浏览全部资源
扫码关注微信
1.长春工业大学材料科学与工程学院 化学与生命科学学院 长春 130012
2.吉林省先进高分子功能膜材料重点实验室 长春 130012
3.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: wangzhe@ccut.edu.cn
hyhuang@ciac.ac.cn
收稿日期:2025-04-24,
录用日期:2025-07-12,
网络出版日期:2025-09-25,
移动端阅览
水天恩, 王哲, 黄海瑛. 大尺寸金纳米粒子与嵌段共聚物的可控组装. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25065
Shui, T. E.; Wang, Z.; Huang, H. Y. Controlled self-assembly of large-sized gold nanoparticles by block copolymers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25065
水天恩, 王哲, 黄海瑛. 大尺寸金纳米粒子与嵌段共聚物的可控组装. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25065 DOI: CSTR: 32057.14.GFZXB.2025.7431.
Shui, T. E.; Wang, Z.; Huang, H. Y. Controlled self-assembly of large-sized gold nanoparticles by block copolymers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25065 DOI: CSTR: 32057.14.GFZXB.2025.7431.
嵌段共聚物(BCP)自组装行为在调控纳米粒子(NPs)的形貌与功能化应用中备受关注. 现有研究多集中于特征尺寸小于50 nm的纳米粒子体系,而很少针对大尺寸纳米粒子(
>
100 nm)的组装行为进行研究. 本研究通过胶束溶液热退火的方法,详细追踪了采用种子生长法合成的大尺寸金纳米粒子(
>
200 nm)与聚苯乙烯-聚四乙烯基吡啶-聚环氧乙烷(PS-
b
-P4VP-
b
-PEO)三嵌段共聚物胶束的共组装过程,并成功制备了单分散具有胶束状核壳结构的Au@PS-P4VP-PEO复合微球. 透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、原子力显微镜(AFM)和动态光散射(DLS)系统表征了复合微球的组成和结构. 研究认为在升温退火条件下,初始的嵌段共聚物胶束核心PS链段活动能力增强,胶束在界面相互作用和构象熵驱动下与大尺寸金纳米粒子共组装形成稳定的核壳结构. 同时,该策略也成功应用于PS-
b
-PEO二嵌段共聚物胶束体系,进一步证实它是一种简单、有效的制备大尺寸金属纳米粒子/聚合物复合材料的方法.
The self-assembly behavior of block copolymers (BCPs) has attracted considerable attention in regulating the morphology and functionalization of nanoparticles (NPs) for diverse applications. While extensive research has focused on NP systems with feature sizes below 50 nm
studies on the assembly behavior of larger nanoparticles (
>
100 nm) remain limited. In this work
we report a detailed investigation of the co-assembly process between poly(styrene-
b
-4-vinyl pyridine-
b
-ethylene oxide) (PS-
b
-P4VP-
b
-PEO) triblock copolymer micelles and large-sized gold nanoparticles (
>
200 nm) synthesized via the seed growth method. By employing thermal annealing of micellar solutions
we successfully fabricated monodisperse Au@PS-P4VP-PEO composite microspheres with a core-shell nanostructure encapsulated by triblock copolymer micelles. The resulting structures were characterized using transmission electron microscopy (TEM)
scanning transmission electron microscopy (STEM)
atomic force microscopy (AFM)
and dynamic light scattering (DLS). Our findings suggest that the PS chains at the core of the initial micelles enhance their mobility under thermal annealing
facilitating co-assembly with large gold nanoparticles. Stable core-shell structures are formed through co-assembly
driven by interfacial interactions and conformational entropy. Furthermore
this strategy was successfully applied to poly(styrene-
b
-ethylene oxide) (PS-
b
-PEO) diblock copolymer micelles
demonstrating its versatility as a simple
effective
and efficient method for the fabrication of large sized metal nanoparticle-polymer composites.
