浏览全部资源
扫码关注微信
华东师范大学化学与分子工程学院 上海 200241
E-mail: wnfang@chem.ecnu.edu.cn
收稿日期:2025-04-07,
录用日期:2025-05-23,
网络出版日期:2025-06-27,
移动端阅览
郭小芳, 王雅, 詹童凯, 方维娜. 24螺旋DNA折纸结构的高效自组装与单分散性调控研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25092
Guo, X. F.; Wang, Y.; Zhan, T. K.; Fang, W. N. Efficient self-assembly and monodispersity control of 24-helix DNA origami structures. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25092
郭小芳, 王雅, 詹童凯, 方维娜. 24螺旋DNA折纸结构的高效自组装与单分散性调控研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25092 DOI: CSTR: 32057.14.GFZXB.2025.7424.
Guo, X. F.; Wang, Y.; Zhan, T. K.; Fang, W. N. Efficient self-assembly and monodispersity control of 24-helix DNA origami structures. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25092 DOI: CSTR: 32057.14.GFZXB.2025.7424.
DNA折纸术利用单链DNA骨架与订书钉链的精确退火,可高效构建具有原子级精度的二维/三维纳米结构,在生物传感、纳米光子学和靶向
药物递送等领域展现出重要应用前景. 然而,折纸结构间的非特异性聚集问题严重制约了其功能化应用. 本研究以24螺旋(24-helix bundles,24HB) DNA折纸为模型体系,通过优化Mg
2+
浓度和退火梯度等合成条件,成功制备出结构完整性达96%的目标产物,进一步探究了末端单链刷修饰和骨架环设计两种策略对24 HB DNA折纸单分散性的影响. 结果表明,在24HB DNA折纸单末端修饰聚T (4 nt或7 nt)单链刷可显著提升体系单分散性,其中7 nt单链刷的分散效果优于4 nt. 双端骨架环设计(单分散性72%)优于单端骨架环设计(42%),其效果与7 nt单末端聚T单链刷(78%)相当. 最后,在双端骨架环的基础上,构建骨架环-末端单链刷复合策略,使单分散性达到87%. 该研究不仅建立了DNA折纸高纯度制备的标准化方案,更为功能性DNA纳米器件的精准组装提供了普适性设计准则.
DNA origami technology enables the precise assembly of two- and three-dimensional nanostructures with atomic-level accuracy through the programmed annealing of a single-stranded DNA scaffold and staple strands
demonstrating significant potential in biosensing
nanophotonics
and targeted drug delivery. However
nonspecific aggregation among origami structures severely limits their functionality. In this study
we employed the 24-helix bundle (24HB) DNA origami as a model system and successfully achieved a structurally intact product yield of 96% by optimizing the synthesis conditions
including Mg
2+
concentration and annealing gradient. Furthermore
we investigated the effects of two strategies—terminal single-strand brush modification and scaffold
loop design—on the monodispersity of the 24HB DNA origami. The results demonstrated that modifying the 24HB DNA origami with PolyT (4 nt or 7 nt) single-strand brushes at one terminus significantly improved monodispersity
with the 7 nt brush exhibiting superior dispersion efficiency compared with the 4 nt variant. Additionally
a double-end scaffold loop design (72% monodispersity) outperformed the single-end design (42%) and was comparable to the 7 nt single-end PolyT brush modification (78%). Finally
by integrating a double-end scaffold loop with terminal single-strand brushes
we developed a composite strategy that achieved 87% monodispersity. This study establishes a standardized protocol for high-purity DNA origami fabrication and provides universal design principles for the precise assembly of functional DNA nanodevices.
