陈永明. 具有“反应增强中间体活性”机制的CuAAC点击反应结合收敛法超快制备核-壳结构树形大分子. 高分子学报, 2025, 56(4), 575-589 DOI: 10.11777/j.issn1000-3304.2024.24263. CSTR: 32057.14.GFZXB.2024.7325.
Jiang, X. H.; Zhou, Y. Q.; You, S. C.; Yin, X. Z.; Hou, W. M.; Shi, Y.; Chen, Y. M. Ultrafast synthesis of core-shell dendrimers by CuAAC click reaction with “reaction-enhanced reactivity of intermediates” mechanism via a convergent strategy. Acta Polymerica Sinica, 2025, 56(4), 575-589 DOI: 10.11777/j.issn1000-3304.2024.24263. CSTR: 32057.14.GFZXB.2024.7325.
树形大分子(dendrimer)是一类具有高度支化和精确结构的三维球形单分子纳米材料,实现快速、高效合成高代数树形大分子是高分子合成领域的研究难点. 本研究利用具有“反应增强中间体活性(RERI)”机制的铜催化叠氮-炔基环加成反应(CuAAC)反应,开发了一种快速、高效制备树形大分子的新方法. 该方法首先设计合成了一种具有1
3-三叠氮外围基团的多叠氮功能性树形分子“核”(C-9N
3
和C-27N
3
)和一系列焦点为炔基的树形分子“壳”(ay-dendron),并结合收敛法制备核-壳结构树形大分子. C-9N
3
和C-27N
3
树形分子外围的1
3-三叠氮基团具有RERI效应,可以充分克服空间位阻,在ay-dendron稍过量(1.2
eq.
)的情况下即可将叠氮基团定量反应. 反应动力学表明:该CuAAC反应可以在几分钟内反应完全,超快制备了一系列4-7代核-壳结构树形大分子. 通过核磁共振波谱(NMR)、体积排除色谱(SEC)、飞行时间质谱(MALDI-TOF)、动态光散射(DLS)和原子力显微镜(AFM)等手段对树形大分子的化学组成、分子结构、形貌和尺寸进行了系统的表征. 该方法不仅可以实现超快、精准制备树形大分子,还可以通过灵活调控“核”与“壳”的化学结构,实现树形大分子的结构调控和功能化.
Dendrimer is a type of three-dimensional and spherical unimolecular nanomaterials with highly branched and precise architecture
while the rapid and efficient synthesis of high-generation dendrimer has been challenging in the field of polymer chemistry. Herein
we reported a new approach for the rapid and efficient preparation of dendrimers by using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) with reaction-enhanced reactivity of intermediates (RERI) mechanism. In this approach
two multi-azide functionalized molecules (C-9N
3
and C-27N
3
) with 1
3-triazide terminal groups and a series of dendrons with alkynyl focal point (ay-dendron) were first synthesized as the core and shell
respectively
for pre
paring core-shell dendrimers
via
a convergent strategy. The C-9N
3
and C-27N
3
molecules with 1
3-triazide structure are capable of RERI effect
which could greatly overcome the steric effect and allow the quantitative coverage of the azide groups in the presence of a slight excess of ay-dendron (1.2 eq.). The kinetics indicated that the CuAAC reaction could finish in minutes
promoting the preparation of a series of 4-7 generation core-shell dendrimers with ultrafast rates. The chemical composition
molecular structure
morphology and size of the resultant core-shell dendrimers were systematically characterized by nuclear magnetic resonance (NMR)
size exclusion chromatography (SEC)
matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS)
dynamic light scattering (DLS) and atomic force microscopy (AFM). This approach can be not only used for the ultrafast preparation of dendrimers with precise architectures
but also beneficial for the structural regulation and functionalization of dendrimers by tailoring the chemical structures of the "core" and "shell".
