浏览全部资源
扫码关注微信
四川大学化学工程学院制药与生物工程系 成都 610065
E-mail: cdmu@scu.edu.cn
收稿日期:2025-02-19,
录用日期:2025-06-03,
网络出版日期:2025-06-27,
移动端阅览
徐婷, 葛黎明, 徐志朗, 李德富, 穆畅道. 可溶性透明质酸微针经皮递送迷迭香酸协同光热抗菌的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25043
Xu, T.; Ge, L. M.; Xu, Z. L.; Li, D. F.; Mu, C. D. Dissolving hyaluronic acid-based microneedles with antibacterial activity achieved by photothermal antibacterial effect in coordination with transdermal delivery of rosmarinic acid. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25043
徐婷, 葛黎明, 徐志朗, 李德富, 穆畅道. 可溶性透明质酸微针经皮递送迷迭香酸协同光热抗菌的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25043 DOI: CSTR: 32057.14.GFZXB.2025.7434.
Xu, T.; Ge, L. M.; Xu, Z. L.; Li, D. F.; Mu, C. D. Dissolving hyaluronic acid-based microneedles with antibacterial activity achieved by photothermal antibacterial effect in coordination with transdermal delivery of rosmarinic acid. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25043 DOI: CSTR: 32057.14.GFZXB.2025.7434.
抗菌可溶性微针能有效突破皮肤角质层屏障,实现无痛、微创、安全和高效的经皮给药,在浅表皮肤疾病和细菌生物膜感染的治疗中发挥着重要作用. 以低分子量和中分子量透明质酸混合物为可溶性微针基材,采用分层浇筑法在针尖部位负载光热转换剂聚多巴胺纳米颗粒(PDA NPs),在针体部位负载抗菌活性药物迷迭香酸,制备了一种协同光热治疗和透皮给药的抗菌可溶性透明质酸微针(PDA-RA-HA MNs). PDA-RA-HA MNs微针贴片具有良好的柔韧性,针体为高约558 μm的四棱锥形. PDA-RA-HA MNs具有较高的机械强度(0.76 N/针)和韧性,可以刺破皮肤角质层直达真皮层. PDA-RA-HA MNs由于针尖负载PDA NPs而具有较强的光热性能,经近红外光(NIR)照射120 s即可升温至55 ℃以实现低温光热治疗,从而大大减少对正常皮肤组织造成的热损伤. 此外,PDA-RA-HA MNs在近红外光的照射下对痤疮丙酸杆菌(
P. acnes
)的抑菌率超过90%,展现出优异的抗菌活性. 因此,基于光热抗菌和递送抗菌药物的协同抗菌策略构建的可溶性透明质酸微针,在痤疮等浅表皮肤疾病的治疗中具有潜在的应用前景.
Antibacterial dissolving microneedles can effectively break through the skin cuticle barrier and achieve painless
minimally invasive
safe and efficient transdermal drug delivery
which plays an important role in the treatment of superficial skin diseases and bacterial biofilm infections. Herein
the antibacterial dissolving hyaluronic ac
id-based microneedles (PDA-RA-HA MNs) were fabricated via the layered micromolding method. The combination of medium- and low-molecular-weight hyaluronic acids for the preparation of microneedles can make up for the deficiency of mechanical strength and toughness of single material. Moreover
the photothermal conversion agent polydopamine nanoparticle (PDA NPs) was loaded on the needle tip
while the antibacterial agent rosmarinic acid was loaded on the needle body to endow microneedles with good antibacterial activity. The prepared PDA-RA-HA MNs microneedles patch showed good flexibility
which can bend to fit the skin well. All the needles were in the shape of a square pyramid
with a height of approximately 558 μm. PDA-RA-HA MNs can withstand a loaded force of about 0.76 N/needle
and can maintain the structural integrity after mechanical compression
indicating good mechanical strength and toughness. PDA-RA-HA MN can penetrate the stratum corneum of the skin
directly reaching the dermis layer
and the micro channels were formed in the skin tissue after microneedles dissolving
thereby achieving efficient transdermal drug delivery. PDA-RA-HA MNs have strong photothermal properties due to the loaded PDA NPs on the needle tip. They can be heated up to 55 ℃ after 120 s of NIR irradiation to achieve low temperature photothermal treatment
thus greatly reducing the heat damage caused to normal skin tissue. It is worth noting that PDA-RA-HA MNs showed excellent antibacterial activity against
P. acnes
with over 90% of bacteria inhibition efficiency under NIR irradiation. As expected
the robust antibacterial activity of PDA-RA-HA MNs was achieved by the photothermal antibacterial effect of PDA NPs in coordination with the transdermal delivery of rosmarinic acid. Therefore
the fabricated antibacterial dissolving hyaluronic acid-based microneedles show potential application prospects in the efficient killing of deeply colonized pathogenic bacteria for the treatment of superficial skin diseases such a
s acne vulgaris.