Xiao R. X. ; Jia J. ; Wang R. X. ; Feng Y. H. ; Chen H. Y. Strong ligand control for noble metal nanostructures . Acc. Chem. Res. , 2023 , 56 ( 12 ), 1539 - 1552 . doi: 10.1021/acs.accounts.3c00119 http://dx.doi.org/10.1021/acs.accounts.3c00119
Wang Y. X. ; Li A. J. ; Wang H. L. ; Liu W. ; Kang J. ; Lu J. ; Lu S. Y. ; Yang Y. ; Liu K. ; Yang B. In situ seed-mediated growth of polymer-grafted gold nanoparticles . Langmuir , 2020 , 36 ( 3 ), 789 - 795 . doi: 10.1021/acs.langmuir.9b03542 http://dx.doi.org/10.1021/acs.langmuir.9b03542
Yi C. L. ; Yang Y. Q. ; Liu B. ; He J. ; Nie Z. H. Polymer-guided assembly of inorganic nanoparticles . Chem. Soc. Rev. , 2020 , 49 ( 2 ), 465 - 508 . doi: 10.1039/c9cs00725c http://dx.doi.org/10.1039/c9cs00725c
周加境 , 吴迪 , 卢德荣 , 段宏伟 . 高分子修饰金纳米粒子的自组装研究进展 . 高分子学报 , 2018 , 49 ( 8 ), 1033 - 1047 .
Generalova A. N. ; Oleinikov V. A. ; Khaydukov E. V. One-dimensional necklace-like assemblies of inorganic nanoparticles: recent advances in design, preparation and applications . Adv. Colloid Interface Sci. , 2021 , 297 , 102543 . doi: 10.1016/j.cis.2021.102543 http://dx.doi.org/10.1016/j.cis.2021.102543
He H. B. ; Shen X. X. ; Nie Z. H. Engineering interactions between nanoparticles using polymers . Prog. Polym. Sci. , 2023 , 143 , 101710 . doi: 10.1016/j.progpolymsci.2023.101710 http://dx.doi.org/10.1016/j.progpolymsci.2023.101710
Hickey R. J. ; Koski J. ; Meng X. ; Riggleman R. A. ; Zhang P. J. ; Park S. J. Size-controlled self-assembly of superparamagnetic polymersomes . ACS Nano , 2014 , 8 ( 1 ), 495 - 502 . doi: 10.1021/nn405012h http://dx.doi.org/10.1021/nn405012h
Kao J. ; Bai P. ; Lucas J. M. ; Alivisatos A. P. ; Xu T. Size-dependent assemblies of nanoparticle mixtures in thin films . J. Am. Chem. Soc. , 2013 , 135 ( 5 ), 1680 - 1683 . doi: 10.1021/ja3107912 http://dx.doi.org/10.1021/ja3107912
Zhang H. ; Pan Y. ; Li Y. H. ; Tang C. ; Xu Z. ; Li C. ; Xu F. G. ; Mai Y. Y. Hybrid polymer vesicles: controllable preparation and potential applications . Biomacromolecules , 2023 , 24 ( 9 ), 3929 - 3953 . doi: 10.1021/acs.biomac.3c00499 http://dx.doi.org/10.1021/acs.biomac.3c00499
Hu S. K. ; Yan J. H. ; Yang G. W. ; Ma C. ; Yin J. Self-assembled polymeric materials: design, morphology, and functional-oriented applications . Macromol. Rapid Commun. , 2022 , 43 ( 14 ), 2100791 . doi: 10.1002/marc.202100791 http://dx.doi.org/10.1002/marc.202100791
Schneider J. ; Liu J. X. ; Lee V. E. ; Prud'homme R. K. ; Datta S. S. ; Priestley R. D. Tuning morphologies and reactivities of hybrid organic-inorganic nanoparticles . ACS Nano , 2022 , 16 ( 10 ), 16133 - 16142 . doi: 10.1021/acsnano.2c04585 http://dx.doi.org/10.1021/acsnano.2c04585
Chen Y. P. ; Xianyu Y. L. ; Jiang X. Y. Surface modification of gold nanoparticles with small molecules for biochemical analysis . Acc. Chem. Res. , 2017 , 50 ( 2 ), 310 - 319 . doi: 10.1021/acs.accounts.6b00506 http://dx.doi.org/10.1021/acs.accounts.6b00506