Walter M. V. ; Malkoch M. Simplifying the synthesis of dendrimers: accelerated approaches . Chem. Soc. Rev. , 2012 , 41 ( 13 ), 4593 - 4609 . doi: 10.1039/c2cs35062a http://dx.doi.org/10.1039/c2cs35062a
Trollsås M. ; Hedrick , J. Dendrimer-like star polymers . J . Am . Chem. Soc. , 1998 , 120 , 4644 - 4651 . doi: 10.1021/ja973678w http://dx.doi.org/10.1021/ja973678w
Twyman L. J. ; King A. S. ; Martin I. K. Catalysis inside dendrimers . Chem. Soc. Rev. , 2002 , 31 ( 2 ), 69 - 82 . doi: 10.1039/b107812g http://dx.doi.org/10.1039/b107812g
Kesharwani P. ; Jain K. ; Jain N. K. Dendrimer as nanocarrier for drug delivery . Prog. Polym. Sci. , 2014 , 39 ( 2 ), 268 - 307 . doi: 10.1016/j.progpolymsci.2013.07.005 http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005
Zhu J. Y. ; Shi X. Y. Dendrimer-based nanodevices for targeted drug delivery applications . J. Mater. Chem. B , 2013 , 1 ( 34 ), 4199 - 4211 . doi: 10.1039/c3tb20724b http://dx.doi.org/10.1039/c3tb20724b
陈思亲 , 周泉 , 相佳佳 , 周珠贤 , 唐建斌 , 申有青 . 酶响应的树形大分子键合物在体外肿瘤模型中的渗透行为研究 . 高分子学报 , 2021 , 52 ( 5 ), 477 - 488 . doi: 10.11777/j.issn1000-3304.2020.20257 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20257
Cheng Y. Y. ; Zhao L. B. ; Li Y. W. ; Xu T. W. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives . Chem. Soc. Rev. , 2011 , 40 ( 5 ), 2673 - 2703 . doi: 10.1039/c0cs00097c http://dx.doi.org/10.1039/c0cs00097c
Xin Y. T. ; Wang L. Y. ; Chang H. H. ; Ma F. H. ; Sun M. L. ; Chen L. ; Gao H. Construction of PAMAM-based nano complex conjugated with Pt(IV)-complex and lauric acid exerting both anti-tumor and antibacterial effects . Chinese J. Polym. Sci. , 2023 , 41 ( 6 ), 887 - 896 . doi: 10.1007/s10118-023-2890-x http://dx.doi.org/10.1007/s10118-023-2890-x
Buhleier E. ; Wehner W. ; Vögtle F. " Cascade" -and "nonskid-chain-like" syntheses of molecular cavity topologies . Synthesis , 1978 , ( 2 ), 155 - 158 . doi: 10.1055/s-1978-24702 http://dx.doi.org/10.1055/s-1978-24702
Tomalia D. A. ; Baker H. ; Dewald J. ; Hall M. ; Kallos G. ; Martin S. ; Roeck J. ; Ryder J. ; Smith P. A new class of polymers: Starburst-dendritic macromolecules . Polym. J. , 1985 , 17 ( 1 ), 117 - 132 . doi: 10.1295/polymj.17.117 http://dx.doi.org/10.1295/polymj.17.117
Maiti P. K. ; Çaǧın T. ; Wang G. F. ; Goddard W. A. Structure of PAMAM dendrimers: generations 1 through 11 . Macromolecules, 2004, 37 ( 16 ), 6236 - 6254 . doi: 10.1021/ma035629b http://dx.doi.org/10.1021/ma035629b
Mullen D. G. ; Desai A. ; van Dongen M. A. ; Barash M. ; Baker Jr J. R. ; Banaszak Holl M. M. Best practices for purification and characterization of PAMAM dendrimer . Macromolecules , 2012 , 45 ( 12 ), 5316 - 5320 . doi: 10.1021/ma300485p http://dx.doi.org/10.1021/ma300485p
Singh V. ; Sahebkar A. ; Kesharwani P. Poly(propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery . Eur. Polym. J. , 2021 , 158 , 110683 . doi: 10.1016/j.eurpolymj.2021.110683 http://dx.doi.org/10.1016/j.eurpolymj.2021.110683
