浏览全部资源
扫码关注微信
贵州大学材料与冶金学院高分子材料与工程系 贵州 550025
E-mail: yunqi@ciac.ac.cn
收稿日期:2025-04-17,
录用日期:2025-05-27,
网络出版日期:2025-07-09,
移动端阅览
柏康娜, 谢椿辉, 刘文涛, 犹阳, 李云琦. 聚氨酯类玻璃体应力松弛活化能的大数据解析. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25103
Bai, K. N.; Xie, C. H.; Liu, W. T.; You, Y.; Li, Y. Q. Big data approach to explore the activation energy from stress-relaxation of polyurethane vitrimers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25103
柏康娜, 谢椿辉, 刘文涛, 犹阳, 李云琦. 聚氨酯类玻璃体应力松弛活化能的大数据解析. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25103 DOI: CSTR: 32057.14.GFZXB.2025.7428.
Bai, K. N.; Xie, C. H.; Liu, W. T.; You, Y.; Li, Y. Q. Big data approach to explore the activation energy from stress-relaxation of polyurethane vitrimers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25103 DOI: CSTR: 32057.14.GFZXB.2025.7428.
含有动态共价键(DCBs)的聚氨酯类玻璃体(vitrimer)兼具热固性材料优异的服役性能和热塑性材料良好的重复成型能力,是聚氨酯材料可持续发展的重要前沿研究方向. 本研究聚焦聚氨酯类玻璃体满足Arrhenius方程的独特应力松弛行为,利用大数据方法解析了该行为活化能(
E
a
)及其与动态共价键、应力松弛实验控制参数的关系. 通过61条样本的9个特征参数,包括玻璃化转变温度(
T
g
)、拓扑冻结转变温度、动态共价键类型和含量等,利用CatBoost和SISSO算法分别构建了
E
a
的定量解析模型,CatBoost模型的决定系数高达0.998,而SISSO模型的显式关系决定系数达到0.837,说明这些特征对
E
a
具有足够的解释度. 基于这两个解析模型发现,
E
a
与满足Arrhenius方程区间的最低和最高温度,以及聚合或预聚温度正相关,与玻璃化转变温度
T
g
和应力松弛实验的初始形变呈负相关,对DCBs的类型和含量也表现出一定的依赖性. 这些发现可为深入理解聚氨酯类玻璃体的应力松弛活化能,调控热固性聚氨酯材料的重复加工成型提供指导.
The introduction of dynamic covalent bonds (DCBs) into polyurethane to form a vitrimer is an important method for sustainably developing polyurethane materials. Polyurethane vitrimer has the advantages of good mechanical and thermal properties
such as thermosets
and good malleability for thermoplastics. The
y have unique stress-relaxation behaviors that satisfy the Arrhenius equation at a given temperature window. It is interesting to know how the activation energy correlates with the types and contents of DCBs
as well as the spline preparation and measurement settings. Here
based on 61 splines with reported activation energy associated with stress relaxation (
E
a
)
glass transition temperatures (
T
g
)
partially with the topology freezing transition temperature (
T
v
)
and the temperature windows
we built regression models for
E
a
using CatBoost and SISSO algorithms
respectively. They provided a determination coefficient of 0.998 for the CatBoost-based implicit model and 0.837 for the SISSO-based explicit model. Globally
E
a
is positively correlated with the temperature window that satisfies the Arrhenius equation and the polymerization temperature and negatively correlated with
T
g
and the initial constant strain rate. Based on the current dataset
E
a
shows a weak dependence on the DCB types and their fractions in the explicit model. Overall
this study attempted to quantitatively understand the unique properties of polyurethane vitrimers
and the regression models confirmed the feasibility
while further accumulation of data and a deeper understanding of the stress-relaxation behaviors of polyurethane vitrimers are still required.
Morado E. G. ; Paterson M. L. ; Ivanoff D. G. ; Wang H. C. ; Johnson A. ; Daniels D. ; Rizvi A. ; Sottos N. R. ; Zimmerman S. C. End-of-life upcycling of polyurethanes using a room temperature, mechanism-based degradation . Nat. Chem. , 2023 , 15 ( 4 ), 569 - 577 . doi: 10.1038/s41557-023-01151-y http://dx.doi.org/10.1038/s41557-023-01151-y
Capelot M. ; Unterlass M. M. ; Tournilhac F. ; Leibler L. Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 , 1 ( 7 ), 789 - 792 . doi: 10.1021/mz300239f http://dx.doi.org/10.1021/mz300239f
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
张希 . 可多次塑型、易修复及耐低温的三维动态高分子结构 . 高分子学报 , 2016 , ( 6 ), 685 - 687 .
