浏览全部资源
扫码关注微信
1.南京工程学院 材料科学与工程学院 南京 211167
2.南京大学 化学化工学院 配位化学国家重点实验室 南京 210093
E-mail: chli@nju.edu.cn
收稿日期:2025-01-20,
录用日期:2025-02-19,
网络出版日期:2025-04-16,
纸质出版日期:2025-09-20
移动端阅览
高文通, 陆书羽, 李承辉. 自诊断自修复弹性体仿生涂层材料的制备及性能研究. 高分子学报, 2025, 56(9), 1518-1528
Gao, W. T.; Lu, S. Y.; Li, C. H. Preparation and performance of self-reporting and self-healing elastic biomimetic coating materials. Acta Polymerica Sinica, 2025, 56(9), 1518-1528
高文通, 陆书羽, 李承辉. 自诊断自修复弹性体仿生涂层材料的制备及性能研究. 高分子学报, 2025, 56(9), 1518-1528 DOI: 10.11777/j.issn1000-3304.2025.25023. CSTR: 32057.14.GFZXB.2025.7368.
Gao, W. T.; Lu, S. Y.; Li, C. H. Preparation and performance of self-reporting and self-healing elastic biomimetic coating materials. Acta Polymerica Sinica, 2025, 56(9), 1518-1528 DOI: 10.11777/j.issn1000-3304.2025.25023. CSTR: 32057.14.GFZXB.2025.7368.
随着海洋资源的持续开发,金属腐蚀已成为影响装备水下正常运行的关键问题,对海洋工程装备的长效防护具有重要战略意义. 自修复涂层能够在受损后自主修复伤口,阻止腐蚀介质侵入,起到长效防腐的作用. 受海洋中贻贝黏蛋白的启发,设计了一种基于动态二硫键构筑的自诊断自修复弹性体仿生涂层材料LP55-BPY. 实验结果表明,LP55-BPY具有优异的力学性能,杨氏模量和抗穿刺能分别为1.74 MPa和976 mJ,主链中二硫键的动态交换和饱和结构赋予材料良好的自修复性能和耐介质性能,室温5 h修复效率达到92%. 在受损后,LP55-BPY中联吡啶基团能够捕获水下环境中的Fe
3+
离子,伤口处的配位交联作用可赋予涂层材料自显色诊断和自增强的特性,并有助于伤口修复. 此外,LP55-BPY还具有良好的可回收再利用性能,可用于海工装备的表面防腐防护.
With the continuous development of marine resources
metal corrosion has become a critical issue affecting the normal operation of equipment underwater
and it holds significant strategic importance for the long-term protection of offshore equipment. Self-healing coatings can autonomously repair damage and prevent the intrusion of corrosive media
providing long-lasting corrosion protection. Inspired by the mussel proteins in the ocean
a self-reporting and s
elf-healing elastic biomimetic coating material
LP55-BPY
was designed based on dynamic disulfide bonds. Experimental results showed that LP55-BPY exhibits excellent mechanical properties
with a Young's modulus of 1.74 MPa and a puncture resistance of 976 mJ. The dynamic exchange of disulfide bonds in the main chain and the saturated structure endowed the material with good self-healing performance and resistance to solvent
with a healing efficiency of 92% after 5 h at room temperature. After damage
the bipyridyl groups in LP55-BPY could capture Fe
3+
ions in the underwater environment
and the coordination crosslinking at the damaged site imparts self-coloring reporting and self-enhancing properties to the coating
facilitating wound repair. Additionally
LP55-BPY also demonstrated good recyclability and could be used for surface corrosion protection of offshore equipment.
