浏览全部资源
扫码关注微信
浙江工业大学材料科学与工程学院 湖州 313299
E-mail: chensi@zjut.edu.cn
wangxu@zjut.edu.cn
收稿日期:2024-12-23,
录用日期:2025-03-25,
网络出版日期:2025-05-14,
纸质出版日期:2025-07-20
移动端阅览
项玉珍, 陈思, 王旭. 光点击化学交联制备软组织工程用四臂聚己内酯支架及其性能研究. 高分子学报, 2025, 56(7), 1159-1169
Xiang, Y. Z.; Chen, S.; Wang, X. Preparation and properties of four-arm polycaprolactone scaffolds for soft tissue engineering by photo-click chemical cross-linking. Acta Polymerica Sinica, 2025, 56(7), 1159-1169
项玉珍, 陈思, 王旭. 光点击化学交联制备软组织工程用四臂聚己内酯支架及其性能研究. 高分子学报, 2025, 56(7), 1159-1169 DOI: 10.11777/j.issn1000-3304.2025.24303. CSTR: 32057.14.GFZXB.2025.7385.
Xiang, Y. Z.; Chen, S.; Wang, X. Preparation and properties of four-arm polycaprolactone scaffolds for soft tissue engineering by photo-click chemical cross-linking. Acta Polymerica Sinica, 2025, 56(7), 1159-1169 DOI: 10.11777/j.issn1000-3304.2025.24303. CSTR: 32057.14.GFZXB.2025.7385.
针对传统聚己内酯(PCL)材料刚性较高及数字光处理(DLP)技术光敏树脂种类有限的问题,开发了一种基于炔基封端四臂聚己内酯(4sPCL)-季戊四醇四(巯基乙酸)酯(PETMA)光点击化学交联体系的新型DLP兼容光敏树脂. 通过调控4sPCL分子量及添加浓度,系统研究了支架的光固化均匀性、机械性能与热行为. 实验表明,当采用
M
n
=5000 g/mol的4sPCL、添加量为10 wt%时,所制备的支架兼具与软组织匹配的压缩强度((86.1±8.1) kPa)、快速光固化特性(20~25 s)及优异形状恢复性. 本研究为构建兼具精密结构调控与仿生力学性能的软组织工程支架提供了创新解决方案.
In this study
a new DLP-compatible photosensitive resin based on the alkyne-capped four-arm polycaprolactone (4sPCL)-pentaerythritol tetrakis(mercaptoacetic acid) ester (PETMA) photoclick chemical cross-linking system was developed in response to the problems of the high rigidity of the traditional polycaprolactone (PCL) materials and the limited variety of photosensitive resins for digital light processing (DLP) technology. The light-curing uniformity
mechanical properties and thermal behavior of the scaffolds were systematically investigated by regulat
ing the molecular weight and addition concentration of 4sPCL. The experiments showed that when
M
n
=5000 g/mol and 10 wt% of 4sPCL were used
the prepared scaffolds possessed soft-tissue-matched compressive strength ((86.1±8.1) kPa)
fast light-curing properties (20-25 s) and excellent shape recovery. This study provides an innovative solution for the construction of soft tissue engineering scaffolds with precise structural modulation and biomimetic mechanical properties.
Wang J. W. ; Zhao P. Z. ; Li M. M. ; Li J. ; Lin Y. F. Remedying infectious bone defects via 3D printing technology . Chinese Chem. Lett. , 2024 , doi: 10.1016/j.cclet.2024.110686. http://dx.doi.org/10.1016/j.cclet.2024.110686.