Kloxin C. J. ; Scott T. F. ; Adzima B. J. ; Bowman C. N. Covalent adaptable networks (CANs): a unique paradigm in crosslinked polymers . Macromolecules , 2010 , 43 ( 6 ), 2643 - 2653 . doi: 10.1021/ma902596s http://dx.doi.org/10.1021/ma902596s
Ding F. ; Liu L. Y. ; Liu T. L. ; Li Y. Q. ; Li J. P. ; Sun Z. Y. Predicting the mechanical properties of polyurethane elastomers using machine learning . Chinese J. Polym. Sci. , 2023 , 41 ( 3 ), 422 - 431 . doi: 10.1007/s10118-022-2838-6 http://dx.doi.org/10.1007/s10118-022-2838-6
Van Zee N. J. ; Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology . Prog. Polym. Sci. , 2020 , 104 , 101233 . doi: 10.1016/j.progpolymsci.2020.101233 http://dx.doi.org/10.1016/j.progpolymsci.2020.101233
Zheng J. ; Png Z. M. ; Ng S. H. ; Tham G. X. ; Ye E. Y. ; Goh S. S. ; Loh X. J. ; Li Z. B. Vitrimers: current research trends and their emerging applications . Mater. Today , 2021 , 51 , 586 - 625 . doi: 10.1016/j.mattod.2021.07.003 http://dx.doi.org/10.1016/j.mattod.2021.07.003
Tao Y. ; Liang X. Y. ; Zhang J. ; Lei I. M. ; Liu J. Polyurethane vitrimers: chemistry, properties and applications . J. Polym. Sci. , 2023 , 61 ( 19 ), 2233 - 2253 . doi: 10.1002/pol.20220625 http://dx.doi.org/10.1002/pol.20220625
Huang S. ; Kong X. ; Xiong Y. S. ; Zhang X. R. ; Chen H. ; Jiang W. Q. ; Niu Y. Z. ; Xu W. L. ; Ren C. G. An overview of dynamic covalent bonds in polymer material and their applications . Eur. Polym. J. , 2020 , 141 , 110094 . doi: 10.1016/j.eurpolymj.2020.110094 http://dx.doi.org/10.1016/j.eurpolymj.2020.110094
Rukmani S. J. ; Kim S. ; Rahman M. A. ; Zhao X. ; Sokolov A. P. ; Saito T. ; Petridis L. ; Carrillo J. M. ; Savara A. Source of processable vitrimer viscosities: swap frequencies and steric factors . Macromolecules , 2024 , 57 ( 23 ), 11020 - 11029 . doi: 10.1021/acs.macromol.4c01943 http://dx.doi.org/10.1021/acs.macromol.4c01943
Yang Y. ; Zhang S. ; Zhang X. Q. ; Gao L. C. ; Wei Y. ; Ji Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens . Nat. Commun. , 2019 , 10 ( 1 ), 3165 . doi: 10.1038/s41467-019-11144-6 http://dx.doi.org/10.1038/s41467-019-11144-6
Kaiser S. ; Novak P. ; Giebler M. ; Gschwandl M. ; Novak P. ; Pilz G. ; Morak M. ; Schlögl S. The crucial role of external force in the estimation of the topology freezing transition temperature of vitrimers by elongational creep measurements . Polymer , 2020 , 204 , 122804 . doi: 10.1016/j.polymer.2020.122804 http://dx.doi.org/10.1016/j.polymer.2020.122804
Ricarte R. G. ; Shanbhag S. Unentangled vitrimer melts: interplay between chain relaxation and cross-link exchange controls linear rheology . Macromolecules , 2021 , 54 ( 7 ), 3304 - 3320 . doi: 10.1021/acs.macromol.0c02530 http://dx.doi.org/10.1021/acs.macromol.0c02530
Perego A. ; Khabaz F. Volumetric and rheological properties of vitrimers: a hybrid molecular dynamics and Monte Carlo simulation study . Macromolecules , 2020 , 53 ( 19 ), 8406 - 8416 . doi: 10.1021/acs.macromol.0c01423 http://dx.doi.org/10.1021/acs.macromol.0c01423
