浏览全部资源
扫码关注微信
东华大学材料科学与工程学院 先进纤维材料全国重点实验室 上海 201620
E-mail: 17864388867@163.com;
E-mail: yzliao@dhu.edu.cn
收稿日期:2024-11-13,
录用日期:2025-01-10,
网络出版日期:2025-03-10,
纸质出版日期:2025-04-20
移动端阅览
池程浩, 侯心如, 段举, 廖耀祖. 聚乙烯亚胺修饰共轭微孔聚合物及其高效碘吸附研究. 高分子学报, 2025, 56(4), 598-610
Chi, C. H.; Hou, X. R.; Duan, J.; Liao, Y. Z. Polyethyleneimine-modified conjugated microporous polymer for efficient iodine adsorption. Acta Polymerica Sinica, 2025, 56(4), 598-610
池程浩, 侯心如, 段举, 廖耀祖. 聚乙烯亚胺修饰共轭微孔聚合物及其高效碘吸附研究. 高分子学报, 2025, 56(4), 598-610 DOI: 10.11777/j.issn1000-3304.2024.24278. CSTR: 32057.14.GFZXB.2025.7342.
Chi, C. H.; Hou, X. R.; Duan, J.; Liao, Y. Z. Polyethyleneimine-modified conjugated microporous polymer for efficient iodine adsorption. Acta Polymerica Sinica, 2025, 56(4), 598-610 DOI: 10.11777/j.issn1000-3304.2024.24278. CSTR: 32057.14.GFZXB.2025.7342.
共轭微孔聚合物(CMPs)由于具有高度离域的
π
-
π
共轭体系、较大的比表面积和灵活的表面活性基团等特点,使其在碘吸附领域中展现出很高的应用潜力. 然而,吸附容量低、循环性能差等缺点阻碍了CMPs在碘吸附领域的发展. 基于此,我们开发了一种新型的聚乙烯亚胺(PEI)化学修饰CMPs用于碘吸附. 首先采用Sonogashira偶联法制备出具有高密度羧基的共轭微孔聚合物(CMP-COOH),再进行PEI化学接枝修饰得到一种富氮共轭微孔聚合物(CMP-PEI). 借助PEI中丰富的氨基吸附位点进一步增强对碘分子的亲和力.结果表明,PEI分散体浓度为15%时,所制备CMP-PEI的碘吸附容量为3.26 g/g,且在398 K的温度下碘释放率高达95.6%,从而验证了所制备的CMP-PEI在碘吸附领域中具有较好的应用价值.
Conjugated microporous polymers (CMPs) exhibit high potential in the field of iodine adsorption due to their highly delocalized
π
-
π
conjugated system
large specific surface area
and
flexible surface-active groups. However
the drawbacks of low adsorption capacity and poor cycling performance have hindered the development of CMPs in the field of iodine adsorption. Herein
we propose a novel polyethyleneimine (PEI) chemically modified CMPs for efficient iodine adsorption. Firstly
the Sonogashira coupling method was used to prepare a conjugated microporous polymer with high-density carboxyl groups (CMP-COOH)
followed by PEI chemical grafting modification to obtain a nitrogen rich conjugated microporous polymer (CMP-PEI). By utilizing the abundant amino adsorption sites in PEI
the affinity for iodine molecules is further enhanced. The results showed that when the PEI dispersion concentration was 15%
the iodine adsorption capacity of CMP-PEI prepared could reach up to 3.26 g/g
and the iodine release rate was as high as 95.6% at a temperature of 398 K
further indicating that the prepared CMP-PEI has good application value in the field of iodine adsorption.