Idris A. O. ; Mamba B. ; Feleni U. Poly(propylene imine) dendrimer: a potential nanomaterial for electrochemical application . Mater. Chem. Phys. , 2020 , 244 , 122641 . doi: 10.1016/j.matchemphys.2020.122641 http://dx.doi.org/10.1016/j.matchemphys.2020.122641
Zeng X. X. ; Zhang A. L. ; Chen Y. Z. ; Liu C. S. ; Hu M. H. Preparation of chiral polyether dendrimer and its non-bonding immobilized CALB for high enantioselective synergy resolution of amines . Eur. Polym. J. , 2024 , 219 , 113389 . doi: 10.1016/j.eurpolymj.2024.113389 http://dx.doi.org/10.1016/j.eurpolymj.2024.113389
Carlmark A. ; Malmström E. ; Malkoch M. Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research . Chem. Soc. Rev. , 2013 , 42 ( 13 ), 5858 - 5879 . doi: 10.1039/c3cs60101c http://dx.doi.org/10.1039/c3cs60101c
Gonzaga F. ; Sadowski L. P. ; Rambarran T. ; Grande J. ; Adronov A. ; Brook M. A. Highly efficient divergent synthesis of dendrimers via metal-free "click" chemistry . J. Polym. Sci. Part A Polym. Chem. , 2013 , 51 ( 6 ), 1272 - 1277 . doi: 10.1002/pola.26511 http://dx.doi.org/10.1002/pola.26511
Deng X. X. ; Du F. S. ; Li Z. C. Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity . ACS Macro Lett. , 2014 , 3 ( 7 ), 667 - 670 . doi: 10.1021/mz500207z http://dx.doi.org/10.1021/mz500207z
Franc, G.; Kakkar, A. K. "Click" methodologies: efficient, simple and greener routes to design dendrimers . Chem. Soc. Rev. , 2010 , 39 ( 5 ), 1536 - 1544 . doi: 10.1039/b913281n http://dx.doi.org/10.1039/b913281n
Hawker C. J. ; Frechet J. M. J. Preparation of polymers with controlled molecular architecture . A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. , 1990 , 112 ( 21 ), 7638 - 7647 . doi: 10.1021/ja00177a027 http://dx.doi.org/10.1021/ja00177a027
Rostovtsev V. V. ; Green L. G. ; Fokin V. V. ; Sharpless K. B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes . Angew. Chem. Int. Ed. , 2002 , 41 ( 14 ), 2596 - 2599 . doi: 10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
胡健 , 何金林 , 张明祖 , 倪沛红 . 点击化学在拓扑结构聚合物合成中的应用 . 高分子学报 , 2013 , ( 3 ), 300 - 319 . doi: 10.3724/SP.J.1105.2013.12336 http://dx.doi.org/10.3724/SP.J.1105.2013.12336
Rodionov V. O. ; Fokin V. V. ; Finn M. G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction . Angew. Chem. Int. Ed. , 2005 , 44 ( 15 ), 2210 - 2215 . doi: 10.1002/anie.200461496 http://dx.doi.org/10.1002/anie.200461496
Shi Y. ; Graff R. W. ; Cao X. S. ; Wang X. F. ; Gao H. F. Chain-growth click polymerization of AB2 monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process . Angew. Chem. Int. Ed. , 2015 , 54 ( 26 ), 7631 - 7635 . doi: 10.1002/anie.201502578 http://dx.doi.org/10.1002/anie.201502578
