浏览全部资源
扫码关注微信
1.大连工业大学纺织与材料工程学院 大连 116034
2.大连工业大学实验仪器中心 大连 116034
E-mail: yjzhang@dlpu.edu.cn
收稿日期:2025-04-11,
录用日期:2025-06-16,
网络出版日期:2025-07-09,
移动端阅览
王诗雨, 张璇玮, 李晓佩, 高世纪, 张勇杰. 高性能、低成本动态共价键/离子键双重交联聚烯烃制备与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25096
Wang S. Y.; Zhang, X. W.; Li, X. P.; Gao, S. J.; Zhang, Y. J. High-performance, low-cost polyolefins based on dynamic covalent bonds and ionic bonds dual cross-linking. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25096
王诗雨, 张璇玮, 李晓佩, 高世纪, 张勇杰. 高性能、低成本动态共价键/离子键双重交联聚烯烃制备与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25096 DOI: CSTR: 32057.14.GFZXB.2025.7439.
Wang S. Y.; Zhang, X. W.; Li, X. P.; Gao, S. J.; Zhang, Y. J. High-performance, low-cost polyolefins based on dynamic covalent bonds and ionic bonds dual cross-linking. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25096 DOI: CSTR: 32057.14.GFZXB.2025.7439.
交联聚烯烃的力学性能、热性能、电气性能、耐溶剂性能十分优异,在电缆绝缘、热收缩管等领域应用广泛;但传统交联聚烯烃具有不可逆的三维交联网络结构,服役后交联聚烯烃无法进行回收再利用,造成环境污染及资源浪费. 类玻璃体高分子(vitrimer)是一种具有可逆动态交联网络结构的新型高分子材料,兼具热塑性聚合物的可再加工特性以及热固性聚合物优良的力学性能、热性能、耐溶剂性能,得到了学术界与产业界的广泛关注. 作为下一代交联聚烯烃,聚烯烃基类玻璃体高分子取得了丰硕研究成果. 然而,低成本、高性能聚烯烃基类玻璃体高分子的实用制备仍面临挑战. 相较于单重交联网络,双重交联网络结构赋予了类玻璃体高分子更大的综合性能调控空间. 本文以富含反应性羧基的商品化大宗产品乙烯-丙烯酸共聚物(EAA)为原料,以生物基环氧大豆油(ESO)和氧化锌为交联剂,通过一步反应性共混制备出具备
β
-羟基酯和羧酸锌双重动态交联结构的EAA基类玻璃体高分子(EAA-ESO-ZnO). 红外分析和溶胀测试证实了共价键交联网络和离子键交联网络的形成. 动态热机械分析(DMA)表明,EAA-ESO-ZnO具有典型交联聚合物的动态机械性能及优异的高温耐蠕变性能,证明其具有三维交联网络结构. 通过应力松弛实验,估算得到键交换活化能为70.8 kJ·mol
-1
,与文献值接近. 相较于EAA,EAA-ESO-ZnO的拉伸强度和弹性模量分别提高了41.8%和54.5%. 经过3次再加工,EAA-ESO-ZnO的拉伸强度提升13.8%,断裂伸长率保持率达92.0%,证明其具有优异的再加工性能. 综上所述,本文提出了一种低成本、高性能聚烯烃基类玻璃体高分子的高效、易放大的制备路线,为可循环利用交联聚烯烃的制备提供了新思路.