Breuillac A. ; Kassalias A. ; Nicolaÿ R. Polybutadiene vitrimers based on dioxaborolane chemistry and dual networks with static and dynamic cross-links . Macromolecules , 2019 , 52 ( 18 ), 7102 - 7113 . doi: 10.1021/acs.macromol.9b01288 http://dx.doi.org/10.1021/acs.macromol.9b01288
Krishnakumar B. ; Sanka R. V. S. P. ; Binder W. H. ; Parthasarthy V. ; Rana S. ; Karak N. Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers . Chem. Eng. J. , 2020 , 385 , 123820 . doi: 10.1016/j.cej.2019.123820 http://dx.doi.org/10.1016/j.cej.2019.123820
Alabiso W. ; Schlögl S. The impact of vitrimers on the industry of the future: chemistry, properties and sustainable forward-looking applications . Polymers , 2020 , 12 ( 8 ), 1660 . doi: 10.3390/polym12081660 http://dx.doi.org/10.3390/polym12081660
Brutman J. P. ; Fortman D. J. ; De Hoe G. X. ; Dichtel W. R. ; Hillmyer M. A. Mechanistic study of stress relaxation in urethane-containing polymer networks . J. Phys. Chem. B , 2019 , 123 ( 6 ), 1432 - 1441 . doi: 10.1021/acs.jpcb.8b11489 http://dx.doi.org/10.1021/acs.jpcb.8b11489
Solouki Bonab V. ; Karimkhani V. ; Manas-Zloczower I. Ultra-fast microwave assisted self-healing of covalent adaptive polyurethane networks with carbon nanotubes . Macromol. Mater. Eng. , 2019 , 304 ( 1 ), 1800405 . doi: 10.1002/mame.201800405 http://dx.doi.org/10.1002/mame.201800405
Miao P. C. ; Jiao Z. Y. ; Liu J. ; He M. M. ; Song G. J. ; Wei Z. Y. ; Leng X. F. ; Li Y. Mechanically robust and chemically recyclable polyhydroxyurethanes from CO 2 -derived six-membered cyclic carbonates . ACS Appl. Mater. Interfaces , 2023 , 15 ( 1 ), 2246 - 2255 . doi: 10.1021/acsami.2c19251 http://dx.doi.org/10.1021/acsami.2c19251
Zhou W. ; Chang Y. C. ; Liu T. ; Fei M. E. ; Hao C. ; Zhao B. M. ; Zhang M. ; Zhang J. W. Biobased aliphatic polyurethane vitrimer with superior mechanical performance and fluorescence-based defect diagnostic function . ACS Appl. Polym. Mater. , 2023 , 5 ( 4 ), 3129 - 3137 . doi: 10.1021/acsapm.3c00272 http://dx.doi.org/10.1021/acsapm.3c00272
Erice A. ; Ruiz de Luzuriaga A. ; Matxain J. M. ; Ruipérez F. ; Asua J. M. ; Grande H. J. ; Rekondo A. Reprocessable and recyclable crosslinked poly(urea-urethane)s based on dynamic amine/urea exchange . Polymer , 2018 , 145 , 127 - 136 . doi: 10.1016/j.polymer.2018.04.076 http://dx.doi.org/10.1016/j.polymer.2018.04.076
Zhang D. ; Chen H. X. ; Dai Q. L. ; Xiang C. X. ; Li Y. J. ; Xiong X. ; Zhou Y. ; Zhang J. L. Stimuli-mild, robust, commercializable polyurethane-urea vitrimer elastomer via N , N '-diaryl urea crosslinking . Macromol. Chem. Phys. , 2020 , 221 ( 15 ), 1900564 . doi: 10.1002/macp.201900564 http://dx.doi.org/10.1002/macp.201900564
Zhang J. S. ; Shang Q. Q. ; Hu Y. ; Zhu G. Q. ; Huang J. ; Yu X. X. ; Cheng J. W. ; Liu C. G. ; Chen J. Q. ; Feng G. D. ; Zhou Y. H. Castor-oil-based UV-curable hybrid coatings with self-healing, recyclability, removability, and hydrophobicity . Prog. Org. Coat. , 2022 , 165 , 106742 . doi: 10.1016/j.porgcoat.2022.106742 http://dx.doi.org/10.1016/j.porgcoat.2022.106742
