浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
E-mail: lianggao@ecust.edu.cn
jlin@ecust.edu.cn
收稿日期:2025-04-23,
录用日期:2025-06-06,
网络出版日期:2025-07-15,
移动端阅览
李芊晴, 高梁, 林嘉平, 蔡春华. 微流控剪切条件下的聚肽自组装行为. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25108
Li, Q. Q.; Gao, L.; Lin, J. P.; Cai, C. H. Self-assembly behavior of polypeptides under microfluidic shear condition. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25108
李芊晴, 高梁, 林嘉平, 蔡春华. 微流控剪切条件下的聚肽自组装行为. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25108 DOI: CSTR: 32057.14.GFZXB.2025.7437.
Li, Q. Q.; Gao, L.; Lin, J. P.; Cai, C. H. Self-assembly behavior of polypeptides under microfluidic shear condition. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25108 DOI: CSTR: 32057.14.GFZXB.2025.7437.
微流控通道中独特的剪切环境为构筑复杂纳米结构带来了新的机遇. 本研究设计了一种环型微流控通道,利用剪切作用使刚性聚肽形成与溶液自组装不同的扭曲状聚集体. 通过调控剪切速率和含水量,结合圆二色谱(CD)与同步辐射广角X射线衍射测试(WAXS),探究了聚(
γ
-苄基-
L-
谷氨酸酯) (PBLG)形成扭曲状聚集体的机理. 在选择性溶剂(水)的剪切作用下,聚肽链间距减小、链有序排列更紧密,同时其
α
-螺旋构象向PPⅡ-螺旋构象转变,这使聚集体产生内扭力,因而在剪切条件下发生形貌转变,形成新颖的扭曲状形貌结构. 研究结果为定向设计多级结构提供了新策略.
The unique shear environment in microfluidic channels offers new opportunities for constructing complex nanostructures. In this study
a ring-shaped microfluidic channel was designed to utilize shear forces to induce rigid polypeptides for forming twisted aggregates that are different from those formed by solution self-assembly. By examining the effects of shear rate and water content
and combining circular dichroism (CD) and synchrotron wide-angle X-ray scattering (WAXS) tests
the formation mechanism of twisted aggregate of poly(
γ
-be
nzyl-
L
-glutamate) (PBLG) was revealed. Under the shear of a selective solvent (water)
the distance between polypeptide chains decreases
and the chain arrangement becomes more ordered and compact. Meanwhile
the α-helix conformation of the polypeptide transforms into PPⅡ-helix conformation
which generates an internal twisted force in the aggregates
forming a novel twisted aggregate morphology. The research results can provide a new strategy for the directed design of hierarchical structures.
Cai C. H. ; Lin J. P. Recent advances in the solution self-assembly of polypeptides . J. Polym. Sci. , 2024 , 62 ( 4 ), 693 - 706 . doi: 10.1002/pol.20220748 http://dx.doi.org/10.1002/pol.20220748
Cai C. H. ; Lin J. P. ; Lu Y. Q. ; Zhang Q. ; Wang L. Q. Polypeptide self-assemblies: nanostructures and bioapplications . Chem. Soc. Rev. , 2016 , 45 ( 21 ), 5985 - 6012 . doi: 10.1039/c6cs00013d http://dx.doi.org/10.1039/c6cs00013d
Yang C. Y. ; Gao L. ; Lin J. P. ; Wang L. Q. ; Cai C. H. ; Wei Y. H. ; Li Z. B. Toroid formation through a supramolecular "cyclization reaction" of rodlike micelles . Angew. Chem. Int. Ed. , 2017 , 56 ( 20 ), 5546 - 5550 . doi: 10.1002/anie.201701978 http://dx.doi.org/10.1002/anie.201701978
任许乐 , 蔡春华 , 林嘉平 . 聚肽三嵌段共聚物棒状胶束的超分子环化行为研究 . 高分子学报 , 2024 , 55 ( 12 ), 1669 - 1679 .
Zhu J. H. ; Zhang S. Y. ; Zhang K. ; Wang X. J. ; Mays J. W. ; Wooley K. L. ; Pochan D. J. Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction . Nat. Commun. , 2013 , 4 , 2297 . doi: 10.1038/ncomms3297 http://dx.doi.org/10.1038/ncomms3297
Xu W. H. ; Xu Z. W. ; Cai C. H. ; Lin J. P. ; Gao L. ; Qi H. M. ; Lin S. L. Spiral- and meridian-patterned spheres self-assembled from block copolymer/homopolymer binary systems . Nanoscale , 2021 , 13 ( 33 ), 14016 - 14022 . doi: 10.1039/d1nr02674g http://dx.doi.org/10.1039/d1nr02674g
王寅超 , 郑家豪 , 张伟安 , 蔡春华 , 林嘉平 . 含卟啉聚肽的合成及其自组装行为研究 . 高分子学报 , 2024 , 55 ( 2 ), 172 - 181 .