Cross-linked polyolefins possess excellent mechanical properties
thermal properties
electrical properties
and solvent resistance
thus widely used in diverse fields such as cable insulation and heat shrinkable tubes. However
traditional cross-linked polyolefins have an irreversible three-dimensional cross-linked network structure. Post-consumption cross-linked polyolefins cannot be recycled or reused
resulting in environmental pollution and resource wastage. Vitrimer
a type of novel polymer material
has a reversible dynamic cross-linked network structure. It combines the reprocessability of thermoplastic polymers with the excellent mechanical properties
thermal properties
and solvent resistance of thermosetting polymers
thus attracting extensive attention from both the academia and industry. As the emerging next-generation cross-linked polyolefin
polyolefin-based vitrimer has achieved fruitful research results. Nevertheless
the practical preparation of polyolefin-based vitrimer with low cost and high performance remains a challenging task. Compared with a single cross-linked network
a dual cross-linked network structure endows vitrimers with easily adjustable comprehensive properties. In this study
starting from commodity ethylene acrylic acid copolymer (EAA) with abundant reactive carboxyl groups
bio-based epoxidized soybean oil (ESO)
and zinc oxide
a dual cross-linked EAA-based vitrimer (EAA-ESO-ZnO) with dynamic
β
-hydroxy ester and zinc carboxylate cross-linkages was prepared through a one-step reactive blending approach. FTIR analysis and gel fraction testing confirmed the formation of covalently and ionically cross-linked networks of EAA-ESO-ZnO. Dynamic mechanical analysis (DMA) revealed that EAA-ESO-ZnO exhibit
ed the dynamic mechanical properties of typical cross-linked polymers and excellent creep resistance at high temperatures
confirming the presence of a three-dimensional cross-linked network structure. Through stress relaxation experiments
the bond exchange activation energy was estimated to be 70.8 kJ·mol
-1
which is close to the reported value. Compared with EAA
the tensile strength and Young's modulus of EAA-ESO-ZnO increased by 41.8% and 54.5%
respectively. After being reprocessed three times
the tensile strength of EAA-ESO-ZnO increased by 13.8%
and the retention rate of the elongation at break reached 92.0%
demonstrating excellent reprocessing performance. In conclusion
this study proposes an efficient and easily scalable preparation route for polyolefin-based vitrimer with low cost and high performance
providing a new avenue for the preparation of reprocessable cross-linked polyolefins.
Shapiro A. J. ; Brigandi P. J. ; Moubarak M. ; Sengupta S. S. ; Epps T. H. 3rd . Cross-linked polyolefins: opportunities for fostering circularity throughout the materials lifecycle. ACS Appl. Polym. Mater. , 2024 , 6 ( 19 ), 11859 - 11876 . doi: 10.1021/acsapm.4c01959 http://dx.doi.org/10.1021/acsapm.4c01959
Zheng P. W. ; McCarthy T. J. A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism . J. Am. Chem. Soc. , 2012 , 134 ( 4 ), 2024 - 2027 . doi: 10.1021/ja2113257 http://dx.doi.org/10.1021/ja2113257
Schmolke W. ; Perner N. ; Seiffert S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing . Macromolecules , 2015 , 48 ( 24 ), 8781 - 8788 . doi: 10.1021/acs.macromol.5b01666 http://dx.doi.org/10.1021/acs.macromol.5b01666
