浏览全部资源
扫码关注微信
1.中国科学院成都有机化学研究所 成都 610041
2.中国科学院大学 北京 101400
E-mail: baiwei@cioc.ac.cn
收稿日期:2025-02-25,
录用日期:2025-04-29,
网络出版日期:2025-07-01,
纸质出版日期:2025-08-20
移动端阅览
蒋琴瑶, 张远康, 白威, 李晨, 王庆印, 王公应. 聚2,2'-双(2-羟基乙氧基)-1,1'-联萘碳酸酯的合成及其光学性能研究. 高分子学报, 2025, 56(8), 1405-1415
Jiang, Q. Y.; Zhang, Y. K.; Bai, W.; Li, C.; Wang, Q. Y.; Wang, G. Y. Synthesis and optical properties of poly(2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl carbonate). Acta Polymerica Sinica, 2025, 56(8), 1405-1415
蒋琴瑶, 张远康, 白威, 李晨, 王庆印, 王公应. 聚2,2'-双(2-羟基乙氧基)-1,1'-联萘碳酸酯的合成及其光学性能研究. 高分子学报, 2025, 56(8), 1405-1415 DOI: 10.11777/j.issn1000-3304.2025.25049. CSTR: 32057.14.GFZXB.2025.7406.
Jiang, Q. Y.; Zhang, Y. K.; Bai, W.; Li, C.; Wang, Q. Y.; Wang, G. Y. Synthesis and optical properties of poly(2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl carbonate). Acta Polymerica Sinica, 2025, 56(8), 1405-1415 DOI: 10.11777/j.issn1000-3304.2025.25049. CSTR: 32057.14.GFZXB.2025.7406.
报道研究了高折射率光学级聚2
2'-双(2-羟基乙氧基)-1
1'-联萘碳酸酯(BHEBN-PC)的合成及其性能.通过熔融酯交换法,以碳酸二苯酯(DPC)和BHEBN为原料,制备了BHEBN-PC共聚物,并对其化学结构、分子量、热性能、疏水性能和光学性能进行了表征. 研究发现,BHEBN单体具有较高的反应活性,通过优化催化剂种类(KF/MgO)、用量(0.05 wt%)、酯交换时间(45 min)和缩聚温度(210 ℃)等工艺条件,成功合成了高分子量的BHEBN-PC (
M
n
=6.40×10
4
g/mol,
M
w
=1.05×10
5
g/mol,分散性指数PDI=1.63). BHEBN-PC表现出优异的光学性能,折射率
n
d
=1.656,透光率为88.54%,雾度为1.18%,且具有良好的热稳定性(
T
g
=124 ℃,
T
d
5%
=350 ℃,
T
d
max
=393 ℃)和疏水性(水接触角为98.85°). 因此,BHEBN-PC的合成为高性能光学材料的开发提供了新思路和可能性.
Polycarbonates (PCs) are widely applied in various fields due to their excellent thermomechanical properties
optical performance
processability
and electrical insulation. However
the relatively low refractive index (
n
d
=1.585) of conventional PC restricts its application in high-end optical devices. In this study
we synthesized the 2
2'-bis(2-hydroxyethoxy)-1
1'-binaphthyl (BHEBN) monomer. Subsequently
BHEBN-PC homopolymer was successfully prepared via melt transesterification using BHEBN and diphenyl carbonate (DPC) as comonomers. The molecular weight and distribution of BHEBN-PC were analyzed by gel permeation chromatography (GPC)
with systematic investigations into the effects of catalyst type
catalyst loading
transesterification temperature and duration
polycondensation temperature and time
and monomer feed ratio (
n
DPC
:
n
BHEBN
). Under optimized conditions (catalyst: KF/MgO
catalyst loading: 0.05 wt%
transesterification time: 45 min
polycondensation temperature: 210 ℃
monomer molar ratio:
n
DPC
:
n
BHEBN
= 1.0)
high-molecular-weight BHEBN-PC was synthesized with
M
n
= 6.40×10
4
g/mol
M
w
= 1.05×10
5
g/mol
and polydispersity index (PDI) = 1.63. The chemical structure of BHEBN-PC was confirmed by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance (
1
H-NMR
13
C-NMR). Thermal properties were evaluated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
revealing a glass transition temperature (
T
g
) of 124 ℃
5% weight loss temperature (
T
d
5%
) of 350 ℃
and maximum decomposition temperature (
T
d
max
) of 393 ℃. Hydrophobicity and optical performance were characterized
via
contact angle measurements
transmittance/haze tests
and Abbe refractometry. The BHEBN-PC copolymer exhibited exceptional optical properties
including a refractive index (
n
d
) of 1.656
transmittance of 88.540%
haze of 1.180%
and remarkable hydrophobicity (water contact angle: 98.85°). These results demonstrate that BHEBN-PC offers novel insights and potential for developing advanced optical materials.