Zhang J. S. ; Zhang C. Q. ; Shang Q. Q. ; Hu Y. ; Song F. ; Jia P. Y. ; Zhu G. Q. ; Huang J. ; Liu C. G. ; Hu L. H. ; Zhou Y. H. Mechanically robust, healable, shape memory, and reprocessable biobased polymers based on dynamic pyrazole-urea bonds . Eur. Polym. J. , 2022 , 169 , 111133 . doi: 10.1016/j.eurpolymj.2022.111133 http://dx.doi.org/10.1016/j.eurpolymj.2022.111133
Zhang J. S. ; Zhang C. Q. ; Song F. ; Shang Q. Q. ; Hu Y. ; Jia P. Y. ; Liu C. G. ; Hu L. H. ; Zhu G. Q. ; Huang J. ; Zhou Y. H. Castor-oil-based, robust, self-healing, shape memory, and reprocessable polymers enabled by dynamic hindered urea bonds and hydrogen bonds . Chem. Eng. J. , 2022 , 429 , 131848 . doi: 10.1016/j.cej.2021.131848 http://dx.doi.org/10.1016/j.cej.2021.131848
Maes S. ; Van Lijsebetten F. ; Winne J. M. ; Du , PrezF . E . N-sulfonyl urethanes to design polyurethane networks with temperature-controlled dynamicity. Macromolecules , 2023 , 56 ( 5 ), 1934 - 1944 . doi: 10.1021/acs.macromol.2c02456 http://dx.doi.org/10.1021/acs.macromol.2c02456
Liu X. X. ; Yang X. X. ; Wang S. H. ; Wang S. B. ; Wang Z. P. ; Liu S. W. ; Xu X. ; Liu H. ; Song Z. Q. Fully bio-based polyhydroxyurethanes with a dynamic network from a terpene derivative and cyclic carbonate functional soybean oil . ACS Sustainable Chem. Eng. , 2021 , 9 ( 11 ), 4175 - 4184 . doi: 10.1021/acssuschemeng.1c00033 http://dx.doi.org/10.1021/acssuschemeng.1c00033
Debnath S. ; Tiwary S. K. ; Ojha U. Dynamic carboxylate linkage based reprocessable and self-healable segmented polyurethane vitrimers displaying creep resistance behavior and triple shape memory ability . ACS Appl. Polym. Mater. , 2021 , 3 ( 4 ), 2166 - 2177 . doi: 10.1021/acsapm.1c00199 http://dx.doi.org/10.1021/acsapm.1c00199
Wu H. T. ; Jin B. Q. ; Wang H. ; Wu W. Q. ; Cao Z. X. ; Wu J. R. ; Huang G. S. A degradable and self-healable vitrimer based on non-isocyanate polyurethane . Front. Chem. , 2020 , 8 , 585569 . doi: 10.3389/fchem.2020.585569 http://dx.doi.org/10.3389/fchem.2020.585569
Meng F. S. ; Tang D. L. Vitrimerization of linear polyurethane via group revival-induced crosslinking . ACS Appl. Polym. Mater. , 2023 , 5 ( 7 ), 5600 - 5608 . doi: 10.1021/acsapm.3c00874 http://dx.doi.org/10.1021/acsapm.3c00874
Sun Y. L. ; Sheng D. K. ; Wu H. H. ; Tian X. X. ; Xie H. P. ; Shi B. R. ; Liu X. D. ; Yang Y. M. Bio-based vitrimer-like polyurethane based on dynamic imine bond with high-strength, reprocessability, rapid-degradability and antibacterial ability . Polymer , 2021 , 233 , 124208 . doi: 10.1016/j.polymer.2021.124208 http://dx.doi.org/10.1016/j.polymer.2021.124208
Zhao Y. N. ; Bai X. W. ; Zhang Y. Y. ; Wang Y. Q. ; Li Y. Q. ; Yang S. Bio-based polyurethane vitrimer with imine bonds: excellent thermo-mechanical properties and heat recovery . Mater. Today Commun. , 2024 , 40 , 110206 . doi: 10.1016/j.mtcomm.2024.110206 http://dx.doi.org/10.1016/j.mtcomm.2024.110206