Rothemund P. W. K. Folding DNA to create nanoscale shapes and patterns . Nature , 2006 , 440 ( 7082 ), 297 - 302 . doi: 10.1038/nature04586 http://dx.doi.org/10.1038/nature04586
Qian L. L. ; Wang Y. ; Zhang Z. ; Zhao J. ; Pan D. ; Zhang Y. ; Liu Q. ; Fan C. H. ; Hu J. ; He L. Analogic China map constructed by DNA . Chin. Sci. Bull. , 2006 , 51 ( 24 ), 2973 - 2976 . doi: 10.1007/s11434-006-2223-9 http://dx.doi.org/10.1007/s11434-006-2223-9
Fang W. N. ; Xie M. ; Hou X. L. ; Liu X. G. ; Zuo X. L. ; Chao J. ; Wang L. H. ; Fan C. H. ; Liu H. J. ; Wang L. H. DNA origami radiometers for measuring ultraviolet exposure . J. Am. Chem. Soc. , 2020 , 142 ( 19 ), 8782 - 8789 . doi: 10.1021/jacs.0c01254 http://dx.doi.org/10.1021/jacs.0c01254
Dey S. ; Fan C. H. ; Gothelf K. V. ; Li J. ; Lin C. X. ; Liu L. F. ; Liu N. ; Nijenhuis M. A. D. ; Saccà B. ; Simmel F. C. ; Yan H. ; Zhan P. F. DNA origami . Nat. Rev. Meth. Primers , 2021 , 1 , 13 . doi: 10.1038/s43586-020-00009-8 http://dx.doi.org/10.1038/s43586-020-00009-8
Tang Y. ; Liu H. ; Wang Q. ; Qi X. D. ; Yu L. ; Šulc P. ; Zhang F. ; Yan H. ; Jiang S. X. DNA origami tessellations . J. Am. Chem. Soc. , 2023 , 145 ( 25 ), 13858 - 13868 . doi: 10.1021/jacs.3c03044 http://dx.doi.org/10.1021/jacs.3c03044
Kuzyk A. ; Schreiber R. ; Fan Z. Y. ; Pardatscher G. ; Roller E. M. ; Högele A. ; Simmel F. C. ; Govorov A. O. ; Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response . Nature , 2012 , 483 ( 7389 ), 311 - 314 . doi: 10.1038/nature10889 http://dx.doi.org/10.1038/nature10889
Benson E. ; Mohammed A. ; Gardell J. ; Masich S. ; Czeizler E. ; Orponen P. ; Högberg B. DNA rendering of polyhedral meshes at the nanoscale . Nature , 2015 , 523 ( 7561 ), 441 - 444 . doi: 10.1038/nature14586 http://dx.doi.org/10.1038/nature14586
Douglas S. M. ; Dietz H. ; Liedl T. ; Högberg B. ; Graf F. ; Shih W. M. Self-assembly of DNA into nanoscale three-dimensional shapes . Nature , 2009 , 459 ( 7245 ), 414 - 418 . doi: 10.1038/nature08016 http://dx.doi.org/10.1038/nature08016
Ke Y. G. ; Douglas S. M. ; Liu M. H. ; Sharma J. ; Cheng A. C. ; Leung A. ; Liu Y. ; Shih W. M. ; Yan H. Multilayer DNA origami packed on a square lattice . J. Am. Chem. Soc. , 2009 , 131 ( 43 ), 15903 - 15908 . doi: 10.1021/ja906381y http://dx.doi.org/10.1021/ja906381y
李颀 , 王丽华 , 樊春海 , 叶德楷 . DNA水凝胶的构建及柔性电子应用 . 高分子学报 , 2024 , 55 ( 6 ), 655 - 672 .
Lv H. ; Xie N. L. ; Li M. Q. ; Dong M. K. ; Sun C. Y. ; Zhang Q. ; Zhao L. ; Li J. ; Zuo X. L. ; Chen H. B. ; Wang F. ; Fan C. H. DNA-based programmable gate arrays for general-purpose DNA computing . Nature , 2023 , 622 ( 7982 ), 292 - 300 . doi: 10.1038/s41586-023-06484-9 http://dx.doi.org/10.1038/s41586-023-06484-9
Li G. Z. ; Chen C. Y. ; Li Y. Y. ; Wang B. ; Wen J. L. ; Guo M. Y. ; Chen M. ; Zhang X. B. ; Ke G. L. DNA-origami-based precise molecule assembly and their biological applications . Nano Lett. , 2024 , 24 ( 37 ), 11335 - 11348 . doi: 10.1021/acs.nanolett.4c03297 http://dx.doi.org/10.1021/acs.nanolett.4c03297
Xu Z. ; Dong Y. ; Ma N. ; Zhu X. ; Zhang X. ; Yin H. ; Chen S. ; Zhu J. J. ; Tian Y. ; Min Q. Confinement in dual-chain-locked DNA origami nanocages programs marker-responsive delivery of CRISPR/Cas9 ribonucleoproteins . J Am Chem Soc , 2023 , 145 ( 49 ), 26557 - 26568 . doi: 10.1021/jacs.3c04074 http://dx.doi.org/10.1021/jacs.3c04074
Huang J. ; Jaekel A. ; van den Boom J. ; Podlesainski D. ; Elnaggar M. ; Heuer-Jungemann A. ; Kaiser M. ; Meyer H. ; Saccà B. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway . Nat. Nanotechnol. , 2024 , 19 ( 10 ), 1521 - 1531 . doi: 10.1038/s41565-024-01738-7 http://dx.doi.org/10.1038/s41565-024-01738-7
李浩 , 郝亚亚 , 王飞 , 王丽华 , 刘刚 . 基于DNA纳米结构的分子间相互作用研究 . 高分子学报 , 2020 , 51 ( 7 ), 728 - 737 . doi: 10.11777/j.issn1000-3304.2020.20055 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20055
成佳峰 , 袁伟 , 丁雨樵 , 魏旭南 , 郁志勇 , 徐立进 , 董原辰 . 尺寸可控的球型DNA纳米颗粒构筑策略及其应用 . 高分子学报 , 2023 , 54 ( 3 ), 336 - 345 .
