浏览全部资源
扫码关注微信
四川大学化学学院 环保型高分子材料国家地方联合工程实验室 环境友好高分子材料教育部工程研究中心 成都 610064
E-mail: xiuliwang1@163.com
收稿日期:2025-04-10,
录用日期:2025-04-29,
网络出版日期:2025-06-05,
纸质出版日期:2025-08-20
移动端阅览
蔡京燕, 刘璟宏, 汪秀丽. 基于酚羟基动态网络的阻燃环氧树脂构建及其性能协同优化. 高分子学报, 2025, 56(8), 1416-1425
Cai, J. Y.; Liu, J. H.; Wang, X. L. Fabrication of flame-retardant epoxy resins based on phenolic-hydroxyl dynamic networks and synergistic optimization of its properties. Acta Polymerica Sinica, 2025, 56(8), 1416-1425
蔡京燕, 刘璟宏, 汪秀丽. 基于酚羟基动态网络的阻燃环氧树脂构建及其性能协同优化. 高分子学报, 2025, 56(8), 1416-1425 DOI: 10.11777/j.issn1000-3304.2025.25095. CSTR: 32057.14.GFZXB.2025.7408.
Cai, J. Y.; Liu, J. H.; Wang, X. L. Fabrication of flame-retardant epoxy resins based on phenolic-hydroxyl dynamic networks and synergistic optimization of its properties. Acta Polymerica Sinica, 2025, 56(8), 1416-1425 DOI: 10.11777/j.issn1000-3304.2025.25095. CSTR: 32057.14.GFZXB.2025.7408.
阻燃环氧Vitrimer虽然在提升环氧树脂可再加工性方面取得良好进展,但通常以牺牲阻燃材料的热稳定性和机械性能为代价,严重限制了其在实际中的应用. 本研究通过引入具有刚性多苯环结构且含磷和酚羟基的10-(2
5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)作为阻燃共固化剂,成功制备了一种基于动态酯交换反应的可再加工本征阻燃环氧树脂(ODOPB/EV). ODOPB的引入显著提升了材料的综合性能:0.3ODOPB/EV的拉伸强度达到75.2 MPa,较未改性体系提高90%;初始分解温度提升至343 ℃,较未改性体系提高18 ℃;0.3ODOPB/EV通过UL-94 V-0等级,相较于未改性体系其峰值热释放速率和总热释放量分别降低47%和36%. 该环氧树脂在200 ℃下的弛豫时间仅为241 s,具有优异的动态性能.该环氧树脂在阻燃性、热稳定性、力学性能和可再加工性之间取得良好平衡.
Although some progresses have been made for flame retardant epoxy vitrimer
its actual application is seriously limited at the cost of sacrificing the thermal stability and mechanical properties of flame retardant materials. In this study
10-(2
5-dihydroxyphenyl)-10-hydrogen-9-oxa-10-phosphaphenanthrene-10-oxide (ODOPB)
which has a rigid polyphenyl ring structure and simultaneously containing phosphorus and phenolic hydroxyl groups
was introduced as a flame retardant co-curing agent. A reprocessable intrinsic flame retardant epoxy resin based on dynamic transesterification reaction (ODOPB/EV) was successfully prepared. The introduction of ODOPB significantly improves the comprehensive properties of the material: the tensile strength of 0.3ODOPB/EV reaches 75.2 MPa
which is nearly 90% higher than that of the unmodified system; the initial decomposition temperature increases to 343 ℃
which is 18 ℃ higher than that of the unmodified system; compared with the unmodified system
the peak heat release rate and total heat release of 0.3ODOPB/EV are reduced by 47% and 36% respectively. The relaxation time of the epoxy resin at 200 ℃ is only 241 s
which has excellent dynamic properties. The epoxy resin has a good balance between flame retardancy
thermal stability
mechanical properties and reprocessability.
牛浩鑫 , 王鑫 , 宋磊 , 胡源 . 本征阻燃生物基环氧树脂研究进展 . 高分子学报 , 2022 , 53 ( 8 ), 894 - 905 .
Shao Z. B. ; Cui J. ; Lin X. B. ; Li X. L. ; Jian R. K. ; Wang D. Y. In-situ coprecipitation formed Fe/Zn-layered double hydroxide/ammonium polyphosphate hybrid material for flame retardant epoxy resin via synergistic catalytic charring . Compos. Part A Appl. Sci. Manuf. , 2022 , 155 , 106841 . doi: 10.1016/j.compositesa.2022.106841 http://dx.doi.org/10.1016/j.compositesa.2022.106841
Xiao F. ; Fontaine G. ; Bourbigot S. A highly efficient intumescent polybutylene succinate: flame retardancy and mechanistic aspects . Polym. Degrad. Stab. , 2022 , 196 , 109830 . doi: 10.1016/j.polymdegradstab.2022.109830 http://dx.doi.org/10.1016/j.polymdegradstab.2022.109830
Cuminet F. ; Vanachte N. ; Farina C. ; Denis M. ; Negrell C. ; Caillol S. ; Dantras É. ; Leclerc É. ; Ladmiral V. Phosphorus acid: an asset for flame-retardant sustainable vitrimers . Polym. Chem. , 2024 , 15 ( 12 ), 1212 - 1226 . doi: 10.1039/d3py01328f http://dx.doi.org/10.1039/d3py01328f
马晶 , 龚岳 , 郑冠祺 , 付腾 , 汪秀丽 . " 三源一体" 皮革基膨胀阻燃剂的制备及其在热塑性聚氨酯弹性体中的应用研究 . 高分子学报 , 2024 , 55 ( 11 ), 1575 - 1585 .