Indermun S. ; Luttge R. ; Choonara Y. E. ; Kumar P. ; du ToitL. C. ; Modi G. ; Pillay V. Current advances in the fabrication of microneedles for transdermal delivery . J. Control. Release , 2014 , 185 , 130 - 138 . doi: 10.1016/j.jconrel.2014.04.052 http://dx.doi.org/10.1016/j.jconrel.2014.04.052
崔闻宇 , 王妍 , 刘美琦 , 吴廷影 , 刘迪 , 王瑾 . 水凝胶微针在经皮给药系统中的研究进展 . 微纳电子技术 , 2024 , 61 ( 3 ), 23 - 39 .
Zheng G. S. ; Xie J. ; Yao Y. ; Shen S. L. ; Weng J. Q. ; Yang Q. L. ; Yan Q. Y. MgO@polydopamine nanoparticle-loaded photothermal microneedle patches combined with chitosan gel dressings for the treatment of infectious wounds . ACS Appl. Mater. Interfaces , 2024 , 16 ( 10 ), 12202 - 12216 . doi: 10.1021/acsami.3c16880 http://dx.doi.org/10.1021/acsami.3c16880
Zoudani E. L. ; Nguyen N. T. ; Kashaninejad N. Microneedle optimization: Toward enhancing microneedle's functionality and breaking the traditions . Small Struct. , 2024 , 5 ( 12 ), 2400121 . doi: 10.1002/sstr.202400121 http://dx.doi.org/10.1002/sstr.202400121
曾志勇 , 江国华 , 刘天琦 , 张雪雅 , 孙延芳 . 聚合物微针药物经皮递送应用研究进展 . 高分子学报 , 2022 , 53 ( 8 ), 876 - 893 . doi: 10.11777/j.issn1000-3304.2022.22001 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22001
Shu W. T. ; Kilroy S. ; Ní Annaidh A. ; O'Cearbhaill E. D. Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery . Acta Biomater. , 2025 , 194 , 233 - 245 . doi: 10.1016/j.actbio.2024.12.053 http://dx.doi.org/10.1016/j.actbio.2024.12.053
Zhang Z. Q. ; Fang C. X. ; Ke J. F. ; Li Y. ; Duan M. T. ; Ren J. G. ; Wang C. Microneedle drug delivery system based on hyaluronic acid for improving therapeutic efficiency of hypertrophic scars . Int. J. Biol. Macromol. , 2025 , 297 , 139790 . doi: 10.1016/j.ijbiomac.2025.139790 http://dx.doi.org/10.1016/j.ijbiomac.2025.139790
Lu Q. Y. ; Tang X. Y. ; Tao B. L. ; Huang K. ; Li K. L. ; Liu C. ; Gao B. ; Xu M. D. ; Geng W. B. ; Li K. ; Zhou F. C. Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections . Int. J. Biol. Macromol. , 2025 , 296 , 139685 . doi: 10.1016/j.ijbiomac.2025.139685 http://dx.doi.org/10.1016/j.ijbiomac.2025.139685
Zhu J. Y. ; Tang X. D. ; Jia Y. ; Ho C. T. ; Huang Q. R. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery-A review . Int. J. Pharm. , 2020 , 578 , 119127 . doi: 10.1016/j.ijpharm.2020.119127 http://dx.doi.org/10.1016/j.ijpharm.2020.119127
Leone M. ; Romeijn S. ; Slütter B. ; O'Mahony C. ; Kersten G. ; Bouwstra J. A. Hyaluronan molecular weight: effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen . Eur. J. Pharm. Sci. , 2020 , 146 , 105269 . doi: 10.1016/j.ejps.2020.105269 http://dx.doi.org/10.1016/j.ejps.2020.105269
Falanga V. ; Isseroff R. R. ; Soulika A. M. ; Romanelli M. ; Margolis D. ; Kapp S. ; Granick M. ; Harding K. Chronic wounds . Nat. Rev. Dis. Primers , 2022 , 8 , 50 . doi: 10.1038/s41572-022-00377-3 http://dx.doi.org/10.1038/s41572-022-00377-3
Cheng W. ; Zeng X. W. ; Chen H. Z. ; Li Z. M. ; Zeng W. F. ; Mei L. ; Zhao Y. L. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine . ACS Nano , 2019 , 13 ( 8 ), 8537 - 8565 . doi: 10.1021/acsnano.9b04436 http://dx.doi.org/10.1021/acsnano.9b04436
郭元龙 , 徐同辉 , 李合邦 , 龙晓琴 , 谢海波 . 具有光热-发电及光热-抗菌效应的木质素基复合膜的制备与研究 . 高分子学报 , 2024 , 55 ( 8 ), 1021 - 1032 .