Gawande M. B. ; Goswami A. ; Asefa T. ; Guo H. Z. ; Biradar A. V. ; Peng D. L. ; Zboril R. ; Varma R. S. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis . Chem. Soc. Rev. , 2015 , 44 ( 21 ), 7540 - 7590 . doi: 10.1039/c5cs00343a http://dx.doi.org/10.1039/c5cs00343a
Song J. B. ; Zhou J. J. ; Duan H. W. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery . J. Am. Chem. Soc. , 2012 , 134 ( 32 ), 13458 - 13469 . doi: 10.1021/ja305154a http://dx.doi.org/10.1021/ja305154a
Huang C. H. ; Kudo T. ; Bresolí-Obach R. ; Hofkens J. ; Sugiyama T. ; Masuhara H. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface . Opt. Express , 2020 , 28 ( 19 ), 27727 - 27735 . doi: 10.1364/oe.401158 http://dx.doi.org/10.1364/oe.401158
Kudo T. ; Yang S. J. ; Masuhara H. A single large assembly with dynamically fluctuating swarms of gold nanoparticles formed by trapping laser . Nano Lett. , 2018 , 18 ( 9 ), 5846 - 5853 . doi: 10.1021/acs.nanolett.8b02519 http://dx.doi.org/10.1021/acs.nanolett.8b02519
Tabatabai B. ; Fathabad S. G. ; Bonyi E. ; Rajini S. ; Aslan K. ; Sitther V. Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the cyanobacterium Fremyella diplosiphon . Bioenergy Res. , 2019 , 12 , 409 - 418 . doi: 10.1007/s12155-019-09966-9 http://dx.doi.org/10.1007/s12155-019-09966-9
Nie X. B. ; Yu C. Y. ; Wei H. Precise modulation of spatially distributed inorganic nanoparticles in block copolymers-based self-assemblies with diverse morphologies . Mater. Today Chem. , 2021 , 22 , 100616 . doi: 10.1016/j.mtchem.2021.100616 http://dx.doi.org/10.1016/j.mtchem.2021.100616
Cui Y. ; Zhu H. Y. ; Cai J. D. ; Qiu H. B. Self-regulated co-assembly of soft and hard nanoparticles . Nat. Commun. , 2021 , 12 ( 1 ), 5682 . doi: 10.1038/s41467-021-25995-5 http://dx.doi.org/10.1038/s41467-021-25995-5
Beltran-Villegas D. J. ; Jayaraman A. Assembly of amphiphilic block copolymers and nanoparticles in solution: coarse-grained molecular simulation study . J. Chem. Eng. Data , 2018 , 63 ( 7 ), 2351 - 2367 . doi: 10.1021/acs.jced.7b00925 http://dx.doi.org/10.1021/acs.jced.7b00925
Yan N. ; Liu X. J. ; Zhu J. T. ; Zhu Y. T. ; Jiang W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets . ACS Nano , 2019 , 13 ( 6 ), 6638 - 6646 . doi: 10.1021/acsnano.9b00940 http://dx.doi.org/10.1021/acsnano.9b00940
张常旭 , 潘辉 , 周永丰 . 交替共聚物纳米花的自组装及在单颗粒表面增强拉曼散射检测中的应用 . 高分子学报 , 2023 , 54 ( 5 ), 687 - 696 .
Lü J. H. ; Yang Y. ; Gao J. F. ; Duan H. C. ; Lü C. L. Thermoresponsive amphiphilic block copolymer-stablilized gold nanoparticles: synthesis and high catalytic properties . Langmuir , 2018 , 34 ( 28 ), 8205 - 8214 . doi: 10.1021/acs.langmuir.8b00414 http://dx.doi.org/10.1021/acs.langmuir.8b00414
Yan N. ; Zhu Y. T. ; Jiang W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets . Chem. Commun. , 2018 , 54 ( 94 ), 13183 - 13195 . doi: 10.1039/c8cc05812a http://dx.doi.org/10.1039/c8cc05812a
马世营 , 汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展 . 高分子学报 , 2016 , 47 ( 8 ), 1030 - 1041 .