Ren Q. R. ; Gu S. ; Liu J. H. ; Wang Y. Z. ; Chen L. Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites . Polym. Degrad. Stab. , 2023 , 211 , 110315 . doi: 10.1016/j.polymdegradstab.2023.110315 http://dx.doi.org/10.1016/j.polymdegradstab.2023.110315
Chen L. ; Wang Y. Z. Recyclable flame-retardant thermosets and their fiber-reinforced composites . Macromolecules , 2024 , 57 ( 20 ), 9498 - 9517 . doi: 10.1021/acs.macromol.4c00996 http://dx.doi.org/10.1021/acs.macromol.4c00996
Ren J. Y. ; Wang Y. X. ; Piao J. X. ; Cui J. H. ; Guan H. C. ; Jiao C. M. ; Chen X. L. Facile construction of phosphorus-free and green organic-inorganic hybrid flame-retardant system: for improving fire safety of EP . Prog. Org. Coat. , 2023 , 179 , 107489 . doi: 10.1016/j.porgcoat.2023.107489 http://dx.doi.org/10.1016/j.porgcoat.2023.107489
陈琳 , 吴嘉宁 , 倪延朋 , 付腾 , 吴志正 , 汪秀丽 , 王玉忠 . 苯酰亚胺结构对PET阻燃抗熔滴及抑烟的贡献 . 高分子学报 , 2017 , 48 ( 7 ), 1207 - 1214 . doi: 10.11777/j.issn1000-3304.2017.17079 http://dx.doi.org/10.11777/j.issn1000-3304.2017.17079
汪东 , 李丽英 , 柯红军 , 许孔力 , 卢山 , 龚文化 , 张欢 , 王国勇 , 赵英民 , 赵宁 . 高性能可回收环氧树脂及其复合材料的制备与性能研究 . 高分子学报 , 2020 , 51 ( 3 ), 303 - 310 . doi: 10.11777/j.issn1000-3304.2019.19167 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19167
刘雪辉 , 徐世美 , 张帆 , 汪秀丽 , 王玉忠 . 高分子材料的化学升级回收 . 高分子学报 , 2022 , 53 ( 9 ), 1005 - 1022 . doi: 10.11777/j.issn1000-3304.2022.22119 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22119
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Chen J. H. ; Lu J. H. ; Pu X. L. ; Chen L. ; Wang Y. Z. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification . Chemosphere , 2022 , 294 , 133778 . doi: 10.1016/j.chemosphere.2022.133778 http://dx.doi.org/10.1016/j.chemosphere.2022.133778
Zhang Y. R. ; Gu S. ; Wang Y. Z. ; Chen L. Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites . Sustain. Mater. Technol. , 2024 , 40 , e00883 . doi: 10.1016/j.susmat.2024.e00883 http://dx.doi.org/10.1016/j.susmat.2024.e00883
Dong, A. Q.;, Liu, Q. G.;, Yao, H. R.;, Ma, J. H.;, Cheng, J.;, Zhang, J. Y. Epoxy vitrimer with excellent mechanical properties and high T g for detachable structural adhesives . ACS Appl. Mater. Interfaces , 2025 , 17 ( 9 ), 14578 - 14590 . doi: 10.1021/acsami.4c22337 http://dx.doi.org/10.1021/acsami.4c22337
Albertini E. ; Dalle Vacche S. ; Bongiovanni R. ; Bianco I. ; Blengini G. A. ; Vitale A. Biobased and reprocessable vitrimers based on cardanol-derived epoxy for more sustainable thermosets . ACS Sustain. Chem. Eng. , 2025 , 13 ( 5 ), 2120 - 2131 . doi: 10.1021/acssuschemeng.4c09035 http://dx.doi.org/10.1021/acssuschemeng.4c09035
Ding X. M. ; Chen L. ; Luo X. ; He F. M. ; Xiao Y. F. ; Wang Y. Z. Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability . Chin. Chem. Lett. , 2022 , 33 ( 6 ), 3245 - 3248 . doi: 10.1016/j.cclet.2021.10.079 http://dx.doi.org/10.1016/j.cclet.2021.10.079
Zhang Y. H. ; Zhang L. ; Yang G. T. ; Yao Y. L. ; Wei X. ; Pan T. C. ; Wu J. T. ; Tian M. F. ; Yin P. G. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks . J. Mater. Sci. Technol. , 2021 , 92 , 75 - 87 . doi: 10.1016/j.jmst.2021.03.043 http://dx.doi.org/10.1016/j.jmst.2021.03.043
Yang Y. ; Xu Y. S. ; Ji Y. ; Wei Y. Functional epoxy vitrimers and composites . Prog. Mater. Sci. , 2021 , 120 , 100710 . doi: 10.1016/j.pmatsci.2020.100710 http://dx.doi.org/10.1016/j.pmatsci.2020.100710
Tratnik N. ; Tanguy N. R. ; Yan N. Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds . Chem. Eng. J. , 2023 , 451 , 138610 . doi: 10.1016/j.cej.2022.138610 http://dx.doi.org/10.1016/j.cej.2022.138610