Smith F. ; Brownlie F. ; Hodgkiess T. ; Toumpis A. ; Pearson A. ; Galloway A. M. Effect of salinity on the corrosive wear behaviour of engineering steels in aqueous solutions . Wear , 2020 , 462 , 203515 . doi: 10.1016/j.wear.2020.203515 http://dx.doi.org/10.1016/j.wear.2020.203515
Xu L. ; Yang X. N. ; Fu X. ; Wang L. ; Fan Y. ; Xu J. N. ; Yin Y. Z. ; Tian L. M. ; Zhao J. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances . Prog. Org. Coat. , 2022 , 171 , 107045 . doi: 10.1016/j.porgcoat.2022.107045 http://dx.doi.org/10.1016/j.porgcoat.2022.107045
Hou B. R. ; Li X. G. ; Ma X. M. ; Du C. W. ; Zhang D. W. ; Zheng M. ; Xu W. C. ; Lu D. Z. ; Ma F. B. The cost of corrosion in China . NPJ Mater. Degrad. , 2017 , 1 , 4 . doi: 10.1038/s41529-017-0005-2 http://dx.doi.org/10.1038/s41529-017-0005-2
Zhou S. Q. ; Jia X. H. ; Tian R. ; Song H. J. Self-lubricating, self-healing and anti-corrosion coating with ultra-short Run-in period . Tribol. Int. , 2024 , 196 , 109706 . doi: 10.1016/j.triboint.2024.109706 http://dx.doi.org/10.1016/j.triboint.2024.109706
He S. S. ; Gao Y. J. ; Gong X. H. ; Wu C. G. ; Cen H. Y. Advance of design and application in self-healing anticorrosive coating: a review . J. Coat. Technol. Res. , 2023 , 20 ( 3 ), 819 - 841 . doi: 10.1007/s11998-022-00735-6 http://dx.doi.org/10.1007/s11998-022-00735-6
Shen L. ; Xie W. P. ; Ni C. B. ; Xie Y. X. ; Miao L. J. ; Zhao W. J. Self-healing anticorrosive coatings inspired by the biomimetic porous organic cage nanocontainer for mussels . Mater. Today Nano , 2023 , 24 , 100395 . doi: 10.1016/j.mtnano.2023.100395 http://dx.doi.org/10.1016/j.mtnano.2023.100395
Ulaeto S. B. ; Rajan R. ; Pancrecious J. K. ; Rajan T. P. D. ; Pai B. C. Developments in smart anticorrosive coatings with multifunctional characteristics . Prog. Org. Coat. , 2017 , 111 , 294 - 314 . doi: 10.1016/j.porgcoat.2017.06.013 http://dx.doi.org/10.1016/j.porgcoat.2017.06.013
叶娟 , 祖兆基 , 林子谦 , 向洪平 , 章明秋 . 本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络 . 高分子学报 , 2023 , 54 ( 7 ), 1028 - 1054 . doi: 10.11777/j.issn1000-3304.2022.22362 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22362
李懿轩 , 孙俊奇 . 基于聚合物复合物的自修复与可修复聚合物材料 . 高分子学报 , 2020 , 51 ( 8 ), 791 - 803 . doi: 10.11777/j.issn1000-3304.2020.20062 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
Udoh I. I. ; Shi H. W. ; Daniel E. F. ; Li J. Y. ; Gu S. H. ; Liu F. C. ; Han E. H. Active anticorrosion and self-healing coatings: a review with focus on multi-action smart coating strategies . J. Mater. Sci. Technol. , 2022 , 116 , 224 - 237 . doi: 10.1016/j.jmst.2021.11.042 http://dx.doi.org/10.1016/j.jmst.2021.11.042
Wu K. Y. ; Gui T. J. ; Dong J. H. ; Luo J. ; Liu R. Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating . Prog. Org. Coat. , 2022 , 162 , 106592 . doi: 10.1016/j.porgcoat.2021.106592 http://dx.doi.org/10.1016/j.porgcoat.2021.106592
Patrick J. F. ; Robb M. J. ; Sottos N. R. ; Moore J. S. ; White S. R. Polymers with autonomous life-cycle control . Nature , 2016 , 540 ( 7633 ), 363 - 370 . doi: 10.1038/nature21002 http://dx.doi.org/10.1038/nature21002
Yimyai T. ; Crespy D. ; Rohwerder M. Corrosion-responsive self-healing coatings . Adv. Mater. , 2023 , 35 ( 47 ), 2300101 . doi: 10.1002/adma.202370343 http://dx.doi.org/10.1002/adma.202370343