Jo S. H. ; Kim H. W. ; Song M. ; Je N. J. ; Oh S. H. ; Chang B. Y. ; Yoon J. ; Kim J. H. ; Chung B. ; Yoo S. I. Core-corona functionalization of diblock copolymer micelles by heterogeneous metal nanoparticles for dual modality in chemical reactions . ACS Appl. Mater. Interfaces , 2015 , 7 ( 33 ), 18778 - 18785 . doi: 10.1021/acsami.5b05408 http://dx.doi.org/10.1021/acsami.5b05408
Liang R. J. ; Xu J. P. ; Li W. K. ; Liao Y. G. ; Wang K. ; You J. C. ; Zhu J. T. ; Jiang W. Precise localization of inorganic nanoparticles in block copolymer micellar aggregates: from center to interface . Macromolecules , 2015 , 48 ( 1 ), 256 - 263 . doi: 10.1021/ma501835r http://dx.doi.org/10.1021/ma501835r
Budgin A. M. ; Kabachii Y. A. ; Shifrina Z. B. ; Valetsky P. M. ; Kochev S. S. ; Stein B. D. ; Malyutin A. ; Bronstein L. M. Functionalization of magnetic nanoparticles with amphiphilic block copolymers: self-assembled thermoresponsive submicrometer particles . Langmuir , 2012 , 28 ( 9 ), 4142 - 4151 . doi: 10.1021/la205056k http://dx.doi.org/10.1021/la205056k
秦江雷 , 陈永明 . 由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒 . 高分子学报 , 2011 , 42 ( 6 ), 572 - 585 .
Liu Y. B. ; Wang X. S. Recent advances in block copolymer-assisted synthesis of supramolecular inorganic/organic hybrid colloids . Polym. Chem. , 2011 , 2 ( 12 ), 2741 - 2757 . doi: 10.1039/c1py00283j http://dx.doi.org/10.1039/c1py00283j
Xing S. X. ; Tan L. H. ; Yang M. X. ; Pan M. ; Lv Y. B. ; Tang Q. H. ; Yang Y. H. ; Chen H. Y. Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains . J. Mater. Chem. , 2009 , 19 ( 20 ), 3286 - 3291 . doi: 10.1039/b900993k http://dx.doi.org/10.1039/b900993k
Yan N. ; Zhang Y. ; He Y. ; Zhu Y. T. ; Jiang W. Controllable location of inorganic nanoparticles on block copolymer self-assembled scaffolds by tailoring the entropy and enthalpy contributions . Macromolecules , 2017 , 50 ( 17 ), 6771 - 6778 . doi: 10.1021/acs.macromol.7b01076 http://dx.doi.org/10.1021/acs.macromol.7b01076
Yan N. ; Liu H. X. ; Zhu Y. T. ; Jiang W. ; Dong Z. Y. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement . Macromolecules , 2015 , 48 ( 16 ), 5980 - 5987 . doi: 10.1021/acs.macromol.5b01219 http://dx.doi.org/10.1021/acs.macromol.5b01219
Ren R. ; Li F. ; Zhang H. ; Wang Y. Y. ; University J. ; Xiong B. J. ; Zhu J. T. Self-assembly of regioselective polymer-tethered gold nanorods in selective solvents . Macromolecules , 2025 , 58 ( 3 ), 1585 - 1593 . doi: 10.1021/acs.macromol.4c02257 http://dx.doi.org/10.1021/acs.macromol.4c02257
Yue X. ; Liu X. J. ; Yan N. ; Jiang W. Hierarchical colloidosomes with a highly ordered and oriented arrangement of gold nanorods via confined assembly at the emulsion interface . J. Phys. Chem. C , 2020 , 124 ( 37 ), 20458 - 20468 . doi: 10.1021/acs.jpcc.0c06162 http://dx.doi.org/10.1021/acs.jpcc.0c06162
Yi C. L. ; Zhang S. Y. ; Webb K. T. ; Nie Z. H. Anisotropic self-assembly of hairy inorganic nanoparticles . Acc. Chem. Res. , 2017 , 50 ( 1 ), 12 - 21 . doi: 10.1021/acs.accounts.6b00343 http://dx.doi.org/10.1021/acs.accounts.6b00343
