浏览全部资源
扫码关注微信
江苏大学材料科学与工程学院 高分子材料研究所 镇江 212013
E-mail: zhangkan@ujs.edu.cn
收稿日期:2025-01-07,
录用日期:2025-04-28,
网络出版日期:2025-06-05,
纸质出版日期:2025-08-20
移动端阅览
胡长文, 杨蕊, 张侃. 黄酮类生物基苯并噁嗪树脂的合成、固化机理及性能研究. 高分子学报, 2025, 56(8), 1426-1437
Hu, C. W.; Yang, R.; Zhang, K. Synthesis, curing and properties of flavonoid based bio-benzoxazine resins. Acta Polymerica Sinica, 2025, 56(8), 1426-1437
胡长文, 杨蕊, 张侃. 黄酮类生物基苯并噁嗪树脂的合成、固化机理及性能研究. 高分子学报, 2025, 56(8), 1426-1437 DOI: 10.11777/j.issn1000-3304.2025.25009. CSTR: 32057.14.GFZXB.2025.7404.
Hu, C. W.; Yang, R.; Zhang, K. Synthesis, curing and properties of flavonoid based bio-benzoxazine resins. Acta Polymerica Sinica, 2025, 56(8), 1426-1437 DOI: 10.11777/j.issn1000-3304.2025.25009. CSTR: 32057.14.GFZXB.2025.7404.
本文设计并合成了一系列黄酮类生物基苯并噁嗪单体,系统研究了不同官能度黄酮类生物基苯并噁嗪分子结构与固化机理及固化后树脂材料热稳定性和阻燃性的关联机制. 首先采用NMR、FTIR等表征手段确认苯并噁嗪单体的分子结构,再通过DSC和原位FTIR谱图来研究苯并噁嗪单体的聚合过程结构演变与固化机理. 该
系列黄酮类苯并噁嗪中的酚羟基与其相邻羰基之间分子内氢键被确定为导致热潜伏催化固化行为的根本原因. 其中,基于芹菜素双官苯并噁嗪树脂制备的热固性树脂具有极高的热稳定性(
T
d5
为384 ℃),由木犀草素基三官苯并噁嗪制备的聚苯并噁嗪树脂具有最为优异的阻燃性(HRC
<
10 J·g
-1
·K
-1
). 以上研究表明黄酮类生物基热固性树脂在高性能材料领域具有巨大的应用潜力.
In this study
a series of flavonoid-based benzoxazine monomers were designed and synthesized
and the correlation mechanisms among the molecular structures with different functionalities of resins and their curing mechanisms
as well as the thermal stability and flame retardancy of thermosets were systematically investigated. The molecular structures of the benzoxazine monomers were confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR)
and the structural evolution of the polymerization process and the corresponding curing mechanism of benzoxazine monomers were investigated by differential scanning calorimetry (DSC) and
in situ
FTIR spectroscopy. Intramolecular hydrogen bonding between the phenolic hydroxyl and its adjacent carbonyl group in benzoxazines was identified as the underlying cause of the thermally latent catalytic curing behavior. In addition
the thermoset derived from apigenin-based bi-benzoxazine exhibited remarkably high thermal stability (
T
d5
= 384 ℃)
while polybenzoxazine obtained from luteolin-based tri-functional benzoxazine showed outstanding flame retardancy (HRC
<
10 J·g
-1
·K
-1
). The aforementioned studies suggest that thermosetting resins derived from flavonoid bio-based sources hold significant promise for utilization in high-performance applications.