Shrestha A. ; Ali Mustafa A. ; Htike M. M. ; You V. ; Kakinaka M. Evolution of energy mix in emerging countries: modern renewable energy, traditional renewable energy, and non-renewable energy . Renew. Energy , 2022 , 199 , 419 - 432 . doi: 10.1016/j.renene.2022.09.018 http://dx.doi.org/10.1016/j.renene.2022.09.018
Lian J. J. ; Fu Q. ; Cui L. ; Liu R. ; Guo B. Y. Offshore renewable energy . J. Mar. Sci. Eng. , 2024 , 12 ( 5 ), 749 . doi: 10.3390/jmse12050749 http://dx.doi.org/10.3390/jmse12050749
Muellner N. ; Arnold N. ; Gufler K. ; Kromp W. ; Renneberg W. ; Liebert W. Nuclear energy-the solution to climate change? Energy Policy , 2021 , 155 , 112363 . doi: 10.1016/j.enpol.2021.112363 http://dx.doi.org/10.1016/j.enpol.2021.112363
Michaelides E. E. ; Michaelides D. N. Impact of nuclear energy on fossil fuel substitution . Nucl. Eng. Des. , 2020 , 366 , 110742 . doi: 10.1016/j.nucengdes.2020.110742 http://dx.doi.org/10.1016/j.nucengdes.2020.110742
Liu L. M. ; Guo H. ; Dai L. H. ; Liu M. L. ; Xiao Y. ; Cong T. L. ; Gu H. Y. The role of nuclear energy in the carbon neutrality goal . Prog. Nucl. Energy , 2023 , 162 , 104772 . doi: 10.1016/j.pnucene.2023.104772 http://dx.doi.org/10.1016/j.pnucene.2023.104772
Rehm T. E. Advanced nuclear energy: the safest and most renewable clean energy . Curr. Opin. Chem. Eng. , 2023 , 39 , 100878 . doi: 10.1016/j.coche.2022.100878 http://dx.doi.org/10.1016/j.coche.2022.100878
Ory C. ; Leboulleux S. ; Salvatore D. ; Le Guen B. ; De Vathaire F. ; Chevillard S. ; Schlumberger M. Consequences of atmospheric contamination by radioiodine: The Chernobyl and fukushima accidents . Endocrine , 2021 , 71 ( 2 ), 298 - 309 . doi: 10.1007/s12020-020-02498-9 http://dx.doi.org/10.1007/s12020-020-02498-9
Mao Q. Q. ; Yang S. Y. ; Zhang J. J. ; Liu Y. H. ; Liu M. Post-synthetic modification of porous organic cages for enhanced iodine adsorption performance . Adv. Sci. , 2024 , 11 ( 45 ), 2408494 . doi: 10.1002/advs.202408494 http://dx.doi.org/10.1002/advs.202408494
Pei W. Y. ; Yang J. ; Wu H. ; Zhou W. ; Yang Y. W. ; Ma J. F. A calix [4 ] resorcinarene-based giant coordination cage: controlled assembly and iodine uptake. Chem. Commun. , 2020 , 56 ( 16 ), 2491 - 2494 . doi: 10.1039/d0cc00157k http://dx.doi.org/10.1039/d0cc00157k
Wang X. X. ; Guo X. ; Qi J. W. ; Li H. ; Zhou Y. J. ; Zhu Z. G. ; Yang Y. ; Li J. S. Construction of nitrogen-rich groups @ zirconium-based metal-organic frameworks for efficient iodine capture . Sep. Purif. Technol. , 2025 , 355 , 129646 . doi: 10.1016/j.seppur.2024.129646 http://dx.doi.org/10.1016/j.seppur.2024.129646
Lin Y. L. ; Zeng P. Y. ; Wang D. ; Li T. T. ; Wu L. H. ; Zheng S. R. A mixed-ligand Co(II) MOF synthesized from a single organic ligand to capture iodine and methyl iodide vapour . Dalton Trans. , 2023 , 52 ( 22 ), 7709 - 7717 . doi: 10.1039/d3dt01104f http://dx.doi.org/10.1039/d3dt01104f
Song T. ; Zhu Y. N. ; Li Z. H. ; Mei Z. W. ; Shao Z. W. ; Liu C. A robust Zn-hydroxamate metal-organic framework constructed from an unsymmetrical ligand for iodine capture . Symmetry , 2024 , 16 ( 8 ), 1049 . doi: 10.3390/sym16081049 http://dx.doi.org/10.3390/sym16081049