Walheim S. ; Schaffer E. ; Mlynek J. ; Steiner U. Nanophase-separated polymer films as high-performance antireflection coatings . Science , 1999 , 283 ( 5401 ), 520 - 522 . doi: 10.1126/science.283.5401.520 http://dx.doi.org/10.1126/science.283.5401.520
Fernández R. ; Bleda S. ; Gallego S. ; Neipp C. ; Márquez A. ; Tomita Y. ; Pascual I. ; Beléndez A. Holographic waveguides in photopolymers . Opt. Express , 2019 , 27 ( 2 ), 827 - 840 . doi: 10.1364/oe.27.000827 http://dx.doi.org/10.1364/oe.27.000827
Camposeo A. ; Persano L. ; Farsari M. ; Pisignano D. Additive manufacturing: applications and directions in photonics and optoelectronics . Adv. Opt. Mater. , 2019 , 7 ( 1 ), 1800419 . doi: 10.1002/adom.201800419 http://dx.doi.org/10.1002/adom.201800419
Wang X. T. ; Cui Y. ; Li T. ; Lei M. ; Li J. B. ; Wei Z. M. Recent advances in the functional 2D photonic and optoelectronic devices . Adv. Opt. Mater. , 2019 , 7 ( 3 ), 1801274 . doi: 10.1002/adom.201970010 http://dx.doi.org/10.1002/adom.201970010
Higashihara T. ; Ueda M. Recent progress in high refractive index polymers . Macromolecules , 2015 , 48 ( 7 ), 1915 - 1929 . doi: 10.1021/ma502569r http://dx.doi.org/10.1021/ma502569r
Gao H. H. ; Zhang X. Z. ; Jian X. G. ; Wang J. Y. Preparation of sulfur-containing polycarbonates through melt ester-exchange copolymerization of bisulfhydryl and bisphenol A monomers utilizing ionic liquid catalysts . Mater. Today Commun. , 2024 , 40 , 109984 . doi: 10.1016/j.mtcomm.2024.109984 http://dx.doi.org/10.1016/j.mtcomm.2024.109984
Lorenz L. Ueber die refractionsconstante . Ann. Der Phys. , 1880 , 247 ( 9 ), 70 - 103 . doi: 10.1002/andp.18802470905 http://dx.doi.org/10.1002/andp.18802470905
Mazumder K. ; Voit B. ; Banerjee S. Recent progress in sulfur-containing high refractive index polymers for optical applications . ACS Omega , 2024 , 9 ( 6 ), 6253 - 6279 . doi: 10.1021/acsomega.3c08571 http://dx.doi.org/10.1021/acsomega.3c08571
Zhou Y. T. ; Zhu Z. C. ; Zhang K. ; Yang B. Molecular structure and properties of sulfur-containing high refractive index polymer optical materials . Macromol. Rapid Commun. , 2023 , 44 ( 23 ), 2300411 . doi: 10.1002/marc.202300411 http://dx.doi.org/10.1002/marc.202300411
Kozlowski M. C. ; Morgan B. J. ; Linton E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling . Chem. Soc. Rev. , 2009 , 38 ( 11 ), 3193 - 3207 . doi: 10.1039/b821092f http://dx.doi.org/10.1039/b821092f
Yoshida Y. ; Fujimura T. ; Mino T. ; Sakamoto M. Chiral binaphthyl-based iodonium salt (hypervalent iodine(III)) as hydrogen- and halogen-bonding bifunctional catalyst: insight into abnormal counteranion effect and asymmetric synthesis of N,S-acetals . Adv. Synth. Catal. , 2022 , 364 ( 6 ), 1091 - 1098 . doi: 10.1002/adsc.202101380 http://dx.doi.org/10.1002/adsc.202101380