Saed M. O. ; Terentjev E. M. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers . Sci. Rep. , 2020 , 10 ( 1 ), 6609 . doi: 10.1038/s41598-020-63508-4 http://dx.doi.org/10.1038/s41598-020-63508-4
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Capelot M. ; Montarnal D. ; Tournilhac F. ; Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets . J. Am. Chem. Soc. , 2012 , 134 ( 18 ), 7664 - 7667 . doi: 10.1021/ja302894k http://dx.doi.org/10.1021/ja302894k
da Cunha R. B. ; Brito L. B. Q. ; Agrawal P. ; de Figueiredo Brito G. ; de Mélo T. J. A. Recyclable catalyst-free elastomeric vitrimers: dynamic covalent bonds in ethylene-glycidyl methacrylate/zinc ionomer of ethylene/methacrylic acid blends . Macromolecules , 2024 , 16 , 7953 - 7969 . doi: 10.1021/acs.macromol.4c01373 http://dx.doi.org/10.1021/acs.macromol.4c01373
Verdugo P. ; Santiago D. ; De la Flor S. ; Serra À. A biobased epoxy vitrimer with dual relaxation mechanism: a promising material for renewable, reusable, and recyclable adhesives and composites . ACS Sustainable Chem. Eng. , 2024 , 12 ( 15 ), 5965 - 5978 . doi: 10.1021/acssuschemeng.4c00205 http://dx.doi.org/10.1021/acssuschemeng.4c00205
Trinh T. E. ; Ku K. ; Yeo H. Dependence of thermal conductivity and reprocessability on the polymerization system for liquid crystalline epoxy vitrimers . ACS Appl. Polym. Mater. , 2024 , 6 ( 21 ), 13228 - 13237 . doi: 10.1021/acsapm.4c02370 http://dx.doi.org/10.1021/acsapm.4c02370
Stewart, K. A.;, Le, T. H.;, Wei, N. B.;, Cantor, A. J.;, Rynk, J. F.;, Sumerlin, B. S. Biobased polystyrene vitrimers for thermoset circularity . ACS Appl. Polym. Mater. , 2024 , 6 ( 21 ), 13034 - 13041 . doi: 10.1021/acsapm.4c01900 http://dx.doi.org/10.1021/acsapm.4c01900
Wang M. Y. ; Dong W. T. ; Lu X. ; Zhao H. Y. ; Yang Q. ; Yan B. Stable and strong lignocellulosic polyimide vitrimers with good reprocessability and closed-loop recyclability . Ind. Eng. Chem. Res. , 2024 , 63 ( 46 ), 20179 - 20190 . doi: 10.1021/acs.iecr.4c03103 http://dx.doi.org/10.1021/acs.iecr.4c03103
Wu L. S. ; Liu J. ; Wang T. T. ; Luo Z. H. ; Zhou Y. N. Synthesis of cross-linkable norbornenyl copolymers via ROMP for fabricating cyclic olefin vitrimers . ACS Appl. Polym. Mater. , 2024 , 6 ( 20 ), 12598 - 12605 . doi: 10.1021/acsapm.4c02162 http://dx.doi.org/10.1021/acsapm.4c02162
Damonte G. ; Pellis A. ; Battegazzore D. ; Athanassiou A. ; Zych A. ; Fina A. ; Monticelli O. On sustainable vitrimers based on polycaprolactones . ACS Appl. Polym. Mater. , 2024 , 6 ( 7 ), 3875 - 3882 . doi: 10.1021/acsapm.3c03192 http://dx.doi.org/10.1021/acsapm.3c03192
Png Z. M. ; Wang S. ; Yeo J. C. C. ; Raveenkumar V. ; Muiruri J. K. ; Quek X. C. N. ; Yu X. H. ; Li K. ; Li Z. B. Reversible vitrimisation of single-use plastics and their mixtures . Adv. Funct. Mater. , 2025 , 35 ( 1 ), 2410291 . doi: 10.1002/adfm.202410291 http://dx.doi.org/10.1002/adfm.202410291
Zhang L. Z. ; Liu Z. H. ; Sun L. J. ; Xiao L. J. ; Guan Q. B. ; You Z. W. Simple solvent-free strategy for synthesizing covalent adaptable networks from commodity vinyl monomers . Macromolecules , 2021 , 54 ( 9 ), 4081 - 4088 . doi: 10.1021/acs.macromol.0c02766 http://dx.doi.org/10.1021/acs.macromol.0c02766
Ahmadi M. ; Hanifpour A. ; Ghiassinejad S. ; van Ruymbeke E. Polyolefins vitrimers: design principles and applications . Chem. Mater. , 2022 , 34 ( 23 ), 10249 - 10271 . doi: 10.1021/acs.chemmater.2c02853 http://dx.doi.org/10.1021/acs.chemmater.2c02853