Handa N. V. ; Li S. G. ; Gerbec J. A. ; Sumitani N. ; Hawker C. J. ; Klinger D. Fully aromatic high performance thermoset via sydnone-alkyne cycloaddition . J. Am. Chem. Soc. , 2016 , 138 ( 20 ), 6400 - 6403 . doi: 10.1021/jacs.6b03381 http://dx.doi.org/10.1021/jacs.6b03381
Ishida H. ; Agag T. Handbook of Benzoxazine Resins . Elsevier , 2011 . doi: 10.1016/b978-0-444-53790-4.00089-8 http://dx.doi.org/10.1016/b978-0-444-53790-4.00089-8
Ishida H. ; Froimowicz P. Advanced and Emerging Polybenzoxazine Science and Technology . Elsevier , 2017 . doi: 10.1016/b978-0-12-804170-3.09987-x http://dx.doi.org/10.1016/b978-0-12-804170-3.09987-x
Sha X. L. ; Yuan L. ; Liang G. Z. ; Gu A. J. Heat-resistant and robust biobased benzoxazine resins developed with a green synthesis strategy . Polym. Chem. , 2021 , 12 ( 3 ), 432 - 438 . doi: 10.1039/d0py01529f http://dx.doi.org/10.1039/d0py01529f
Zhang K. ; Han M. C. ; Han L. ; Ishida H. Resveratrol-based tri-functional benzoxazines: synthesis, characterization, polymerization, and thermal and flame retardant properties . Eur. Polym. J. , 2019 , 116 , 526 - 533 . doi: 10.1016/j.eurpolymj.2019.04.036 http://dx.doi.org/10.1016/j.eurpolymj.2019.04.036
Higginson C. J. ; Malollari K. G. ; Xu Y. Q. ; Kelleghan A. V. ; Ricapito N. G. ; Messersmith P. B. Bioinspired design provides high-strength benzoxazine structural adhesives . Angew. Chem. Int. Ed. , 2019 , 58 ( 35 ), 12271 - 12279 . doi: 10.1002/anie.201906008 http://dx.doi.org/10.1002/anie.201906008
Wu J. B. ; Xi Y. ; McCandless G. T. ; Xie Y. H. ; Menon R. ; Patel Y. ; Yang D. J. ; Iacono S. T. ; Novak B. M. Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing octafluorocyclopentene as a versatile building block . Macromolecules , 2015 , 48 ( 17 ), 6087 - 6095 . doi: 10.1021/acs.macromol.5b01014 http://dx.doi.org/10.1021/acs.macromol.5b01014
Chen J. B. ; Zeng M. ; Feng Z. J. ; Pang T. ; Huang Y. W. ; Xu Q. Y. Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses . ACS Appl. Polym. Mater. , 2019 , 1 ( 4 ), 625 - 630 . doi: 10.1021/acsapm.8b00083 http://dx.doi.org/10.1021/acsapm.8b00083
Han L. ; Salum M. L. ; Zhang K. ; Froimowicz P. ; Ishida H. Intrinsic self-initiating thermal ring-opening polymerization of 1 , 3 -benzoxazines without the influence of impurities using very high purity crystals . J. Polym. Sci. Part A Polym. Chem., 2017, 55 ( 20 ), 3434 - 3445 . doi: 10.1002/pola.28723 http://dx.doi.org/10.1002/pola.28723
Ishida H. ; Rodriguez Y. Catalyzing the curing reaction of a new benzoxazine-based phenolic resin . J. Appl. Polym. Sci. , 1995 , 58 ( 10 ), 1751 - 1760 . doi: 10.1002/app.1995.070581013 http://dx.doi.org/10.1002/app.1995.070581013
Sun J. Q. ; Wei W. ; Xu Y. Z. ; Qu J. H. ; Liu X. D. ; Endo T. A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties . RSC Adv. , 2015 , 5 ( 25 ), 19048 - 19057 . doi: 10.1039/c4ra16582a http://dx.doi.org/10.1039/c4ra16582a