Vozzolo G. ; Ximenis M. ; Mantione D. ; Fernández M. ; Sardon H. Thermally reversible organocatalyst for the accelerated reprocessing of dynamic networks with creep resistance . ACS Macro Lett. , 2023 , 12 ( 11 ), 1536 - 1542 . doi: 10.1021/acsmacrolett.3c00544 http://dx.doi.org/10.1021/acsmacrolett.3c00544
Pan X. J. ; Li J. W. ; Liu F. Q. ; Hu C. Y. ; Zeng Y. N. Self-healable, weldable, and reprocessable castor oil-based poly(thiourethane-urethane) networks . J. Appl. Polym. Sci. , 2023 , 140 ( 42 ), e 54539 . doi: 10.1002/app.54539 http://dx.doi.org/10.1002/app.54539
Li J. W. ; Ning Z. ; Yang W. M. ; Yang B. ; Zeng Y. N. Hydroxyl-terminated polybutadiene-based polyurethane with self-healing and reprocessing capabilities . ACS Omega , 2022 , 7 ( 12 ), 10156 - 10166 . doi: 10.1021/acsomega.1c06416 http://dx.doi.org/10.1021/acsomega.1c06416
Belowich M. E. ; Stoddart , J. F. Dynamic imine chemistry . Chem. Soc. Rev. , 2012 , 41 ( 6 ), 2003 . doi: 10.1039/c2cs15305j http://dx.doi.org/10.1039/c2cs15305j
Ciaccia M. ; Di Stefano S. Mechanisms of imine exchange reactions in organic solvents . Org. Biomol. Chem. , 2015 , 13 ( 3 ), 646 - 654 . doi: 10.1039/c4ob02110j http://dx.doi.org/10.1039/c4ob02110j
Sprung M. A. A summary of the reactions of aldehydes with amines . Chem. Rev. , 1940 , 26 ( 3 ), 297 - 338 . doi: 10.1021/cr60085a001 http://dx.doi.org/10.1021/cr60085a001
Raczuk E. ; Dmochowska B. ; Samaszko-Fiertek J. ; Madaj J. Different schiff bases-structure, importance and classification . Molecules , 2022 , 27 ( 3 ), 787 . doi: 10.3390/molecules27030787 http://dx.doi.org/10.3390/molecules27030787
Tan P. Y. ; Zhao X. T. ; Zhang Z. S. ; Wei W. J. ; Zhou J. H. ; Shao Y. Q. ; Ma X. J. ; Wei S. Y. ; Gao Z. H. ; Han S. Y. A highly effective self-healing waterborne polyurethane vitrimer containing conjugated schiff base bonds driven by photothermal . ACS Appl. Polym. Mater. , 2024 , 6 ( 15 ), 8977 - 8988 . doi: 10.1021/acsapm.4c01274 http://dx.doi.org/10.1021/acsapm.4c01274
Xie D. M. ; Lu D. X. ; Zhao X. L. ; Li Y. D. ; Zeng J. B. Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties . Ind. Crops Prod. , 2021 , 174 , 114198 . doi: 10.1016/j.indcrop.2021.114198 http://dx.doi.org/10.1016/j.indcrop.2021.114198
Xie C. H. ; Qiu H. K. ; Liu L. ; You Y. ; Li H. F. ; Li Y. Q. ; Sun Z. Y. ; Lin J. P. ; An L. J. Machine learning approaches in polymer science: progress and fundamental for a new paradigm . SmartMat , 2025 , 6 ( 1 ), e 1320 . doi: 10.1002/smm2.1320 http://dx.doi.org/10.1002/smm2.1320
Denissen W. ; Winne J. M. ; Du , PrezF . E . Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. , 2016 , 7 ( 1 ), 30 - 38 . doi: 10.1039/c5sc02223a http://dx.doi.org/10.1039/c5sc02223a
Nishimura Y. ; Chung J. ; Muradyan H. ; Guan Z. B. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design . J. Am. Chem. Soc. , 2017 , 139 ( 42 ), 14881 - 14884 . doi: 10.1021/jacs.7b08826 http://dx.doi.org/10.1021/jacs.7b08826
丁芳 . 基于机器学习的聚氨酯弹性体结构性能关系研究[D ] . 中国科学技术大学 , 2022 . DOI: 10.27517/d.cnki.gzkju.2022.001768 http://dx.doi.org/10.27517/d.cnki.gzkju.2022.001768 .