Selnihhin D. ; Sparvath S. M. ; Preus S. ; Birkedal V. ; Andersen E. S. Multifluorophore DNA origami beacon as a biosensing platform . ACS Nano , 2018 , 12 ( 6 ), 5699 - 5708 . doi: 10.1021/acsnano.8b01510 http://dx.doi.org/10.1021/acsnano.8b01510
Raveendran M. ; Lee A. J. ; Sharma R. ; Wälti C. ; Actis P. Rational design of DNA nanostructures for single molecule biosensing . Nat. Commun. , 2020 , 11 , 4384 . doi: 10.1038/s41467-020-18132-1 http://dx.doi.org/10.1038/s41467-020-18132-1
Ge H. ; Yang D. L. ; Li Y. M. ; Wei Y. J. ; Zhu X. Y. ; Wang P. F. ; Zhang C. A reconfigurable nanophotonic heterostructure engineered by a DNA origami switch . Chempluschem , 2022 , 87 ( 10 ), e 202200229 . doi: 10.1002/cplu.202200229 http://dx.doi.org/10.1002/cplu.202200229
马振涛 , 尚颖旭 , 刘沣嵩 , 李娜 , 丁宝全 . 基于DNA折纸超分子体系的自组装金属纳米结构及其光学性能研究 . 高分子学报 , 2022 , 53 ( 10 ), 1187 - 1203 .
Zhao S. ; Tian R. ; Wu J. ; Liu S. L. ; Wang Y. N. ; Wen M. ; Shang Y. X. ; Liu Q. ; Li Y. ; Guo Y. ; Wang Z. R. ; Wang T. ; Zhao Y. J. ; Zhao H. R. ; Cao H. ; Su Y. ; Sun J. S. ; Jiang Q. ; Ding B. Q. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis . Nat. Commun. , 2021 , 12 ( 1 ), 358 . doi: 10.1038/s41467-020-20638-7 http://dx.doi.org/10.1038/s41467-020-20638-7
Xu R. ; Li Y. J. ; Zhu C. Y. ; Liu D. S. ; Yang Y. R. Cellular ingestible DNA nanostructures for biomedical applications . Adv. NanoBiomed Res. , 2023 , 3 ( 1 ), 2370011 . doi: 10.1002/anbr.202370011 http://dx.doi.org/10.1002/anbr.202370011
Jiang Q. ; Liu S. ; Liu J. ; Wang Z. G. ; Ding B. Rationally designed DNA-origami nanomaterials for drug delivery in vivo . Adv Mater , 2019 , 31 ( 45 ), e 1804785 . doi: 10.1002/adma.201804785 http://dx.doi.org/10.1002/adma.201804785
Wagenbauer K. F. ; Pham N. ; Gottschlich A. ; Kick B. ; Kozina V. ; Frank C. ; Trninic D. ; Stömmer P. ; Grünmeier R. ; Carlini E. ; Tsiverioti C. A. ; Kobold S. ; Funke J. J. ; Dietz H. Programmable multispecific DNA-origami-based T-cell engagers . Nat. Nanotechnol. , 2023 , 18 ( 11 ), 1319 - 1326 . doi: 10.1038/s41565-023-01471-7 http://dx.doi.org/10.1038/s41565-023-01471-7
Zhang Y. N. ; Wang F. ; Chao J. ; Xie M. ; Liu H. J. ; Pan M. C. ; Kopperger E. ; Liu X. G. ; Li Q. ; Shi J. Y. ; Wang L. H. ; Hu J. ; Wang L. H. ; Simmel F. C. ; Fan C. H. DNA origami cryptography for secure communication . Nat. Commun. , 2019 , 10 ( 1 ), 5469 . doi: 10.1038/s41467-019-13517-3 http://dx.doi.org/10.1038/s41467-019-13517-3
潘玙璠 , 丁雨樵 , 董原辰 , 刘冬生 . DNA超分子水凝胶的构筑、功能化与生物医学应用 . 高分子学报 , 2023 , 54 ( 7 ), 1012 - 1027 . doi: 10.11777/j.issn1000-3304.2022.22380 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22380
Martin T. G. ; Dietz H. Magnesium-free self-assembly of multi-layer DNA objects . Nat. Commun. , 2012 , 3 , 1103 . doi: 10.1038/ncomms2095 http://dx.doi.org/10.1038/ncomms2095