Li Z. ; Wen Y. X. ; Song Z. ; Zhang C. ; Cui C. H. ; An D. X. ; Ge Z. S. ; Cheng Y. L. ; Zhang Q. ; Zhang Y. F. Dynamic cross-linked polyethylene networks with high energy storage and electrical damage self-healability . ACS Macro Lett. , 2023 , 12 ( 10 ), 1409 - 1415 . doi: 10.1021/acsmacrolett.3c00394 http://dx.doi.org/10.1021/acsmacrolett.3c00394
Ouyang Y. W. ; Mauri M. ; Pourrahimi A. M. ; Östergren I. ; Lund A. ; Gkourmpis T. ; Prieto O. ; Xu X. D. ; Hagstrand P. O. ; Müller C. Recyclable polyethylene insulation via reactive compounding with a maleic anhydride-grafted polypropylene . ACS Appl. Polym. Mater. , 2020 , 2 ( 6 ), 2389 - 2396 . doi: 10.1021/acsapm.0c00320 http://dx.doi.org/10.1021/acsapm.0c00320
Zhao Y. B. ; Mao H. D. ; Zhang T. T. ; Guo Z. Y. ; Bai D. Y. ; Bai H. W. ; Zhang Q. ; Xiu H. ; Fu Q. Mechanically robust, heat-resistant, and reprocessable polyethylene vitrimers cross-linked by β-hydroxy ester bonds via reactive processing . Ind. Eng. Chem. Res. , 2022 , 61 ( 35 ), 13126 - 13135 . doi: 10.1021/acs.iecr.2c02066 http://dx.doi.org/10.1021/acs.iecr.2c02066
Ji F. C. ; Liu X. D. ; Lin C. H. ; Zhou Y. ; Dong L. ; Xu S. B. ; Sheng D. K. ; Yang Y. M. Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect . Macromol. Mater. Eng. , 2019 , 304 ( 3 ), 1800528 . doi: 10.1002/mame.201800528 http://dx.doi.org/10.1002/mame.201800528
Zhang J. C. ; Li X. P. ; Zhang S. B. ; Zhu W. Q. ; Li S. H. ; Zhang Y. J. ; Hu Y. M. ; Zhou G. Y. Facile approach for the preparation of robust and thermally stable silyl ether cross-linked poly(ethylene-vinyl acetate) vitrimers . ACS Appl. Polym. Mater. , 2023 , 5 ( 10 ), 8379 - 8386 . doi: 10.1021/acsapm.3c01516 http://dx.doi.org/10.1021/acsapm.3c01516
Guo H. C. ; Yue L. ; Rui G. C. ; Manas-Zloczower I. Recycling poly(ethylene-vinyl acetate) with improved properties through dynamic cross-linking . Macromolecules , 2020 , 53 ( 1 ), 458 - 464 . doi: 10.1021/acs.macromol.9b02281 http://dx.doi.org/10.1021/acs.macromol.9b02281
Cheng L. ; Liu S. J. ; Yu W. Recyclable ethylene-vinyl acetate copolymer vitrimer foams . Polymer , 2021 , 222 , 123662 . doi: 10.1016/j.polymer.2021.123662 http://dx.doi.org/10.1016/j.polymer.2021.123662
Sobhan A. ; Ahirekar V. ; Hoff M. ; Muthukumarappan K. Derivation and characterization of epoxidized soybean oil and epoxy resin film produced using a three step-washing neutralization process . Ind. Crops Prod. , 2023 , 198 , 116675 . doi: 10.1016/j.indcrop.2023.116675 http://dx.doi.org/10.1016/j.indcrop.2023.116675
Porcarello M. ; Mendes-Felipe C. ; Lanceros-Mendez S. ; Sangermano M. Design of acrylated epoxidized soybean oil biobased photo-curable formulations for 3D printing . Sustain. Mater. Technol. , 2024 , 40 , e00927 . doi: 10.1016/j.susmat.2024.e00927 http://dx.doi.org/10.1016/j.susmat.2024.e00927
Zhao F. ; Xu R. L. ; Zhang X. ; Zheng J. W. ; Liu W. ; Zhao S. ; Li L. Research on toughening polylactic acid by an epoxy soybean oil curing network based on dynamic cross-linking . ACS Sustainable Chem. Eng. , 2024 , 12 ( 30 ), 11347 - 11360 . doi: 10.1021/acssuschemeng.4c03569 http://dx.doi.org/10.1021/acssuschemeng.4c03569
Lucherelli M. A. ; Duval A. ; Avérous L. Biobased vitrimers: towards sustainable and adaptable performing polymer materials . Prog. Polym. Sci. , 2022 , 127 , 101515 . doi: 10.1016/j.progpolymsci.2022.101515 http://dx.doi.org/10.1016/j.progpolymsci.2022.101515
中国产业研究报告网 . 2024-2030年中国乙烯-丙烯酸共聚物(eaa)行业深度研究与投资战略咨询报告 . 化工类研究报告 , 2024 .