Chen Y. ; Yekta S. ; Yudin A. K. Modified BINOL ligands in asymmetric catalysis . Chem. Rev. , 2003 , 103 ( 8 ): 3155 - 211 . doi: 10.1021/cr020025b http://dx.doi.org/10.1021/cr020025b
Shockravi A. ; Javadi A. ; Abouzari-Lotf E. Binaphthyl-based macromolecules: a review . RSC Adv. , 2013 , 3 ( 19 ), 6717 - 6746 . doi: 10.1039/c3ra22418j http://dx.doi.org/10.1039/c3ra22418j
Gong A. J. ; Liu W. H. ; Chen Y. M. ; Zhang X. ; Chen C. F. ; Xi F. Optically active cyclic and linear poly(aryl esters) based on chiral 1,1′-bi-2-naphthol . Tetrahedron Asymmetry , 1999 , 10 ( 11 ), 2079 - 2086 . doi: 10.1016/s0957-4166(99)00233-5 http://dx.doi.org/10.1016/s0957-4166(99)00233-5
Lin L. ; Mao H. Y. ; Li Z. Y. ; Li W. Y. ; Wang C. X. Preparation and characterization of optically active polyurethane from rotatory binaphthol monomer and polyurethane prepolymer . Molecules , 2021 , 26 ( 10 ), 2986 . doi: 10.3390/molecules26102986 http://dx.doi.org/10.3390/molecules26102986
Li C. ; Long X. ; Sun T. ; Wang Q. Y. ; Wang G. Y. Study on the preparation and optical properties of co -polycarbonates based on binaphthalene and cardo structures . ChemistrySelect , 2023 , 8 ( 7 ), e 202204829 . doi: 10.1002/slct.202204829 http://dx.doi.org/10.1002/slct.202204829
Liu X. B. ; Bai H. J. ; Wang Z. S. ; Cui W. ; Chen H. ; Wang F. ; Cui X. D. Density functional theory study of the reaction mechanism of aluminum nitride synthesis by sol-gel method . Polyhedron , 2024 , 255 , 116965 . doi: 10.1016/j.poly.2024.116965 http://dx.doi.org/10.1016/j.poly.2024.116965
Zhuo L. G. ; Liao W. ; Yu Z. X. A frontier molecular orbital theory approach to understanding the Mayr equation and to quantifying nucleophilicity and electrophilicity by using HOMO and LUMO energies . Asian J. Org. Chem. , 2012 , 1 ( 4 ), 336 - 345 . doi: 10.1002/ajoc.201200103 http://dx.doi.org/10.1002/ajoc.201200103
Taherimehr M. ; Al-Amsyar S. M. ; Whiteoak C. J. ; Kleij A. W. ; Pescarmona P. P. High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts . Green Chem. , 2013 , 15 ( 11 ), 3083 - 3090 . doi: 10.1039/c3gc41303a http://dx.doi.org/10.1039/c3gc41303a
Chen K. ; Shi H. Nucleophilic aromatic substitution of halobenzenes and phenols with catalysis by arenophilic π acids . Acc. Chem. Res. , 2024 , 57 ( 15 ), 2194 - 2206 . doi: 10.1021/acs.accounts.4c00327 http://dx.doi.org/10.1021/acs.accounts.4c00327
Baranac-Stojanović M. Can variations of 1H-NMR chemical shifts in benzene substituted with an electron-accepting (NO2)/donatingNH2) group be explained in terms of resonance effects of substituents? Chem. , 2018 , 13 ( 7 ), 877 - 881 . doi: 10.1002/asia.201800137 http://dx.doi.org/10.1002/asia.201800137