Berner V. ; Huegun A. ; Hammer L. ; Cristadoro A. M. ; Höhne C. C. Thermal and flame retardant properties of recyclable disulfide based epoxy vitrimers . Polym. Degrad. Stab. , 2025 , 233 , 111145 . doi: 10.1016/j.polymdegradstab.2024.111145 http://dx.doi.org/10.1016/j.polymdegradstab.2024.111145
Gu S. ; Xiao Y. F. ; Tan S. H. ; Liu B. W. ; Guo D. M. ; Wang Y. Z. ; Chen L. Neighboring molecular engineering in Diels-alder chemistry enabling easily recyclable carbon fiber reinforced composites . Angew. Chem. Int. Ed. , 2023 , 62 ( 51 ), e 202312638 . doi: 10.1002/anie.202312638 http://dx.doi.org/10.1002/anie.202312638
Gu S. ; Xu S. D. ; Lu J. H. ; Pu X. L. ; Ren Q. R. ; Xiao Y. F. ; Wang Y. Z. ; Chen L. Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites . EcoMat , 2023 , 5 ( 9 ), e 12388 . doi: 10.1002/eom2.12388 http://dx.doi.org/10.1002/eom2.12388
Denissen W. ; Winne J. M. ; Du PrezF. E. Vitrimers: permanent organic networks with glass-like fluidity . Chem. Sci. , 2016 , 7 ( 1 ), 30 - 38 . doi: 10.1039/c5sc02223a http://dx.doi.org/10.1039/c5sc02223a
Scheutz G. M. ; Lessard J. J. ; Sims M. B. ; Sumerlin B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets . J. Am. Chem. Soc. , 2019 , 141 ( 41 ), 16181 - 16196 . doi: 10.1021/jacs.9b07922 http://dx.doi.org/10.1021/jacs.9b07922
Yang S. J. ; Liu W. X. ; Guo J. ; Yang Z. S. ; Qiao Z. ; Zhang C. G. ; Li J. K. ; Xu J. ; Zhao N. Direct and catalyst-free ester metathesis reaction for covalent adaptable networks . J. Am. Chem. Soc. , 2023 , 145 ( 38 ), 20927 - 20935 . doi: 10.1021/jacs.3c06262 http://dx.doi.org/10.1021/jacs.3c06262
Ube T. ; Kawasaki K. ; Ikeda T. Photomobile liquid-crystalline elastomers with rearrangeable networks . Adv. Mater. , 2016 , 28 ( 37 ), 8212 - 8217 . doi: 10.1002/adma.201602745 http://dx.doi.org/10.1002/adma.201602745
Li W. B. ; Xiao L. H. ; Huang J. R. ; Wang Y. G. ; Nie X. A. ; Chen J. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: synthesis and structure-property relationship . Compos. Sci. Technol. , 2022 , 227 , 109575 . doi: 10.1016/j.compscitech.2022.109575 http://dx.doi.org/10.1016/j.compscitech.2022.109575
Yao Y. C. ; Cao Z. L. ; Huang N. K. ; Yu M. ; Tan J. H. ; Zhu X. B. Catalyst-free Gallic acid-based epoxy vitrimers with reprocessability and high glass transition temperature . Polymer , 2024 , 311 , 127462 . doi: 10.1016/j.polymer.2024.127462 http://dx.doi.org/10.1016/j.polymer.2024.127462
Ren Q. R. ; Gu S. ; Wang Y. Z. ; Chen L. A phosphonate-derived epoxy vitrimer with intrinsic flame retardancy and catalyst-free reprocessability . J. Polym. Sci. , 2024 , 62 ( 14 ), 3195 - 3205 . doi: 10.1002/pol.20230211 http://dx.doi.org/10.1002/pol.20230211
Lu J. H. ; Li Z. ; Chen J. H. ; Li S. L. ; He J. H. ; Gu S. ; Liu B. W. ; Chen L. ; Wang Y. Z. Adaptable phosphate networks towards robust, reprocessable, weldable, and alertable-yet-extinguishable epoxy vitrimer . Research , 2022 , 2022 , 9846940 . doi: 10.34133/2022/9846940 http://dx.doi.org/10.34133/2022/9846940
Chen J. H. ; Liu B. W. ; Lu J. H. ; Lu P. ; Tang Y. L. ; Chen L. ; Wang Y. Z. Catalyst-free dynamic transesterification towards a high-performance and fire-safe epoxy vitrimer and its carbon fiber composite . Green Chem. , 2022 , 24 ( 18 ), 6980 - 6988 . doi: 10.1039/d2gc01405j http://dx.doi.org/10.1039/d2gc01405j
0
浏览量
90
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构