浏览全部资源
扫码关注微信
1.四川大学,高分子科学与工程学院,成都 610065
2.四川大学,先进高分子材料全国重点实验室,成都 610065
3.四川大学,电气工程学院,成都 610065
刘向阳,E-mail: lxy@scu.edu.cn
收稿日期:2025-04-04,
录用日期:2025-05-23,
网络出版日期:2025-08-04,
移动端阅览
钟明霏, 李想, 樊坤, 王旭, 刘向阳. 无色聚酰亚胺薄膜的直接氟化反应及其增透效应研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25091
Zhong, M. F.; Li, X.; Fan, K.; Wang, X.; Liu, X. Y. Investigation into the direct fluorination reaction of colorless polyimide films and the mechanism of light transmittance enhancement. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25091
钟明霏, 李想, 樊坤, 王旭, 刘向阳. 无色聚酰亚胺薄膜的直接氟化反应及其增透效应研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25091 DOI: CSTR: 32057.14.GFZXB.2025.7421.
Zhong, M. F.; Li, X.; Fan, K.; Wang, X.; Liu, X. Y. Investigation into the direct fluorination reaction of colorless polyimide films and the mechanism of light transmittance enhancement. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25091 DOI: CSTR: 32057.14.GFZXB.2025.7421.
本文采用直接氟气氟化技术对无色透明聚酰亚胺(CPI)薄膜进行了表面氟化改性,即通过通入定量的F
2
/N
2
混合气体,成功制备了表面氟化CPI薄膜. 在不影响其力学性能的情况下,F-CPI的透光率得到了大幅提升,其在400~800 nm可见光范围内的平均透光率由氟化前的87.5%增加至90.5%,整体透光率实现了3%的提升. X射线光电子能谱(XPS)测试结果表明,直接氟化后薄膜表面的F元素含量明显增加;进一步分析表明,F
2
主要进攻CPI分子链中的苯环结构,并在苯环上引入了大量的C―F和C―F
2
键. 同时,F-CPI透光率的提升不是由于氟化后表面形貌结构的改变,而是由于氟原子低的摩尔体积折射率带来的反射率降低,进而实现高效的增透作用. 最后,我们将直接氟化后的薄膜分别与柔性显示领域常用的光学胶(OCA)和表面硬涂液复合,其制备的两种复合薄膜均同样显示出良好的透光性增强效果,具有明显的应用前景.
The surface of colorless polyimide (CPI) film was modified using a direct fluorination method
and a surface-fluorinated CPI (F-CPI) was successfully prepared by introducing a specific volume ratio of F
2
/N
2
mixed gas. The transparency of the F-CPI film was significantly enhanced without compromising its mechanical properties. Specifically
the average transmittance (
T
avg
) of the F-CPI film in the visible light range of 400-800 nm increased from 87.5% before fluorination to 90.5%
corresponding to a 3% overall improvement in transmittance. X-ray photoelectron spectroscopy (XPS) analysis revealed a substantial increase in the fluorine content on the surface of the F-CPI film. Further investigation indicated that F
2
primarily targets the benzene ring and imide ring structures within the CPI molecular chain
leading to the formation of a large number of C―F and C―F
2
bonds on the benzene ring. Scanning electron microscopy (SEM) results demonstrated that the enhanced transmittance of the F-CPI film was not due to changes in surface morphology or structure following fluorination
but rather to the anti-reflection effect resulting from the low molar refractive index of fluorine atoms
which reduces reflectivity. Subsequently
the fluorinated film was combined with commonly used optical OCA adhesives and surface hard coating solutions in the field of flexible displays to prepare two types of composite films. Both composite films exhibited significant improvements in transparency and hold broad application prospects in practical fields.
Zhang D. ; Huang T. ; Duan L. Emerging self-emissive technologies for flexible displays . Adv. Mater. , 2020 , 32 ( 15 ), 1902391 . doi: 10.1002/adma.201902391 http://dx.doi.org/10.1002/adma.201902391
Zhou Y. ; Zhang P. ; Liu Z. ; Yan W. ; Gao H. ; Liang G. ; Qin W. Sunlight-activated hour-long afterglow from transparent and flexible polymers . Adv.Mater. , 2024 , 36 ( 16 ), 2312439 . doi: 10.1002/adma.202312439 http://dx.doi.org/10.1002/adma.202312439
罗龙波 ; 叶信合 ; 易江 ; 李科 ; 刘向阳 . 通过交联抑制高温下氢键的解离提高聚酰亚胺的耐热性和尺寸稳定性 . 高分子学报 , 2021 , 52 ( 4 ), 363 - 370 . doi: 10.11777/j.issn1000-3304.2020.20222 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20222
Zhou J. ; Liu H. ; Sun Y. ; Wang C. ; Chen K. Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics . Adv.Mater. , 2021 , 31 ( 29 ), 2011133 . doi: 10.1002/adfm.202011133 http://dx.doi.org/10.1002/adfm.202011133
Kim D. ; Shin S. S. ; Lee S. M. ; Cho J. S. ; Yun J. H. ; Lee H. S. ; Park J. H. Flexible and semi-transparent ultra-thin cigse solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications . Adv. Funct. Mater. , 2020 , 30 ( 36 ), 2001775 . doi: 10.1002/adfm.202070241 http://dx.doi.org/10.1002/adfm.202070241
Zhao Z. ; Liu K. ; Liu Y. ; Guo Y. ; Liu Y. Intrinsically flexible displays: key materials and devices . Natl. Sci. Rev. , 2022 , 9 ( 6 ), nwac 090 . doi: 10.1093/nsr/nwac090 http://dx.doi.org/10.1093/nsr/nwac090
Yang J. ; Lim T. ; Ju S. Transparent and flexible photo-driven smart window display displayed by near-infrared laser . Adv. Mater. Interfaces , 2022 , 9 ( 34 ), 2201556 . doi: 10.1002/admi.202201556 http://dx.doi.org/10.1002/admi.202201556
李耀凯 ; 关诗陶 ; 李水兴 ; 左立见 ; 陈红征 . 超96%近红外光隔热率的高性能半透明有机太阳能电池 . 高分子学报 , 2024 , 55 ( 9 ), 1134 - 1144 .