Wang Q. ; Gan Z. Y. ; Wang X. X. ; Li X. Y. ; Zhao L. ; Li D. R. ; Xu Z. L. ; Mu C. D. ; Ge L. M. ; Li D. F. Dissolving hyaluronic acid-based microneedles to transdermally deliver eugenol combined with photothermal therapy for acne vulgaris treatment . ACS Appl. Mater. Interfaces , 2024 , 16 ( 17 ), 21595 - 21609 . doi: 10.1021/acsami.4c01790 http://dx.doi.org/10.1021/acsami.4c01790
Liu Y. L. ; Ai K. L. ; Liu J. H. ; Deng M. ; He Y. Y. ; Lu L. H. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy . Adv. Mater. , 2013 , 25 ( 9 ), 1353 - 1359 . doi: 10.1002/adma.201204683 http://dx.doi.org/10.1002/adma.201204683
Carmignani A. ; Battaglini M. ; Sinibaldi E. ; Marino A. ; Vighetto V. ; Cauda V. ; Ciofani G. In vitro and ex vivo investigation of the effects of polydopamine nanoparticle size on their antioxidant and photothermal properties: implications for biomedical applications . ACS Appl. Nano Mater. , 2022 , 5 ( 1 ), 1702 - 1713 . doi: 10.1021/acsanm.1c04536 http://dx.doi.org/10.1021/acsanm.1c04536
Zhang L. ; Chen Y. F. ; Feng D. N. ; Xing Z. ; Wang Y. H. ; Bai Y. ; Shi D. J. ; Li H. H. ; Fan X. J. ; Xia J. ; Wang J. H. Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections . J. Control. Release , 2025 , 379 , 191 - 201 . doi: 10.1016/j.jconrel.2025.01.016 http://dx.doi.org/10.1016/j.jconrel.2025.01.016
Wang B. ; Zhang N. ; Feng W. C. ; Chen S. ; Zhu X. Y. ; Shan X. H. ; Yuan R. Z. ; Yuan B. ; Wang H. Z. ; Zhou G. ; Liu J. ; Sun X. Y. Gallium nanostructure-based microneedle patch for multidrug-resistant bacterial wound healing: enhanced metal release and NIR photothermal effect . Adv. Funct. Mater. , 2024 , 34 ( 51 ), 2470300 . doi: 10.1002/adfm.202470300 http://dx.doi.org/10.1002/adfm.202470300
Su Y. J. ; Andrabi S. M. ; Shatil Shahriar S. M. ; Wong S. L. ; Wang G. S. ; Xie J. W. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms . J. Control. Release , 2023 , 356 , 131 - 141 . doi: 10.1016/j.jconrel.2023.02.030 http://dx.doi.org/10.1016/j.jconrel.2023.02.030
Chen Z. S. ; Zhang L. ; Yang Y. ; Cheng W. W. ; Tu L. F. ; Wang Z. J. ; Chen Y. ; Hu W. K. Photothermal nanozyme-encapsulating microneedles for synergistic treatment of infected wounds . Adv. Funct. Mater. , 2025 , 35 ( 12 ), 2417415 . doi: 10.1002/adfm.202417415 http://dx.doi.org/10.1002/adfm.202417415
王玉先 , 张红漫 , 朱丽英 , 江凌 , 黄和 . 金属纳米团簇的合成及抗菌效应的研究进展 . 生物加工过程 , 2022 , 20 ( 1 ), 81 - 87 .