Li R. ; Xie C. H. ; Liu L. ; You Y. ; Chen Q. ; Xie H. B. ; Li Y. Q. Enclose biobased content into polyurethane elastomers: a summary of synthetic routes and an inverse prediction of their percentages . Macromol. Rapid Commun. , 2025 , 2500054 . doi: 10.1002/marc.202500054 http://dx.doi.org/10.1002/marc.202500054
Li Y. Q. ; Jiang Y. ; Wang L. Q. ; Li J. F. Data and machine learning in polymer science . Chinese J. Polym. Sci. , 2023 , 41 ( 9 ), 1371 - 1376 . doi: 10.1007/s10118-022-2868-0 http://dx.doi.org/10.1007/s10118-022-2868-0
刘伦洋 , 丁芳 , 李云琦 . 高分子材料大数据研究: 共性基础、进展及挑战 . 高分子学报 , 2022 , 53 ( 6 ), 564 - 580 .
李云琦 , 刘伦洋 , 陈文多 , 安立佳 . 材料基因组学的发展现状、研究思路与建议 . 中国科学化学 , 2017 , 48 ( 3 ), 243 - 255 .
Tran H. ; Gurnani R. ; Kim C. ; Pilania G. ; Kwon H. K. ; Lively R. P. ; Ramprasad R. Design of functional and sustainable polymers assisted by artificial intelligence . Nat. Rev. Mater. , 2024 , 9 ( 12 ), 866 - 886 . doi: 10.1038/s41578-024-00708-8 http://dx.doi.org/10.1038/s41578-024-00708-8
Xie C. ; Li R. ; Li Y. ; Xie H. ; Liu Q. A nearest-neighbor-based strategy to impute missing data in material science . J. Chem. Theory Comput. , 2025 , 21 ( 1 ), 70 . doi: 10.1021/acs.jctc.4c01237 http://dx.doi.org/10.1021/acs.jctc.4c01237
Liu L. Y. ; Li Y. Q. ; Zheng J. F. ; Li H. F. Expert-augmented machine learning to accelerate the discovery of copolymers for anion exchange membrane . J. Membr. Sci. , 2024 , 693 , 122327 . doi: 10.1016/j.memsci.2023.122327 http://dx.doi.org/10.1016/j.memsci.2023.122327
Li J. W. ; Yang W. M. ; Ning Z. ; Yang B. ; Zeng Y. N. Sustainable polyurethane networks based on rosin with reprocessing performance . Polymers , 2021 , 13 ( 20 ), 3538 . doi: 10.3390/polym13203538 http://dx.doi.org/10.3390/polym13203538
Yan X. W. ; Zhang R. Y. ; Zhao C. J. ; Han L. J. ; Han S. Water plasticization accelerates the underwater self-healing of hydrophobic polyurethanes . Polymer , 2022 , 250 , 124863 . doi: 10.1016/j.polymer.2022.124863 http://dx.doi.org/10.1016/j.polymer.2022.124863
Hayashi M. Dominant factor of bond-exchange rate for catalyst-free polyester vitrimers with internal tertiary amine moieties . ACS Appl. Polym. Mater. , 2020 , 2 ( 12 ), 5365 - 5370 . doi: 10.1021/acsapm.0c01099 http://dx.doi.org/10.1021/acsapm.0c01099
Ouyang R. H. ; Curtarolo S. ; Ahmetcik E. ; Scheffler M. ; Ghiringhelli L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates . Phys. Rev. Materials , 2018 , 2 ( 8 ), 083802 . doi: 10.1103/physrevmaterials.2.083802 http://dx.doi.org/10.1103/physrevmaterials.2.083802
Wang T. R. ; Hu J. Y. ; Ouyang R. H. ; Wang Y. T. ; Huang Y. ; Hu S. L. ; Li W. X. Nature of metal-support interaction for metal catalysts on oxide supports . Science , 2024 , 386 ( 6724 ), 915 - 920 . doi: 10.1126/science.adp6034 http://dx.doi.org/10.1126/science.adp6034
Muthyala M. ; Sorourifar F. ; Paulson J. A. Torchsisso: a pytorch-based implementation of the sure independence screening and sparsifying operator for efficient and interpretable model discovery . Digital Chemical Engineering , 2024 , 13100198 . doi: 10.1016/j.dche.2024.100198 http://dx.doi.org/10.1016/j.dche.2024.100198
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构