Cao X. S. ; Shi Y. ; Wang X. F. ; Graff R. W. ; Gao H. F. Design a highly reactive trifunctional core molecule to obtain hyperbranched polymers with over a million molecular weight in one-pot click polymerization . Macromolecules , 2016 , 49 ( 3 ), 760 - 766 . doi: 10.1021/acs.macromol.5b02678 http://dx.doi.org/10.1021/acs.macromol.5b02678
Gan W. P. ; Shi Y. ; Gao H. F. Produce molecular brushes with ultrahigh grafting density using accelerated CuAAC grafting-onto strategy . Macromolecules , 2017 , 50 ( 1 ), 215 - 222 . doi: 10.1021/acs.macromol.6b02388 http://dx.doi.org/10.1021/acs.macromol.6b02388
Shi Y. ; Cao X. S. ; Hu D. Q. ; Gao H. F. Highly branched polymers with layered structures that mimic light-harvesting processes . Angew. Chem. Int. Ed. , 2018 , 57 ( 2 ), 516 - 520 . doi: 10.1002/anie.201709492 http://dx.doi.org/10.1002/anie.201709492
Gan W. P. ; Cao X. S. ; Shi Y. ; Gao H. F. Chain-growth polymerization of azide-alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core . J. Polym. Sci. , 2020 , 58 ( 1 ), 84 - 90 . doi: 10.1002/pol.20190244 http://dx.doi.org/10.1002/pol.20190244
Wu J. S. ; Hou W. M. ; Liu Z. J. ; Shi Y. ; Chen Y. M. Mainchain semifluorinated polymers with ultra high molecular weight via reaction-enhanced reactivity of intermediate (RERI) mechanism . Chinese J. Polym. Sci. , 2023 , 41 ( 5 ), 760 - 767 . doi: 10.1007/s10118-023-2919-1 http://dx.doi.org/10.1007/s10118-023-2919-1
Zhang M. J. ; Wu J. S. ; Li Z. Q. ; Hou W. M. ; Li Y. C. ; Shi Y. ; Chen Y. M. Synthesis and visualization of bottlebrush-shaped segmented hyperbranched polymers . Polym. Chem. , 2022 , 13 ( 34 ), 4895 - 4900 . doi: 10.1039/d2py00898j http://dx.doi.org/10.1039/d2py00898j
Lee J. W. ; Kim B. K. ; Kim H. J. ; Han S. C. ; Shin W. S. ; Jin S. H. Convergent synthesis of symmetrical and unsymmetrical PAMAM dendrimers . Macromolecules , 2006 , 39 ( 6 ), 2418 - 2422 . doi: 10.1021/ma052526f http://dx.doi.org/10.1021/ma052526f
Kim K. O. ; Choi T. L. Synthesis of rod-like dendronized polymers containing G 4 and G 5 ester dendrons via macromonomer approach by living ROMP. ACS Macro Lett. , 2012 , 1 ( 4 ), 445 - 448 . doi: 10.1021/mz300032w http://dx.doi.org/10.1021/mz300032w
de Hoffmann E. ; Stroobant V. Mass Spectrometry: Principles and Applications . 3 rd ed . John Wiley &Sons Ltd , 2007 .
Li Z. Q. ; Hou W. M. ; Li Y. C. ; Xu J. X. ; Shi Y. ; Chen Y. M. Efficient metal-free norbornadiene-maleimide click reaction for the formation of molecular bottlebrushes . Macromolecules , 2021 , 54 ( 21 ), 10031 - 10039 . doi: 10.1021/acs.macromol.1c01776 http://dx.doi.org/10.1021/acs.macromol.1c01776
Hou W. M. ; Zhou Y. Q. ; Yin X. Z. ; Chen Y. M. ; Shi Y. Monomer emulsified aqueous ring-opening metathesis polymerization (ME-ROMP) for the synthesis of water-soluble molecular bottlebrushes with a precise structure . Macromolecules , 2023 , 56 ( 19 ), 7889 - 7897 . doi: 10.1021/acs.macromol.3c01080 http://dx.doi.org/10.1021/acs.macromol.3c01080
0
浏览量
137
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构