冯鑫 ; 王玉辉 ; 赵宇霄 ; 于晓亮 ; 张培斌 ; 崔晶 ; 郭敏杰 . 高综合性能无色透明聚酰亚胺薄膜的制备 . 高分子学报 , 2023 , 54 ( 8 ), 1219 - 1228 . doi: 10.11777/j.issn1000-3304.2022.22408 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22408
白帆 ; 江怡雯 ; 李琇廷 ; 董杰 ; 赵昕 ; 张清华 . 柔性显示盖板用耐弯折无色透明聚酰亚胺薄膜的制备与性能 . 高分子学报 , 2024 , 55 ( 10 ), 1393 - 1404 .
Ahn C. ; Kim T. Y. ; Hong P. H. ; Choi S. ; Lee Y. J. ; Kwon H. ; Jeon H. ; Ko D. W. ; Park I. ; Han H. Highly transparent, colorless optical film with outstanding mechanical strength and folding reliability using mismatched charge-transfer complex intensification . Adv. Funct. Mater. , 2022 , 32 ( 20 ), 2270116 . doi: 10.1002/adfm.202270116 http://dx.doi.org/10.1002/adfm.202270116
Cao G. ; Chen X. ; Deng B. ; Wang S. ; Zhang Q. Color construction of polyimide fibers based on charge transfer complex regulation and swelling effect . Appl. Surf. Sci. , 2022 , 597 , 153593 . doi: 10.1016/j.apsusc.2022.153593 http://dx.doi.org/10.1016/j.apsusc.2022.153593
Liu Y. Y. ; Wang Y. K. ; Wu D. Y. Synthetic strategies for highly transparent and colorless polyimide film . J. Appl. Polym. Sci. , 2022 , 139 ( 28 ), e 52604 . doi: 10.1002/app.52604 http://dx.doi.org/10.1002/app.52604
Yano T. ; Sugawara H. ; Taniguchi J. Moth-eye structured mold using sputtered glassy carbon layer for large-scale applications . Micro Nano Eng. , 2020 , 9 , 100077 . doi: 10.1016/j.mne.2020.100077 http://dx.doi.org/10.1016/j.mne.2020.100077
Vukusic P. ; Sambles J. R. Photonic structures in biology . Nature , 2003 , 424 ( 6950 ), 852 - 855 . doi: 10.1038/nature01941 http://dx.doi.org/10.1038/nature01941
吕钧炜 ; 罗龙波 ; 刘向阳 . 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展 . 纺织学报 , 2023 , 44 ( 6 ), 21 - 27 . doi: 10.13475/j.fzxb.20230100402 http://dx.doi.org/10.13475/j.fzxb.20230100402
Groh W. ; Zimmermann A. What is the lowest refractive index of an organic polymer? Macromolecules , 1991 , 24 ( 25 ), 6660 - 6663 . doi: 10.1021/ma00025a016 http://dx.doi.org/10.1021/ma00025a016
聂壮 ; 韩昊宇 ; 王旭 ; 刘向阳 . 基于氟化交联的多孔聚酰亚胺的结构调控及其摩擦行为研究 . 高分子学报 , 2025 , 56 ( 6 ), 937 - 945 .
Jian L. ; Xin L. ; Lingie Z. ; Xiangyang L. ; Xu W. Direct fluorination of nanographene molecules with fluorine gas . Carbon , 2022 , 188 , 453 - 460 . doi: 10.1016/j.carbon.2021.12.043 http://dx.doi.org/10.1016/j.carbon.2021.12.043
Lv J. ; Cheng Z. ; Wu H. ; He T. ; Qin J. ; Liu X. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement . Compos. Part B Eng. , 2020 , 182 , 107608 . doi: 10.1016/j.compositesb.2019.107608 http://dx.doi.org/10.1016/j.compositesb.2019.107608
Luo L. ; Hong D. ; Zhang L. ; Cheng Z. ; Liu X. Surface modification of pbo fibers by direct fluorination and corresponding chemical reaction mechanism . Compos. Sci. Technol. , 2018 , 165 , 106 - 114 . doi: 10.1016/j.compscitech.2018.06.014 http://dx.doi.org/10.1016/j.compscitech.2018.06.014
0
浏览量
55
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构