Woodruff M. A. ; Hutmacher D. W. The return of a forgotten polymer: polycaprolactone in the 21st century . Prog. Polym. Sci. , 2010 , 35 ( 10 ), 1217 - 1256 . doi: 10.1016/j.progpolymsci.2010.04.002 http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
Zhao F. ; Sun J. ; Xue W. ; Wang F. J. ; King M. W. ; Yu C. L. ; Jiao Y. J. ; Sun K. ; Wang L. Development of a polycaprolactone/poly(p-dioxanone) bioresorbable stent with mechanically self-reinforced structure for congenital heart disease treatment . Bioact. Mater. , 2021 , 6 ( 9 ), 2969 - 2982 . doi: 10.1016/j.bioactmat.2021.02.017 http://dx.doi.org/10.1016/j.bioactmat.2021.02.017
Schmitt P. R. ; Dwyer K. D. ; Coulombe K. L. K. Current applications of polycaprolactone as a scaffold material for heart regeneration . ACS Appl. Bio Mater. , 2022 , 5 ( 6 ), 2461 - 2480 . doi: 10.1021/acsabm.2c00174 http://dx.doi.org/10.1021/acsabm.2c00174
Ikegami Y. ; Shafiq M. ; Aishima S. ; Ijima H. Heparin/growth factors-immobilized aligned electrospun nanofibers promote nerve regeneration in polycaprolactone/gelatin-based nerve guidance conduits . Adv. Fiber Mater. , 2023 , 5 ( 2 ), 554 - 573 . doi: 10.1007/s42765-022-00244-6 http://dx.doi.org/10.1007/s42765-022-00244-6
Javkhlan Z. ; Hsu S. H. ; Chen R. S. ; Chen M. H. Interactions of neural-like cells with 3D-printed polycaprolactone with different inner diameters for neural regeneration . J. Dent. Sci. , 2024 , 19 ( 2 ), 1096 - 1104 . doi: 10.1016/j.jds.2023.12.017 http://dx.doi.org/10.1016/j.jds.2023.12.017
Qian Y. ; Zhao X. T. ; Han Q. X. ; Chen W. ; Li H. ; Yuan W. E. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration . Nat. Commun. , 2018 , 9 ( 1 ), 323 . doi: 10.1038/s41467-017-02598-7 http://dx.doi.org/10.1038/s41467-017-02598-7
Ling Y. ; Pang W. B. ; Liu J. X. ; Page M. ; Xu Y. D. ; Zhao G. G. ; Stalla D. ; Xie J. W. ; Zhang Y. H. ; Yan Z. Bioinspired elastomer composites with programmed mechanical and electrical anisotropies . Nat. Commun. , 2022 , 13 ( 1 ), 524 . doi: 10.1038/s41467-022-28185-z http://dx.doi.org/10.1038/s41467-022-28185-z
Xu Y. ; Chen X. ; Qian Y. ; Tang H. Z. ; Song J. L. ; Qu X. H. ; Yue B. ; Yuan W. E. Melatonin-based and biomimetic scaffold as muscle-ECM implant for guiding myogenic differentiation of volumetric muscle loss . Adv. Funct. Mater. , 2020 , 30 ( 27 ), 2002378 . doi: 10.1002/adfm.202002378 http://dx.doi.org/10.1002/adfm.202002378
Tecse A. ; Romero S. E. ; Naemi R. ; Castaneda B. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: validation and applications in plantar soft tissue assessment . Phys. Med. Biol. , 2023 , 68 ( 10 ). DOI: 10.1088/1361-6560/acc923. doi: 10.1088/1361-6560/acc923 http://dx.doi.org/10.1088/1361-6560/acc923
Chen F. F. ; Liu X. Y. ; Ge X. Y. ; Wang Y. ; Zhao Z. F. ; Zhang X. ; Chen G. Q. ; Sun Y. C. Porous polydroxyalkanoates (PHA) scaffolds with antibacterial property for oral soft tissue regeneration . Chem. Eng. J. , 2023 , 451 , 138899 . doi: 10.1016/j.cej.2022.138899 http://dx.doi.org/10.1016/j.cej.2022.138899
Mondschein R. J. ; Kanitkar A. ; Williams C. B. ; Verbridge S. S. ; Long T. E. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds . Biomaterials , 2017 , 140 , 170 - 188 . doi: 10.1016/j.biomaterials.2017.06.005 http://dx.doi.org/10.1016/j.biomaterials.2017.06.005