Wang R. Z. ; Cao L. ; Wang W. ; Mao Z. P. ; Han D. X. ; Pei Y. T. ; Chen Y. ; Fan W. J. ; Li W. ; Chen S. G. Construction of smart coatings containing core-shell nanofibers with self-healing and active corrosion protection . ACS Appl. Mater. Interfaces , 2024 , 16 ( 32 ), 42748 - 42761 . doi: 10.1021/acsami.4c09260 http://dx.doi.org/10.1021/acsami.4c09260
Lee J. M. ; Park J. ; Ko J. ; Shin Y. ; Shin D. ; Shim W. ; Lee J. H. ; Kappl M. ; Lee J. ; Wooh S. Autonomous self-healable scratch-free bilayer anti-corrosion film . Appl. Surf. Sci. , 2023 , 631 , 157484 . doi: 10.1016/j.apsusc.2023.157484 http://dx.doi.org/10.1016/j.apsusc.2023.157484
Zhang Q. Q. ; Li W. ; Liu X. Y. ; Ma J. ; Gu Y. ; Liu R. ; Luo J. Polyaniline microspheres with corrosion inhibition, corrosion sensing, and photothermal self-healing properties toward intelligent coating . ACS Appl. Mater. Interfaces , 2024 , 16 ( 1 ), 1461 - 1473 . doi: 10.1021/acsami.3c15158 http://dx.doi.org/10.1021/acsami.3c15158
Cui J. C. ; Bao Y. Y. ; Dai Q. B. ; Li F. P. ; Wang H. ; Liu Y. ; Cao F. L. ; Li J. Oleogel microsphere-based composite protective coatings with room-temperature self-healing enabled by a "soft + hard" hybrid architecture . Adv. Funct. Mater. , 2024 , 34 ( 37 ), 2405737 . doi: 10.1002/adfm.202470216 http://dx.doi.org/10.1002/adfm.202470216
Sun J. W. ; Duan J. Z. ; Liu X. J. ; Dong X. C. ; Zhang Y. M. ; Liu C. ; Hou B. R. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties . Appl. Mater. Today , 2022 , 28 , 101551 . doi: 10.1016/j.apmt.2022.101551 http://dx.doi.org/10.1016/j.apmt.2022.101551
Tian W. ; Guo Z. L. ; Wang S. L. ; Yu H. T. ; Wang S. ; Jin H. C. ; Tian L. M. Hydrogen and DA bond-based self-healing epoxy-modified polyurea composite coating with anti-cavitation, anticorrosion, antifouling, and strong adhesion properties . J. Mater. Sci. Technol. , 2024 , 187 , 1 - 14 . doi: 10.1016/j.jmst.2023.11.031 http://dx.doi.org/10.1016/j.jmst.2023.11.031
Fortunato G. ; van den Tempel P. ; Bose R. K. Advances in self-healing coatings based on Diels-Alder chemistry . Polymer , 2024 , 294 , 126693 . doi: 10.1016/j.polymer.2024.126693 http://dx.doi.org/10.1016/j.polymer.2024.126693
Li X. J. ; Xue Z. Y. ; Sun W. T. ; Chu J. H. ; Wang Q. J. ; Tong L. B. ; Wang K. S. Bio-inspired self-healing MXene/polyurethane coating with superior active/passive anticorrosion performance for Mg alloy . Chem. Eng. J. , 2023 , 454 , 140187 . doi: 10.1016/j.cej.2022.140187 http://dx.doi.org/10.1016/j.cej.2022.140187
Qiu X. L. ; Li C. P. ; Sun Y. C. ; Liu Y. ; Wang X. W. ; Sun S. ; Yu Q. L. ; Yu B. ; Cai M. R. ; Zhou F. Study on anticorrosion and wear resistance of self-healing coating based on functional MXene and dynamic disulfide bond . ACS Appl. Polym. Mater. , 2024 , 6 ( 18 ), 11392 - 11405 . doi: 10.1021/acsapm.4c01983 http://dx.doi.org/10.1021/acsapm.4c01983
Liu Y. Q. ; Li Z. Y. ; Zhang C. F. ; Yang B. R. ; Ren H. A self-healing thermoset epoxy modulated by dynamic boronic ester for powder coating . Polymers , 2023 , 15 ( 19 ), 3894 . doi: 10.3390/polym15193894 http://dx.doi.org/10.3390/polym15193894
Song Y. ; Kong A. N. ; Chen D. X. ; Li G. L. In-situ self-crosslinking strategy for autonomous self-healing materials . NPJ Mater. Degrad. , 2023 , 7 , 67 . doi: 10.1038/s41529-023-00381-2 http://dx.doi.org/10.1038/s41529-023-00381-2