Liu Y. ; Dai Z. ; Xie X. ; Li B. ; Jia S. ; Li Q. ; Li M. ; Fan C. ; Liu X. Spacer-programmed two-dimensional DNA origami assembly . J Am Chem Soc , 2024 , 146 ( 8 ), 5461 - 5469 . doi: 10.1021/jacs.3c13180 http://dx.doi.org/10.1021/jacs.3c13180
Wang R. S. ; Kuzuya A. ; Liu W. Y. ; Seeman N. C. Blunt-ended DNA stacking interactions in a 3-helix motif . Chem. Commun. , 2010 , 46 ( 27 ), 4905 - 4907 . doi: 10.1039/c0cc01167c http://dx.doi.org/10.1039/c0cc01167c
王文星 , 柳华杰 , 王一丁 , 杨洋 , 刘冬生 . 圆二色谱法研究碱基错配对G-quadruplex稳定性的影响 . 高分子学报 , 2008 , ( 1 ), 55 - 61 . doi: 10.3321/j.issn:1000-3304.2008.01.009 http://dx.doi.org/10.3321/j.issn:1000-3304.2008.01.009
Rossi-Gendron C. ; El Fakih F. ; Bourdon L. ; Nakazawa K. ; Finkel J. ; Triomphe N. ; Chocron L. ; Endo M. ; Sugiyama H. ; Bellot G. ; Morel M. ; Rudiuk S. ; Baigl D. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures . Nat. Nanotechnol. , 2023 , 18 ( 11 ), 1311 - 1318 . doi: 10.1038/s41565-023-01468-2 http://dx.doi.org/10.1038/s41565-023-01468-2
方维娜 , 樊春海 , 柳华杰 . pH对DNA折纸纳米结构折叠与溶液稳定性的影响 . 高分子学报 , 2017 , ( 12 ), 1994 - 2001 . doi: 10.11777/j.issn1000-3304.2017.17064 http://dx.doi.org/10.11777/j.issn1000-3304.2017.17064
Gerling T. ; Wagenbauer K. F. ; Neuner A. M. ; Dietz H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components . Science , 2015 , 347 ( 6229 ), 1446 - 1452 . doi: 10.1126/science.aaa5372 http://dx.doi.org/10.1126/science.aaa5372
Agarwala P. ; Pal A. ; Hazra M. K. ; Sasmal D. K. Differential Mg 2+ deposition on DNA Holliday Junctions dictates the rate and stability of conformational exchange . Nanoscale , 2024 , 17 ( 1 ), 520 - 532 . doi: 10.1039/d4nr02411g http://dx.doi.org/10.1039/d4nr02411g
Banerjee A. ; Anand M. ; Kalita S. ; Ganji M. Single-molecule analysis of DNA base-stacking energetics using patterned DNA nanostructures . Nat. Nanotechnol. , 2023 , 18 ( 12 ), 1474 - 1482 . doi: 10.1038/s41565-023-01485-1 http://dx.doi.org/10.1038/s41565-023-01485-1
Fischer F. ; Henning-Knechtel A. ; Mertig M. Investigating the aggregation behaviour of DNA origami frames . Phys. Status Solidi A , 2015 , 212 ( 6 ), 1375 - 1381 . doi: 10.1002/pssa.201431931 http://dx.doi.org/10.1002/pssa.201431931
Kuzuya A. ; Komiyama M. DNA origami: fold, stick, and beyond . Nanoscale , 2010 , 2 ( 3 ), 310 - 322 . doi: 10.1039/b9nr00246d http://dx.doi.org/10.1039/b9nr00246d
Berengut J. F. ; Berg W. R. ; Rizzuto F. J. ; Lee L. K. Passivating blunt-ended helices to control monodispersity and multi-subunit assembly of DNA origami structures . Small Struct. , 2024 , 5 ( 4 ), 2470015 . doi: 10.1002/sstr.202300441 http://dx.doi.org/10.1002/sstr.202300441
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构