Haque A. N. M. A. ; Naebe M. ; Mielewski D. ; Kiziltas A. Waste wool/polycaprolactone filament towards sustainable use in 3D printing . J. Clean. Prod. , 2023 , 386 , 135781 . doi: 10.1016/j.jclepro.2022.135781 http://dx.doi.org/10.1016/j.jclepro.2022.135781
dos Santos J. ; Kielholz T. ; Funk N. L. ; de Souza Balbinot G. ; da Silva Daitx T. ; Petzhold C. L. ; Buchner S. ; Collares F. M. ; Windbergs M. ; Beck R. C. R. Poly( ɛ -caprolactone) and Eudragit E blends modulate the drug release profiles from FDM printlets . Int. J. Pharm. , 2023 , 647 , 123533 . doi: 10.1016/j.ijpharm.2023.123533 http://dx.doi.org/10.1016/j.ijpharm.2023.123533
Meng Z. J. ; He J. K. ; Cai Z. H. ; Wang F. P. ; Zhang J. L. ; Wang L. ; Ling R. ; Li D. C. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering . Mater. Des. , 2020 , 189 , 108508 . doi: 10.1016/j.matdes.2020.108508 http://dx.doi.org/10.1016/j.matdes.2020.108508
Park J. H. ; Park H. J. ; Tucker S. J. ; Rutledge S. K. ; Wang L. Z. ; Davis M. E. ; Hollister S. J. 3 D printing of poly- ε -caprolactone (PCL) auxetic implants with advanced performance for large volume soft tissue engineering . Adv. Funct. Mater. , 2023, 33 ( 24 ), 2215220 . doi: 10.1002/adfm.202370145 http://dx.doi.org/10.1002/adfm.202370145
Colorado H. A. ; Gutierrez-Velasquez E. I. ; Gil L. D. ; de Camargo I. L. Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review . Adv. Compos. Hybrid Mater. , 2023 , 7 ( 1 ), 1 . doi: 10.1007/s42114-023-00808-z http://dx.doi.org/10.1007/s42114-023-00808-z
Zhang F. ; Zhu L. Y. ; Li Z. A. ; Wang S. Y. ; Shi J. P. ; Tang W. L. ; Li N. ; Yang J. Q. The recent development of vat photopolymerization: a review . Addit. Manuf. , 2021 , 48 , 102423 . doi: 10.1016/j.addma.2021.102423 http://dx.doi.org/10.1016/j.addma.2021.102423
Fang Z. Z. ; Mu H. F. ; Sun Z. ; Zhang K. H. ; Zhang A. Y. ; Chen J. D. ; Zheng N. ; Zhao Q. ; Yang X. X. ; Liu F. ; Wu J. J. ; Xie T. 3D printable elastomers with exceptional strength and toughness . Nature , 2024 , 631 ( 8022 ), 783 - 788 . doi: 10.1038/s41586-024-07588-6 http://dx.doi.org/10.1038/s41586-024-07588-6
Quan H. Y. ; Zhang T. ; Xu H. ; Luo S. ; Nie J. ; Zhu X. Q. Photo-curing 3D printing technique and its challenges . Bioact. Mater. , 2020 , 5 ( 1 ), 110 - 115 . doi: 10.1016/j.bioactmat.2019.12.003 http://dx.doi.org/10.1016/j.bioactmat.2019.12.003
Fu Y. X. ; Simeth N. A. ; Szymanski W. ; Feringa B. L. Visible and near-infrared light-induced photoclick reactions . Nat. Rev. Chem. , 2024 , 8 ( 9 ), 665 - 685 . doi: 10.1038/s41570-024-00633-y http://dx.doi.org/10.1038/s41570-024-00633-y
Lü S. W. ; Wang Z. P. ; Zhu S. F. Thiol-Yne click chemistry of acetylene-enabled macrocyclization . Nat. Commun. , 2022 , 13 ( 1 ), 5001 . doi: 10.1038/s41467-022-32723-0 http://dx.doi.org/10.1038/s41467-022-32723-0
Labet M. ; Thielemans W. Synthesis of polycaprolactone: a review . Chem. Soc. Rev. , 2009 , 38 ( 12 ), 3484 - 3504 . doi: 10.1039/b820162p http://dx.doi.org/10.1039/b820162p
Bednarek M. Branched aliphatic polyesters by ring-opening (co)polymerization . Prog. Polym. Sci. , 2016 , 58 , 27 - 58 . doi: 10.1016/j.progpolymsci.2016.02.002 http://dx.doi.org/10.1016/j.progpolymsci.2016.02.002
Yang X. F. ; Liu J. ; Wu Y. F. ; Liu J. L. ; Cheng F. ; Jiao X. J. ; Lai G. Q. Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage . Prog. Org. Coat. , 2019 , 129 , 96 - 100 . doi: 10.1016/j.porgcoat.2019.01.005 http://dx.doi.org/10.1016/j.porgcoat.2019.01.005
0
浏览量
67
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构