Wang X. P. ; Li M. L. ; Zhang J. ; He X. H. ; Crittenden J. C. ; Zhang W. Silver ion-exchanged anionic metal-organic frameworks for iodine adsorption: Silver species evolution from ions to nanoparticles . ACS Appl. Nano Mater. , 2023 , 6 ( 9 ), 7206 - 7217 . doi: 10.1021/acsanm.3c00264 http://dx.doi.org/10.1021/acsanm.3c00264
You C. X. ; Yao Y. X. ; Qi S. N. ; Zhou T. Y. ; Ren X. ; Ma Y. C. ; Liu C. B. Thiophene-based mesoporous covalent organic framework for efficient iodine vapor capture . New J. Chem. , 2024 , 48 ( 34 ), 14995 - 15001 . doi: 10.1039/d4nj02750g http://dx.doi.org/10.1039/d4nj02750g
Cao X. Y. ; Jin Y. C. ; Wang H. L. ; Ding X. ; Liu X. L. ; Yu B. Q. ; Zhan X. N. ; Jiang J. Z. A tetraaldehyde-derived porous organic cage and covalent organic frameworks: syntheses, structures, and iodine vapor capture . Chin. Chem. Lett. , 2024 , 35 ( 9 ), 109201 . doi: 10.1016/j.cclet.2023.109201 http://dx.doi.org/10.1016/j.cclet.2023.109201
Gao C. ; Guan X. H. ; Chen L. ; Hu H. R. ; Shi L. ; Zhang C. ; Sun C. G. ; Du Y. ; Hu B. C. Construction of a conjugated covalent organic framework for iodine capture . RSC Adv. , 2024 , 14 ( 3 ), 1665 - 1669 . doi: 10.1039/d3ra07781k http://dx.doi.org/10.1039/d3ra07781k
Wang G. B. ; Xie K. H. ; Zhu F. C. ; Kan J. L. ; Li S. ; Geng Y. ; Dong Y. B. Construction of tetrathiafulvalene-based covalent organic frameworks for superior iodine capture . Chem. Res. Chin. Univ. , 2022 , 38 ( 2 ), 409 - 414 . doi: 10.1007/s40242-022-1417-2 http://dx.doi.org/10.1007/s40242-022-1417-2
Lee J. M. ; Cooper A. I. Advances in conjugated microporous polymers . Chem. Rev. , 2020 , 120 ( 4 ), 2171 - 2214 . doi: 10.1021/acs.chemrev.9b00399 http://dx.doi.org/10.1021/acs.chemrev.9b00399
Song Y. P. ; Lan P. C. ; Martin K. ; Ma S. Q. Rational design of bifunctional conjugated microporous polymers . Nanoscale Adv. , 2021 , 3 ( 17 ), 4891 - 4906 . doi: 10.1039/d1na00479d http://dx.doi.org/10.1039/d1na00479d
Wan N. N. ; Chang Q. Y. ; Hou F. Y. ; Zhang S. H. ; Zang X. H. ; Zhao X. X. ; Wang C. ; Wang Z. ; Yamauchi Y. Nanoarchitectured conjugated microporous polymers: state of the art synthetic strategies and opportunities for adsorption science . Chem. Mater. , 2022 , 34 ( 17 ), 7598 - 7619 . doi: 10.1021/acs.chemmater.2c00999 http://dx.doi.org/10.1021/acs.chemmater.2c00999
Ju P. Y. ; Qi W. ; Guo B. X. ; Liu W. T. ; Wu Q. L. ; Su Q. Highly stable and versatile conjugated microporous polymer for heterogeneous catalytic applications . Catal. Lett. , 2023 , 153 ( 7 ), 2125 - 2136 . doi: 10.1007/s10562-022-04131-y http://dx.doi.org/10.1007/s10562-022-04131-y
Kim S. ; Landfester K. ; Ferguson C. T. J. Hairy conjugated microporous polymer nanoparticles facilitate heterogeneous photoredox catalysis with solvent-specific dispersibility . ACS Nano , 2022 , 16 ( 10 ), 17041 - 17048 . doi: 10.1021/acsnano.2c07156 http://dx.doi.org/10.1021/acsnano.2c07156
Nailwal Y. ; Devi M. ; Pal S. K. Luminescent conjugated microporous polymers for selective sensing and ultrafast detection of picric acid . ACS Appl. Polym. Mater. , 2022 , 4 ( 4 ), 2648 - 2655 . doi: 10.1021/acsapm.1c01905 http://dx.doi.org/10.1021/acsapm.1c01905