Li M. ; Zhang M. Y. ; Lei W. X. ; Lv Z. T. ; Shang Q. H. ; Zhao Z. ; Li J. T. ; Cheng Y. L. Tough polymeric hydrogels based on amino acid derivative mediated dynamic metal coordination bonds . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1578 - 1588 . doi: 10.1007/s10118-024-3177-6 http://dx.doi.org/10.1007/s10118-024-3177-6
Kar G. P. ; Saed M. O. ; Terentjev E. M. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification . J. Mater. Chem. A , 2020 , 8 ( 45 ), 24137 - 24147 . doi: 10.1039/d0ta07339c http://dx.doi.org/10.1039/d0ta07339c
Meng F. L. ; Saed M. O. ; Terentjev E. M. Rheology of vitrimers . Nat. Commun. , 2022 , 13 , 5753 . doi: 10.1038/s41467-022-33321-w http://dx.doi.org/10.1038/s41467-022-33321-w
Wang Z. Y. ; Jiang B. ; Zhang Y. H. ; Li X. F. ; Wang Y. P. ; Shang Y. S. ; Zhang H. B. Influence of crosslink density on thermal, mechanical and dielectric properties of cross-linked fluorinated poly(aryl ether)s . Eur. Polym. J. , 2022 , 172 , 111244 . doi: 10.1016/j.eurpolymj.2022.111244 http://dx.doi.org/10.1016/j.eurpolymj.2022.111244
Zhao H. ; Li K. C. ; Wu W. ; Li Q. ; Jiang Y. ; Cheng B. X. ; Huang C. X. ; Li H. N. Microstructure and viscoelastic behavior of waterborne polyurethane/cellulose nanofiber nanocomposite . J. Ind. Eng. Chem. , 2022 , 110 , 150 - 157 . doi: 10.1016/j.jiec.2022.02.048 http://dx.doi.org/10.1016/j.jiec.2022.02.048
Martucci J. F. ; Ruseckaite R. A. ; Vázquez A. Creep of glutaraldehyde-crosslinked gelatin films . Mater. Sci. Eng. A , 2006 , 435 , 681 - 686 . doi: 10.1016/j.msea.2006.07.097 http://dx.doi.org/10.1016/j.msea.2006.07.097
Hubbard A. M. ; Ren Y. X. ; Picu C. R. ; Sarvestani A. ; Konkolewicz D. ; Roy A. K. ; Varshney V. ; Nepal D. Creep mechanics of epoxy vitrimer materials . ACS Appl. Polym. Mater. , 2022 , 4 ( 6 ), 4254 - 4263 . doi: 10.1021/acsapm.2c00230 http://dx.doi.org/10.1021/acsapm.2c00230
Concilio M. ; Sulley G. S. ; Vidal F. ; Brown S. ; Williams C. K. Precise carboxylic acid-functionalized polyesters in reprocessable vitrimers . J. Am. Chem. Soc. , 2025 , 147 ( 8 ), 6492 - 6502 . doi: 10.1021/jacs.4c14032 http://dx.doi.org/10.1021/jacs.4c14032
Lorenz, N.;, Dyer, W. E.;, Kumru, B. High-performance vitrimer entailing renewable plasticizer engineered for processability and reactivity toward composite applications . ACS Appl. Polym. Mater. , 2025 , 7 ( 3 ), 1934 - 1946 . doi: 10.1021/acsapm.4c03731 http://dx.doi.org/10.1021/acsapm.4c03731
Capelot M. ; Unterlass M. M. ; Tournilhac F. ; Leibler L. Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 , 1 ( 7 ), 789 - 792 . doi: 10.1021/mz300239f http://dx.doi.org/10.1021/mz300239f
Zou W. K. ; Dong J. T. ; Luo Y. W. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations . Adv. Mater. , 2017 , 29 ( 14 ), 1606100 . doi: 10.1002/adma.201606100 http://dx.doi.org/10.1002/adma.201606100
Denissen W. ; Rivero G. ; Nicolaÿ R. ; Leibler L. ; Winne J. M. ; Du , PrezF . E . Vinylogous urethane vitrimers. Adv. Funct. Mater. , 2015 , 25 ( 16 ), 2451 - 2457 . doi: 10.1002/adfm.201404553 http://dx.doi.org/10.1002/adfm.201404553