Liu C. ; Shen D. M. ; Sebastián R. M. ; Marquet J. ; Schönfeld R. Mechanistic studies on ring-opening polymerization of benzoxazines: a mechanistically based catalyst design . Macromolecules , 2011 , 44 ( 12 ), 4616 - 4622 . doi: 10.1021/ma2007893 http://dx.doi.org/10.1021/ma2007893
Kim H. D. ; Ishida H. Study on the chemical stability of benzoxazine-based phenolic resins in carboxylic acids . J. Appl. Polym. Sci. , 2001 , 79 ( 7 ), 1207 - 1219 . doi: 10.1002/1097-4628(20010214)79:73.0.CO;2-3 http://dx.doi.org/10.1002/1097-4628(20010214)79:73.0.CO;2-3
Baqar M. ; Agag T. ; Ishida H. ; Qutubuddin S. Methylol-functional benzoxazines as precursors for high-performance thermoset polymers: unique simultaneous addition and condensation polymerization behavior . J. Polym. Sci. Part A Polym. Chem. , 2012 , 50 ( 11 ), 2275 - 2285 . doi: 10.1002/pola.26008 http://dx.doi.org/10.1002/pola.26008
Zhang K. ; Liu Y. Q. ; Han M. C. ; Froimowicz P. Smart and sustainable design of latent catalyst-containing benzoxazine-bio-resins and application studies . Green Chem. , 2020 , 22 ( 4 ), 1209 - 1219 . doi: 10.1039/C9GC03504D http://dx.doi.org/10.1039/C9GC03504D
王汉武 , 贾瑞明 , 冉起超 . 生物基苯并噁嗪作为环氧树脂潜伏性固化剂的研究 . 功能高分子学报 , 2022 , 35 ( 3 ), 236 - 243 . doi: 10.14133/j.cnki.1008-9357. http://dx.doi.org/10.14133/j.cnki.1008-9357.
张鹤 , 陆馨 , 姚红杰 , 周长路 , 辛忠 . 腰果酚型聚苯并噁嗪基超疏水涂层的制备及其性能 . 功能高分子学报 , 2019 , 32 ( 1 ), 90 - 95 . doi: 10.14133/j.cnki.1008-9357.20180124002 http://dx.doi.org/10.14133/j.cnki.1008-9357.20180124002
Zhao W. Q. ; Hao B. R. ; Lu Y. ; Zhang K. Thermal latent and low-temperature polymerization of a bio-benzoxazine resin from natural renewable chrysin and furfurylamine . Eur. Polym. J. , 2022 , 166 , 111041 . doi: 10.1016/j.eurpolymj.2022.111041 http://dx.doi.org/10.1016/j.eurpolymj.2022.111041
Froimowicz P. ; Arza C. R. ; Han L. ; Ishida H. Smart, sustainable, and ecofriendly chemical design of fully bio-based thermally stable thermosets based on benzoxazine chemistry . ChemSusChem , 2016 , 9 ( 15 ), 1921 - 1928 . doi: 10.1002/cssc.201600577 http://dx.doi.org/10.1002/cssc.201600577
Machado I. ; Hsieh I. ; Rachita E. ; Salum M. L. ; Iguchi D. ; Pogharian N. ; Pellot A. ; Froimowicz P. ; Calado V. ; Ishida H. A truly bio-based benzoxazine derived from three natural reactants obtained under environmentally friendly conditions and its polymer properties . Green Chem. , 2021 , 23 ( 11 ), 4051 - 4064 . doi: 10.1039/D1GC00951F http://dx.doi.org/10.1039/D1GC00951F
Zhang K. ; Han M. C. ; Liu Y. Q. ; Froimowicz P. Design and synthesis of bio-based high-performance trioxazine benzoxazine resin via natural renewable resources . ACS Sustain. Chem. Eng. , 2019 , 7 ( 10 ), 9399 - 9407 . doi: 10.1021/acssuschemeng.9b00603 http://dx.doi.org/10.1021/acssuschemeng.9b00603
Wang C. F. ; Sun J. Q. ; Liu X. D. ; Sudo A. ; Endo T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine . Green Chem. , 2012 , 14 ( 10 ), 2799 - 2806 . doi: 10.1039/c2gc35796h http://dx.doi.org/10.1039/c2gc35796h
苗香艳 , 赵颖 , 宋万强 , 任士通 . 全生物基苯并噁嗪树脂的合成及聚合研究 . 中国胶粘剂 , 2019 , 28 ( 1 ), 17 - 19 .