Ahmed M. ; Kotp M. G. ; Mansoure T. H. ; Lee R. H. ; Kuo S. W. ; EL-Mahdy A. F. M. Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage . Microporous Mesoporous Mater. , 2022 , 333 , 111766 . doi: 10.1016/j.micromeso.2022.111766 http://dx.doi.org/10.1016/j.micromeso.2022.111766
Yan Y. C. ; Yu X. H. ; Shao C. C. ; Hu Y. P. ; Huang W. ; Li Y. G. Atomistic structural engineering of conjugated microporous polymers promotes photocatalytic biomass valorization . Adv. Funct. Mater. , 2023 , 33 ( 42 ), 2304604 . doi: 10.1002/adfm.202304604 http://dx.doi.org/10.1002/adfm.202304604
Hayat A. ; Sohail M. ; El Jery A. ; Al-Zaydi K. M. ; Raza S. ; Ali H. ; Al-Hadeethi Y. ; Taha T. A. ; Ud Din I. ; Ali Khan M. ; Amin M. A. ; Ghasali E. ; Orooji Y. ; Ajmal Z. ; Zahid Ansari M. Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications . Mater. Today , 2023 , 64 , 180 - 208 . doi: 10.1016/j.mattod.2023.02.025 http://dx.doi.org/10.1016/j.mattod.2023.02.025
Kurisingal J. F. ; Yun H. ; Hong C. S. Porous organic materials for iodine adsorption . J Hazard Mater , 2023 , 458 , 131835 . doi: 10.1016/j.jhazmat.2023.131835 http://dx.doi.org/10.1016/j.jhazmat.2023.131835
Pan T. T. ; Yang K. J. ; Dong X. L. ; Han Y. Adsorption-based capture of iodine and organic iodides: status and challenges . J. Mater. Chem. A , 2023 , 11 ( 11 ), 5460 - 5475 . doi: 10.1039/d2ta09448g http://dx.doi.org/10.1039/d2ta09448g
Dai D. H. ; Yang J. ; Zou Y. C. ; Wu J. R. ; Tan L. L. ; Wang Y. ; Li B. ; Lu T. ; Wang B. ; Yang Y. W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO 2 capture and iodine adsorption . Angew. Chem. Int. Ed , 2021 , 60 ( 16 ), 8967 - 8975 . doi: 10.1002/anie.202015162 http://dx.doi.org/10.1002/anie.202015162
Li X. ; Li Z. ; Yang Y. W. Tetraphenylethylene-interweaving conjugated macrocycle polymer materials as two-photon fluorescence sensors for metal ions and organic molecules . Adv. Mater. , 2018 , 30 ( 20 ), 1800177 . doi: 10.1002/adma.201800177 http://dx.doi.org/10.1002/adma.201800177
Xu M. Y. ; Chen F. L. ; He Q. L. ; Zhao Z. ; Liu P. ; Zhou L. ; Wang Z. Y. ; Hua D. B. Cascade adsorption of methyl iodine and pertechnetate through residual activation on Pyridine-Containing conjugated microporous polymers . Sep. Purif. Technol. , 2023 , 317 , 123889 . doi: 10.1016/j.seppur.2023.123889 http://dx.doi.org/10.1016/j.seppur.2023.123889
Qiao Y. ; Lv N. ; Xue X. X. ; Zhou T. Y. ; Che G. B. ; Xu G. J. ; Wang F. J. ; Wu Y. Y. ; Xu Z. L. Highly efficient iodine capture and CO 2 adsorption using a triazine-based conjugated microporous polymers . ChemistrySelect , 2022 , 7 ( 25 ), e 202200234 . doi: 10.1002/slct.202200234 http://dx.doi.org/10.1002/slct.202200234
Coralli I. ; Fabbri D. ; Facchin A. ; Torri C. ; Stevens L. A. ; Snape C. E. Analytical pyrolysis of polyethyleneimines . J. Anal. Appl. Pyrolysis , 2023 , 169 , 105838 . doi: 10.1016/j.jaap.2022.105838 http://dx.doi.org/10.1016/j.jaap.2022.105838