Cheng L. ; Zhao X. Y. ; Zhao J. ; Liu S. J. ; Yu W. Structure and dynamics of associative exchange dynamic polymer networks . Macromolecules , 2022 , 55 ( 15 ), 6598 - 6608 . doi: 10.1021/acs.macromol.2c01057 http://dx.doi.org/10.1021/acs.macromol.2c01057
Lin T. W. ; Mei B. C. ; Dutta S. ; Schweizer K. S. ; Sing C. E. Molecular dynamics simulation and theoretical analysis of structural relaxation, bond exchange dynamics, and glass transition in vitrimers . Macromolecules , 2025 , 58 ( 3 ), 1481 - 1497 . doi: 10.1021/acs.macromol.4c02659 http://dx.doi.org/10.1021/acs.macromol.4c02659
Liu Y. J. ; Tang Z. H. ; Wu S. W. ; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 , 8 ( 2 ), 193 - 199 . doi: 10.1021/acsmacrolett.9b00012 http://dx.doi.org/10.1021/acsmacrolett.9b00012
Wu J. Q. ; Yu X. ; Zhang H. ; Guo J. B. ; Hu J. ; Li M. H. Fully biobased vitrimers from glycyrrhizic acid and soybean oil for self-healing, shape memory, weldable, and recyclable materials . ACS Sustainable Chem. Eng. , 2020 , 8 ( 16 ), 6479 - 6487 . doi: 10.1021/acssuschemeng.0c01047 http://dx.doi.org/10.1021/acssuschemeng.0c01047
Yang X. X. ; Guo L. Z. ; Xu X. ; Shang S. B. ; Liu H. A fully bio-based epoxy vitrimer: self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange . Mater. Des. , 2020 , 186 , 108248 . doi: 10.1016/j.matdes.2019.108248 http://dx.doi.org/10.1016/j.matdes.2019.108248
Ash S. ; Sharma R. ; Naveed M. ; Patil S. ; Cheng S. W. ; Rabnawaz M. A continuous melt extrusion approach toward polyethylene-based vitrimers with improved crosslinking and performance . J. Appl. Polym. Sci. , 2024 , 141 ( 28 ), e 55652 . doi: 10.1002/app.55652 http://dx.doi.org/10.1002/app.55652
Bai L. ; Zheng J. P. Robust, reprocessable and shape-memory vinylogous urethane vitrimer composites enhanced by sacrificial and self-catalysis Zn(II)-ligand bonds . Compos. Sci. Technol. , 2020 , 190 , 108062 . doi: 10.1016/j.compscitech.2020.108062 http://dx.doi.org/10.1016/j.compscitech.2020.108062
Niu X. L. ; Wang F. F. ; Kui X. ; Zhang R. C. ; Wang X. L. ; Li X. H. ; Chen T. H. ; Sun P. C. ; Shi A. C. Dual cross-linked vinyl vitrimer with efficient self-catalysis achieving triple-shape-memory properties . Macromol. Rapid Commun. , 2019 , 40 ( 19 ), e 1900313 . doi: 10.1002/marc.201900313 http://dx.doi.org/10.1002/marc.201900313
Shin J. H. ; Yi M. B. ; Lee T. H. ; Kim H. J. Rapidly deformable vitrimer epoxy system with supreme stress-relaxation capabilities via coordination of solvate ionic liquids . Adv. Funct. Mater. , 2022 , 32 ( 51 ), 2207329 . doi: 10.1002/adfm.202207329 http://dx.doi.org/10.1002/adfm.202207329
Nishiie N. ; Kawatani R. ; Tezuka S. ; Mizuma M. ; Hayashi M. ; Kohsaka Y. Vitrimer-like elastomers with rapid stress-relaxation by high-speed carboxy exchange through conjugate substitution reaction . Nat. Commun. , 2024 , 15 ( 1 ), 8657 . doi: 10.1038/s41467-024-53043-5 http://dx.doi.org/10.1038/s41467-024-53043-5
Ahmad H. ; Rodrigue D. Crosslinked polyethylene: a review on the crosslinking techniques, manufacturing methods, applications, and recycling . Polym. Eng. Sci. , 2022 , 62 ( 8 ), 2376 - 2401 . doi: 10.1002/pen.26049 http://dx.doi.org/10.1002/pen.26049