He J. ; Liu Y. J. ; Babu T. ; Wei Z. J. ; Nie Z. H. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers . J. Am. Chem. Soc. , 2012 , 134 ( 28 ), 11342 - 11345 . doi: 10.1021/ja3032295 http://dx.doi.org/10.1021/ja3032295
Zhang L. ; Niu W. X. ; Li Z. Y. ; Xu G. B. Facile synthesis and electrochemiluminescence application of concave trisoctahedral Pd@Au core-shell nanocrystals bound by {331} high-index facets . Chem. Commun. , 2011 , 47 ( 37 ), 10353 - 10355 . doi: 10.1039/c1cc13344f http://dx.doi.org/10.1039/c1cc13344f
Mai Y. Y. ; Eisenberg A. Selective localization of preformed nanoparticles in morphologically controllable block copolymer aggregates in solution . Acc. Chem. Res. , 2012 , 45 ( 10 ), 1657 - 1666 . doi: 10.1021/ar2003144 http://dx.doi.org/10.1021/ar2003144
Förster S. ; Antonietti M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids . Adv. Mater. , 1998 , 10 ( 3 ), 195 - 217 . doi: 10.1002/(sici)1521-4095(199802)10:3<195::aid-adma195>3.0.co;2-v http://dx.doi.org/10.1002/(sici)1521-4095(199802)10:3<195::aid-adma195>3.0.co;2-v
Fahmi A. ; Pietsch T. ; Mendoza C. ; Cheval N. Functional hybrid materials . Mater. Today , 2009 , 12 ( 5 ), 44 - 50 . doi: 10.1016/s1369-7021(09)70159-2 http://dx.doi.org/10.1016/s1369-7021(09)70159-2
Chen H. Y. ; Abraham S. ; Mendenhall J. ; Delamarre S. C. ; Smith K. ; Kim I. ; Batt C. A. Encapsulation of single small gold nanoparticles by diblock copolymers . ChemPhysChem , 2008 , 9 ( 3 ), 388 - 392 . doi: 10.1002/cphc.200700598 http://dx.doi.org/10.1002/cphc.200700598
Song X. H. ; Liu C. C. ; Liu X. T. ; Liu S. L. Investigating polymer transformation during the encapsulation of metal nanoparticles by polystyrene- b -poly(acrylic acid) in colloids . ACS Appl. Mater. Interfaces , 2020 , 12 ( 3 ), 3969 - 3975 . doi: 10.1021/acsami.9b19264 http://dx.doi.org/10.1021/acsami.9b19264
Kang Y. ; Taton T. A. Controlling shell thickness in core-shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants . Macromolecules , 2005 , 38 ( 14 ), 6115 - 6121 . doi: 10.1021/ma050400c http://dx.doi.org/10.1021/ma050400c
Wang L. L. ; Huang H. Y. ; He T. B. ABC triblock terpolymer self-assembled core-shell-corona nanotubes with high aspect ratios . Macromol. Rapid Commun. , 2014 , 35 ( 16 ), 1387 - 1396 . doi: 10.1002/marc.201400134 http://dx.doi.org/10.1002/marc.201400134
Sau T. K. ; Murphy C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution . J. Am. Chem. Soc. , 2004 , 126 ( 28 ), 8648 - 8649 . doi: 10.1021/ja047846d http://dx.doi.org/10.1021/ja047846d
Murphy C. J. ; Sau T. K. ; Gole A. M. ; Orendorff C. J. ; Gao J. X. ; Gou L. F. ; Hunyadi S. E. ; Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications . J. Phys. Chem. B , 2005 , 109 ( 29 ), 13857 - 13870 . doi: 10.1021/jp0516846 http://dx.doi.org/10.1021/jp0516846
Wang H. ; Chen L. Y. ; Feng Y. H. ; Chen H. Y. Exploiting core-shell synergy for nanosynthesis and mechanistic investigation . Acc. Chem. Res. , 2013 , 46 ( 7 ), 1636 - 1646 . doi: 10.1021/ar400020j http://dx.doi.org/10.1021/ar400020j
Desbaumes L. ; Eisenberg A. Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer . Langmuir , 1999 , 15 ( 1 ), 36 - 38 . doi: 10.1021/la980632n http://dx.doi.org/10.1021/la980632n
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构