Wu Y. F. ; Zang Y. ; Xu L. ; Wang J. J. ; Jia H. G. ; Miao F. J. Synthesis of functional conjugated microporous polymer/Ti O 2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants . J. Mater. Sci. , 2021 , 56 ( 13 ), 7936 - 7950 . doi: 10.1007/s10853-021-05790-9 http://dx.doi.org/10.1007/s10853-021-05790-9
Zeng S. C. ; Liang X. ; Zhao M. G. ; Ren Y. X. ; Ma H. Z. ; Zhu Z. T. ; Wang Y. H. ; Wang S. Y. ; Zhao J. Y. ; Yang G. ; Wang X. R. ; Pan F. S. ; He G. W. ; Jiang Z. Y. Ultrathin PEI-functionalized carboxyl covalent organic framework membranes for efficient CO 2 /N 2 separation . J. Membr. Sci., 2024, 698 , 122590 . doi: 10.1016/j.memsci.2024.122590 http://dx.doi.org/10.1016/j.memsci.2024.122590
Wang X. ; Feng J. H. ; Cai Y. W. ; Fang M. ; Kong M. G. ; Alsaedi A. ; Hayat T. ; Tan X. L. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution . Sci. Total Environ. , 2020 , 708 , 134575 . doi: 10.1016/j.scitotenv.2019.134575 http://dx.doi.org/10.1016/j.scitotenv.2019.134575
Shang Z. K. ; Pu F. X. ; Zhang X. Z. ; Jin H. X. ; Chen S. Y. ; Ding Y. ; Hu A. G. A hyper-cross-linked aerogel with rigid conjugated polymers as building blocks for efficient iodine capture . ACS Appl. Polym. Mater. , 2023 , 5 ( 5 ), 3827 - 3834 . doi: 10.1021/acsapm.3c00411 http://dx.doi.org/10.1021/acsapm.3c00411
Yang X. ; Duan L. ; Ran X. Q. ; Ran B. L. ; Yi S. X. Two nitrogen-rich conjugated microporous polymers for efficient iodine sequestration and removal . J. Polym. Res. , 2022 , 29 ( 12 ), 499 . doi: 10.1007/s10965-022-03346-2 http://dx.doi.org/10.1007/s10965-022-03346-2
Yang J. X. ; Wang S. L. ; Yan Q. Q. ; Hu H. ; Xu H. J. ; Ma H. B. ; Su X. F. ; Gao Y. N. Novel nitrogen-rich conjugated microporous polymers for efficient capture of iodine and methyl iodide . Polym. Chem. , 2024 , 15 ( 26 ), 2652 - 2661 . doi: 10.1039/d4py00425f http://dx.doi.org/10.1039/d4py00425f
Liao Y. Z. ; Weber J. ; Mills B. M. ; Ren Z. H. ; Faul C. F. Highly efficient and reversible iodine capture in hexaphenylbenzene-based conjugated microporous polymers . Macromolecules , 2016 , 49 ( 17 ), 6322 - 6333 . doi: 10.1021/acs.macromol.6b00901 http://dx.doi.org/10.1021/acs.macromol.6b00901
Zuo H. Y. ; Lyu W. ; Zhang W. Y. ; Li Y. ; Liao Y. Z. High-yield synthesis of pyridyl conjugated microporous polymer networks with large surface areas: from molecular iodine capture to metal-free heterogeneous catalysis . Macromol. Rapid Commun. , 2020 , 41 ( 22 ), 2000489 . doi: 10.1002/marc.202000489 http://dx.doi.org/10.1002/marc.202000489
Li D. X. ; Wu G. X. ; Zhu Y. K. ; Yang P. Y. Phenyl-extended resorcin [4 ] arenes: synthesis and highly efficient iodine adsorption. Angew. Chem. Int. Ed. , 2024 , 63 ( 43 ), e 202411261 . doi: 10.1002/ange.202411261 http://dx.doi.org/10.1002/ange.202411261
Luo S. Y. ; Yan Q. Q. ; Wang S. L. ; Hu H. ; Xiao S. T. ; Su X. F. ; Xu H. J. ; Gao Y. N. Conjugated microporous polymers based on octet and tetratopic linkers for efficient iodine capture . ACS Appl. Mater. Interfaces , 2023 , 15 ( 39 ), 46408 - 46416 . doi: 10.1021/acsami.3c10786 http://dx.doi.org/10.1021/acsami.3c10786
0
浏览量
78
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构