Deng J. X. ; Bai R. X. ; Zhao J. ; Liu G. Q. ; Zhang Z. M. ; You W. ; Yu W. ; Yan X. Z. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks . Angew. Chem. Int. Ed , 2023 , 62 ( 37 ), e 202309058 . doi: 10.1002/anie.202309058 http://dx.doi.org/10.1002/anie.202309058
Chen Y. ; Tang Z. H. ; Liu Y. J. ; Wu S. W. ; Guo B. C. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 , 52 ( 10 ), 3805 - 3812 . doi: 10.1021/acs.macromol.9b00419 http://dx.doi.org/10.1021/acs.macromol.9b00419
Fantner G. E. ; Oroudjev E. ; Schitter G. ; Golde L. S. ; Thurner P. ; Finch M. M. ; Turner P. ; Gutsmann T. ; Morse D. E. ; Hansma H. ; Hansma P. K. Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials . Biophys. J. , 2006 , 90 ( 4 ), 1411 - 1418 . doi: 10.1529/biophysj.105.069344 http://dx.doi.org/10.1529/biophysj.105.069344
Zhou X. X. ; Guo B. C. ; Zhang L. Q. ; Hu G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials . Chem. Soc. Rev. , 2017 , 46 ( 20 ), 6301 - 6329 . doi: 10.1039/c7cs00276a http://dx.doi.org/10.1039/c7cs00276a
Yokochi H. ; O'Neill R. T. ; Abe T. ; Aoki D. ; Boulatov R. ; Otsuka H. Sacrificial mechanical bond is as effective as a sacrificial covalent bond in increasing cross-linked polymer toughness . J. Am. Chem. Soc. , 2023 , 145 ( 43 ), 23794 - 23801 . doi: 10.1021/jacs.3c08595 http://dx.doi.org/10.1021/jacs.3c08595
Tretbar C. A. ; Neal J. A. ; Guan Z. B. Direct silyl ether metathesis for vitrimers with exceptional thermal stability . J. Am. Chem. Soc. , 2019 , 141 ( 42 ), 16595 - 16599 . doi: 10.1021/jacs.9b08876 http://dx.doi.org/10.1021/jacs.9b08876
Salaeh S. ; Thongnuanchan B. ; Bueraheng Y. ; Das A. ; Kaus N. H. M. ; Wießner S. The utilization of glycerol and xylitol in bio-based vitrimer-like elastomer: toward more environmentally friendly recyclable and thermally healable crosslinked rubber . Eur. Polym. J. , 2023 , 198 , 112422 . doi: 10.1016/j.eurpolymj.2023.112422 http://dx.doi.org/10.1016/j.eurpolymj.2023.112422
Wen J. ; Wu H. T. ; Kong L. M. ; Huang Y. ; Bi X. Y. ; Wu C. W. ; Wang C. ; Wu J. R. ; Xie Z. T. A strong, tough, and recyclable styrene-butadiene rubber achieved through multiple network synergies of N -acetyl-l-cysteine . Ind. Eng. Chem. Res. , 2025 , 64 ( 7 ), 3810 - 3819 . doi: 10.1021/acs.iecr.4c04135 http://dx.doi.org/10.1021/acs.iecr.4c04135
Wang Y. X. ; Wang C. C. ; Shi Y. ; Liu L. Z. ; Bai N. ; Song L. F. Effects of dynamic crosslinking on crystallization, structure and mechanical property of ethylene-octene elastomer/EPDM blends . Polymers , 2021 , 14 ( 1 ), 139 . doi: 10.3390/polym14010139 http://dx.doi.org/10.3390/polym14010139
Niu Y. H. ; Liang W. B. ; Zhang Y. L. ; Chen X. L. ; Lai S. Y. ; Li G. X. ; Wang D. J. Crosslinking kinetics of polyethylene with small amount of peroxide and its influence on the subsequent crystallization behaviors . Chinese J. Polym. Sci. , 2016 , 34 ( 9 ), 1117 - 1128 . doi: 10.1007/s10118-016-1819-z http://dx.doi.org/10.1007/s10118-016-1819-z
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构