Li M. M. ; Tong L. B. ; Li X. J. ; Zou D. N. ; Xu S. W. ; Ye F. X. ; Wang K. S. Enhanced intrinsic self-healing performance of mussel inspired coating via in situ cation capture . Small , 2024 , 20 ( 37 ), 2311658 . doi: 10.1002/smll.202311658 http://dx.doi.org/10.1002/smll.202311658
Xu J. H. ; Ye S. ; Ding C. D. ; Tan L. H. ; Fu J. J. Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications . J. Mater. Chem. A , 2018 , 6 ( 14 ), 5887 - 5898 . doi: 10.1039/c7ta09841c http://dx.doi.org/10.1039/c7ta09841c
Liu C. B. ; Wu H. ; Qiang Y. J. ; Zhao H. C. ; Wang L. P. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties . Corros. Sci. , 2021 , 184 , 109355 . doi: 10.1016/j.corsci.2021.109355 http://dx.doi.org/10.1016/j.corsci.2021.109355
Banerjee S. L. ; Bhattacharya K. ; Samanta S. ; Singha N. K. Self-healable antifouling zwitterionic hydrogel based on synergistic phototriggered dynamic disulfide metathesis reaction and ionic interaction . ACS Appl. Mater. Interfaces , 2018 , 10 ( 32 ), 27391 - 27406 . doi: 10.1021/acsami.8b10446 http://dx.doi.org/10.1021/acsami.8b10446
Liu X. Q. ; Sun X. B. ; Huang P. ; He Y. F. ; Song P. F. ; Wang R. M. Highly adhesive and self-healing zwitterionic hydrogels as antibacterial coatings for medical devices . Langmuir , 2024 , 40 ( 1 ), 125 - 132 . doi: 10.1021/acs.langmuir.3c02258 http://dx.doi.org/10.1021/acs.langmuir.3c02258
Huynh T. P. ; Khatib M. ; Haick H. Self-healable materials for underwater applications . Adv. Mater. Technol. , 2019 , 4 ( 9 ), 1900081 . doi: 10.1002/admt.201900081 http://dx.doi.org/10.1002/admt.201900081
Xia N. N. ; Rong M. Z. ; Zhang M. Q. Stabilization of catechol-boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range . J. Mater. Chem. A , 2016 , 4 ( 37 ), 14122 - 14131 . doi: 10.1039/c6ta05121a http://dx.doi.org/10.1039/c6ta05121a
Zhang Z. H. ; Liu Y. ; Yan H. ; Hu C. Y. ; Huang Y. W. Ultralong-term durable anticorrosive coatings by integration of double-layered transfer self-healing ability, Fe ion-responsive ability, and active/passive functional partitioning . ACS Appl. Mater. Interfaces , 2024 , 16 ( 1 ), 1564 - 1577 . doi: 10.1021/acsami.3c15802 http://dx.doi.org/10.1021/acsami.3c15802
Liu J. H. ; Tong Z. M. ; Gao F. ; Wang J. ; Hu J. ; Song L. N. ; Hou Y. ; Lu J. G. ; Zhan X. L. ; Zhang Q. H. Pearl-inspired intelligent marine hetero nanocomposite coating based on "Brick & Mortar" strategy: anticorrosion durability and switchable antifouling . Adv. Mater. , 2024 , 36 ( 26 ), 2401982 . doi: 10.1002/adma.202401982 http://dx.doi.org/10.1002/adma.202401982
Dhole G. S. ; Gunasekaran G. ; Ghorpade T. ; Vinjamur M. Smart acrylic coatings for corrosion detection . Prog. Org. Coat. , 2017 , 110 , 140 - 149 . doi: 10.1016/j.porgcoat.2017.04.048 http://dx.doi.org/10.1016/j.porgcoat.2017.04.048
Qi X. D. ; Yang L. ; Hou Y. ; Zhu J. Q. ; Yang M. ; Feng S. H. A self-strengthening epidermis-like smart coating enabled by dynamic iron sequestration . CCS Chem. , 2021 , 3 ( 11 ), 2655 - 2668 . doi: 10.31635/ccschem.020.202000476 http://dx.doi.org/10.31635/ccschem.020.202000476
0
浏览量
264
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构