Yang R. ; Han M. C. ; Hao B. R. ; Zhang K. Biobased high-performance tri-furan functional bis-benzoxazine resin derived from renewable guaiacol, furfural and furfurylamine . Eur. Polym. J. , 2020 , 131 , 109706 . doi: 10.1016/j.eurpolymj.2020.109706 http://dx.doi.org/10.1016/j.eurpolymj.2020.109706
Kotzebue L. R. V. ; de Oliveira J. R. ; da Silva J. B. ; Mazzetto S. E. ; Ishida H. ; Lomonaco D. Development of fully biobased high-performance bis-benzoxazine under environmentally friendly conditions . ACS Sustain. Chem. Eng. , 2018 , 6 ( 4 ), 5485 - 5494 . doi: 10.1021/acssuschemeng.8b00340 http://dx.doi.org/10.1021/acssuschemeng.8b00340
Samsonowicz M. ; Regulska E. ; Kalinowska M. Hydroxyflavone metal complexes-molecular structure, antioxidant activity and biological effects . Chem. Biol. Interact. , 2017 , 273 , 245 - 256 . doi: 10.1016/j.cbi.2017.06.016 http://dx.doi.org/10.1016/j.cbi.2017.06.016
Thirukumaran P. ; Manoharan R. K. ; Parveen A. S. ; Atchudan R. ; Kim S. C. Sustainability and antimicrobial assessments of apigenin based polybenzoxazine film . Polymer , 2019 , 172 , 100 - 109 . doi: 10.1016/j.polymer.2019.03.048 http://dx.doi.org/10.1016/j.polymer.2019.03.048
Han M. C. ; You S. J. ; Wang Y. T. ; Zhang K. ; Yang S. F. Synthesis of highly thermally stable daidzein-based main-chain-type benzoxazine resins . Polymers , 2019 , 11 ( 8 ), 1341 . doi: 10.3390/polym11081341 http://dx.doi.org/10.3390/polym11081341
Kissinger H. E. Reaction kinetics in differential thermal analysis . Anal. Chem. , 1957 , 29 ( 11 ), 1702 - 1706 . doi: 10.1021/ac60131a045 http://dx.doi.org/10.1021/ac60131a045
Ozawa T. Kinetics of non-isothermal crystallization . Polymer , 1971 , 12 ( 3 ), 150 - 158 . doi: 10.1016/0032-3861(71)90041-3 http://dx.doi.org/10.1016/0032-3861(71)90041-3
Shan F. ; Ohashi S. ; Erlichman A. ; Ishida H. Non-flammable thiazole-functional monobenzoxazines: synthesis, polymerization, thermal and thermomechanical properties, and flammability studies . Polymer , 2018 , 157 , 38 - 49 . doi: 10.1016/j.polymer.2018.09.061 http://dx.doi.org/10.1016/j.polymer.2018.09.061
Zhang K. ; Liu Y. Q. ; Han L. ; Wang J. Y. ; Ishida H. Synthesis and thermally induced structural transformation of phthalimide and nitrile-functionalized benzoxazine: toward smart ortho -benzoxazine chemistr y for low flammability thermosets . RSC Adv. , 2019 , 9 ( 3 ), 1526 - 1535 . doi: 10.1039/c8ra10009h http://dx.doi.org/10.1039/c8ra10009h
Agag T. ; Liu J. ; Graf R. ; Spiess H. W. ; Ishida H. Benzoxazole resin: a novel class of thermoset polymer via smart benzoxazine resin . Macromolecules , 2012 , 45 ( 22 ), 8991 - 8997 . doi: 10.1021/ma300924s http://dx.doi.org/10.1021/ma300924s
Zhang K. ; Yu X. Y. ; Kuo S. W. Outstanding dielectric and thermal properties of main chain-type poly(benzoxazine- co -imide- co -siloxane)-based cross-linked networks . Polym. Chem. , 2019 , 10 ( 19 ), 2387 - 2396 . doi: 10.1039/c9py00464e http://dx.doi.org/10.1039/c9py00464e
0
浏览量
81
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构