Theune L. E. ; Buchmann J. ; Wedepohl S. ; Molina M. ; Laufer J. ; Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy . J. Control. Release , 2019 , 311 , 147 - 161 . doi: 10.1016/j.jconrel.2019.08.035 http://dx.doi.org/10.1016/j.jconrel.2019.08.035
Wang F. M. ; Zhu X. D. ; Zhang Q. W. ; Xie M. H. ; He L. ; Guo J. H. ; Li A. ; Yang Q. S. ; Yang J. J. ; Li W. MXene-based mild photothermal therapy synergizes STING activation to enhance the efficacy of cancer vaccines post-cryoablation . Chem. Eng. J. , 2025 , 505 , 159311 . doi: 10.1016/j.cej.2025.159311 http://dx.doi.org/10.1016/j.cej.2025.159311
van der Maaden K. ; Jiskoot W. ; Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery . J. Control. Release , 2012 , 161 ( 2 ), 645 - 655 . doi: 10.1016/j.jconrel.2012.01.042 http://dx.doi.org/10.1016/j.jconrel.2012.01.042
Cárcamo-Martínez Á. ; Mallon B. ; Domínguez-Robles J. ; Vora L. K. ; Anjani Q. K. ; Donnelly R. F. Hollow microneedles: a perspective in biomedical applications . Int. J. Pharm. , 2021 , 599 , 120455 . doi: 10.1016/j.ijpharm.2021.120455 http://dx.doi.org/10.1016/j.ijpharm.2021.120455
杨明利 , 徐群为 , 李泽 , 匡义成 , 龚瑞 , 王秀军 . 自溶性透明质酸微针的制备及性能表征 . 中国药学杂志 , 2020 , 55 ( 19 ), 1603 - 1608 .
周俊 , 胡犇 , 戢力维 , 冯露 , 杨林 . 透明质酸钠可溶微针的制备及性能特征 . 中国药业 , 2022 , 31 ( 3 ), 26 - 30 . doi: 10.3969/j.issn.1006-4931.2022.03.008 http://dx.doi.org/10.3969/j.issn.1006-4931.2022.03.008
Larrañeta E. ; Moore J. ; Vicente-Pérez E. M. ; González-Vázquez P. ; Lutton R. ; Woolfson A. D. ; Donnelly R. F. A proposed model membrane and test method for microneedle insertion studies . Int. J. Pharm. , 2014 , 472 ( 1-2 ), 65 - 73 . doi: 10.1016/j.ijpharm.2014.05.042 http://dx.doi.org/10.1016/j.ijpharm.2014.05.042
Li W. ; Terry R. N. ; Tang J. ; Feng M. R. ; Schwendeman S. P. ; Prausnitz M. R. Rapidly separable microneedle patch for the sustained release of a contraceptive . Nat. Biomed. Eng. , 2019 , 3 ( 3 ), 220 - 229 . doi: 10.1038/s41551-018-0337-4 http://dx.doi.org/10.1038/s41551-018-0337-4
Debeer S. ; Le Luduec J. B. ; Kaiserlian D. ; Laurent P. ; Nicolas J. F. ; Dubois B. ; Kanitakis J. Comparative histology and immunohistochemistry of porcine versus human skin . Eur. J. Dermatol. , 2013 , 23 ( 4 ), 456 - 466 . doi: 10.1684/ejd.2013.2060 http://dx.doi.org/10.1684/ejd.2013.2060
Sullivan T. P. ; Eaglstein W. H. ; Davis S. C. ; Mertz P. The pig as a model for human wound healing . Wound Repair Regen. , 2001 , 9 ( 2 ), 66 - 76 . doi: 10.1046/j.1524-475x.2001.00066.x http://dx.doi.org/10.1046/j.1524-475x.2001.00066.x
孙峋 , 汪靖超 , 李洪涛 , 杜桂彩 , 郭道森 . 迷迭香酸的抗菌机理研究 . 青岛大学学报(自然科学版) , 2005 , 18 ( 4 ), 41 - 45 . doi: 10.3969/j.issn.1006-1037.2005.04.010 http://dx.doi.org/10.3969/j.issn.1006-1037.2005.04.010
Budhiraja A. ; Dhingra G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid . Drug Deliv. , 2015 , 22 ( 6 ), 723 - 730 . doi: 10.3109/10717544.2014.903010 http://dx.doi.org/10.3109/10717544.2014.903010
Konuk H. B. ; Ergüden B. Phenolic―OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity . Folia Microbiol. , 2020 , 65 ( 4 ), 775 - 783 . doi: 10.1007/s12223-020-00787-4 http://dx.doi.org/10.1007/s12223-020-00787-4
Mahmoud N. N. ; Alkilany A. M. ; Khalil E. A. ; Al-Bakri A. G. Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes . Sci. Rep. , 2018 , 8 ( 1 ), 6881 . doi: 10.1038/s41598-018-24837-7 http://dx.doi.org/10.1038/s41598-018-24837-7
Xu J. H. ; Danehy R. ; Cai H. W. ; Ao Z. ; Pu M. ; Nusawardhana A. ; Rowe-Magnus D. ; Guo F. Microneedle patch-mediated treatment of bacterial biofilms . ACS Appl. Mater. Interfaces , 2019 , 11 ( 16 ), 14640 - 14646 . doi: 10.1021/acsami.9b02578 http://dx.doi.org/10.1021/acsami.9b02578
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构