Terzopoulou Z. ; Karakatsianopoulou E. ; Kasmi N. ; Majdoub M. ; Papageorgiou G. Z. ; Bikiaris D. N. Effect of catalyst type on recyclability and decomposition mechanism of poly(ethylene furanoate) biobased polyester . J. Anal. Appl. Pyrolysis , 2017 , 126 , 357 - 370 . doi: 10.1016/j.jaap.2017.05.010 http://dx.doi.org/10.1016/j.jaap.2017.05.010
Feng J. ; Li J. ; Feng J. ; Wei Z. ; Wang Z. Q. ; Song X. L. Synthesis of aliphatic polycarbonates from diphenyl carbonate and diols over zinc (II) acetylacetonate . Molecules , 2022 , 27 ( 24 ), 8958 . doi: 10.3390/molecules27248958 http://dx.doi.org/10.3390/molecules27248958
陈宇宏 , 杜力鹏 , 王凯 , 詹茂盛 . 4,4-(9-芴)二苯酚型聚碳酸酯的合成及其耐高温性能研究 . 高分子学报 , 2016 , 47 ( 9 ), 1273 - 1280 . doi: 10.11777/j.issn1000-3304.2016.16079 http://dx.doi.org/10.11777/j.issn1000-3304.2016.16079
Shen X. L. ; Liu S. Y. ; Wang Q. Y. ; Zhang H. ; Wang G. Y. Synthesis of poly(isosorbide carbonate) via melt polycondensation catalyzed by a KF/MgO catalyst . Chem. Res. Chin. Univ. , 2019 , 35 ( 4 ), 721 - 728 . doi: 10.1007/s40242-019-8356-6 http://dx.doi.org/10.1007/s40242-019-8356-6
Zhou Z. B. ; Wu G. Z. Preparation of bisphenol-A and polydimethylsiloxane (PDMS) block copolycarbonates by melt polycondensation: effects of PDMS chain length on conversion and miscibility . Polymers , 2021 , 13 ( 16 ), 2660 . doi: 10.3390/polym13162660 http://dx.doi.org/10.3390/polym13162660
Antonakou E. V. ; Achilias D. S. Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms . Waste Biomass Valorization , 2013 , 4 ( 1 ), 9 - 21 . doi: 10.1007/s12649-012-9159-x http://dx.doi.org/10.1007/s12649-012-9159-x
张廷健 , 杨先贵 , 李建国 , 胡育 , 王公应 . 熔融酯交换法合成聚碳酸酯的研究 . 高分子学报 , 2012 , ( 1 ), 63 - 69 . doi: 10.3724/SP.J.1105.2012.11064 http://dx.doi.org/10.3724/SP.J.1105.2012.11064
Kato N. ; Ikeda S. ; Hirakawa M. ; Ito H. Relationship between degree of polymerization and optical and thermal properties of fluorene in polycarbonate polymers . J. Appl. Polym. Sci. , 2017 , 134 ( 30 ), 45042 . doi: 10.1002/app.45042 http://dx.doi.org/10.1002/app.45042
Bunn C. W. The melting points of chain polymers . J. Polym. Sci. B-Polym. Phys. , 1996 , 34 ( 5 ): 799 - 819 . doi: 10.1002/polb.1996.900 http://dx.doi.org/10.1002/polb.1996.900
Chu J. Y. ; Wang H. ; Zhang Y. W. ; Li Z. K. ; Zhang Z. C. ; He H. Y. ; Zhang Q. Q. ; Xu F. Design and synthesis of gradient-refractive index isosorbide-based polycarbonates for optical uses . React. Funct. Polym. , 2022 , 170 , 105145 . doi: 10.1016/j.reactfunctpolym.2021.105145 http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105145
Abenojar J. ; Torregrosa-Coque R. ; Martínez M. A. ; Martín-Martínez J. M. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma . Surf. Coat. Technol. , 2009 , 203 ( 16 ), 2173 - 2180 . doi: 10.1016/j.surfcoat.2009.01.037 http://dx.doi.org/10.1016/j.surfcoat.2009.01.037
0
浏览量
103
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构