Duan W. H. ; Ji S. F. ; Guan Y. ; Mu X. ; Fang S. ; Lu Y. X. ; Zhou X. F. ; Sun J. ; Li Z. B. Esterase-responsive polypeptide vesicles as fast-response and sustained-release nanocompartments for fibroblast-exempt drug delivery . Biomacromolecules , 2020 , 21 ( 12 ), 5093 - 5103 . doi: 10.1021/acs.biomac.0c01251 http://dx.doi.org/10.1021/acs.biomac.0c01251
Gu P. F. ; Xu H. ; Sui B. W. ; Gou J. X. ; Meng L. K. ; Sun F. ; Wang X. J. ; Qi N. ; Zhang Y. ; He H. B. ; Tang X. Polymeric micelles based on poly(ethylene glycol) block poly(racemic amino acids) hybrid polypeptides: conformation-facilitated drug-loading behavior and potential application as effective anticancer drug carriers . Int. J. Nanomedicine , 2012 , 7 , 109 - 122 . doi: 10.2147/ijn.s27475 http://dx.doi.org/10.2147/ijn.s27475
Naser N. Y. ; Wixson W. C. ; Larson H. ; Cossairt B. M. ; Pozzo L. D. ; Baneyx F. Biomimetic mineralization of positively charged silica nanoparticles templated by thermoresponsive protein micelles: applications to electrostatic assembly of hierarchical and composite superstructures . Soft Matter , 2025 , 21 ( 2 ), 166 - 178 . doi: 10.1039/d4sm00907j http://dx.doi.org/10.1039/d4sm00907j
Zhao W. ; Li Z. X. ; Liang N. ; Liu J. Y. ; Yan P. F. ; Sun S. P. AIE-featured redox-sensitive micelles for bioimaging and efficient anticancer drug delivery . Int. J. Mol. Sci. , 2022 , 23 ( 18 ), 10801 . doi: 10.3390/ijms231810801 http://dx.doi.org/10.3390/ijms231810801
Xue J. X. ; Guan Z. ; Lin J. P. ; Cai C. H. ; Zhang W. J. ; Jiang X. Q. Cellular internalization of rod-like nanoparticles with various surface patterns: novel entry pathway and controllable uptake capacity . Small , 2017 , 13 ( 24 ). 2017, 13 , 1604214 . doi: 10.1002/smll.201604214 http://dx.doi.org/10.1002/smll.201604214
Hu R. ; Cai C. H. ; Lin J. P. ; Gao L. Chirality of superhelices self-assembled from polypeptide mixtures . Macromolecules , 2022 , 55 ( 11 ), 4297 - 4304 . doi: 10.1021/acs.macromol.1c02639 http://dx.doi.org/10.1021/acs.macromol.1c02639
Patel B. B. ; Pan T. ; Chang Y. ; Walsh D. J. ; Kwok J. J. ; Park K. S. ; Patel K. ; Guironnet D. ; Sing C. E. ; Diao Y. Concentration-driven self-assembly of PS-b-PLA bottlebrush diblock copolymers in solution . ACS Polym. Au , 2022 , 2 ( 4 ), 232 - 244 . doi: 10.1021/acspolymersau.1c00057 http://dx.doi.org/10.1021/acspolymersau.1c00057
Wen S. P. ; Fielding L. A. Pyridine-functional diblock copolymer nanoparticles synthesized via RAFT-mediated polymerization-induced self-assembly: effect of solution pH . Soft Matter , 2022 , 18 ( 7 ), 1385 - 1394 . doi: 10.1039/d1sm01793d http://dx.doi.org/10.1039/d1sm01793d
Yao Y. K. ; Gao L. ; Cai C. H. ; Lin J. P. ; Lin S. L. Supramolecular polymerization of polymeric nanorods mediated by block copolymers . Angew. Chem. Int. Ed , 2023 , 62 ( 9 ), e 202216872 . doi: 10.1002/anie.202216872 http://dx.doi.org/10.1002/anie.202216872
Fielden S. D. P. Kinetically controlled and nonequilibrium assembly of block copolymers in solution . J. Am. Chem. Soc. , 2024 , 146 ( 28 ), 18781 - 18796 . doi: 10.1021/jacs.4c03314 http://dx.doi.org/10.1021/jacs.4c03314
Numata M. Kinetically controlled supramolecular structures created in nonequilibrium microflow spaces . Kinetic Control in Synthesis and Self-Assembly . Amsterdam: Elsevier , 2019 , 249 - 267 . doi: 10.1016/b978-0-12-812126-9.00012-2 http://dx.doi.org/10.1016/b978-0-12-812126-9.00012-2
Nikoubashman A. Self-assembly of colloidal micelles in microfluidic channels . Soft Matter , 2017 , 13 ( 1 ), 222 - 229 . doi: 10.1039/c6sm00766j http://dx.doi.org/10.1039/c6sm00766j
Tan Z. P. ; Lan W. ; Hou Z. Y. ; Wang K. ; Li Y. C. ; Xu J. P. ; Luo X. B. ; Zhang L. B. ; Zhu J. T. Flow-induced micellar morphological transformation in microfluidic chips under nonequilibrium state: from aggregates to spherical micelles . Langmuir , 2020 , 36 ( 19 ), 5377 - 5384 . doi: 10.1021/acs.langmuir.0c00836 http://dx.doi.org/10.1021/acs.langmuir.0c00836
Wang C. W. ; Sinton D. ; Moffitt M. G. Flow-directed block copolymer micelle morphologies via microfluidic self-assembly . J. Am. Chem. Soc. , 2011 , 133 ( 46 ), 18853 - 18864 . doi: 10.1021/ja2067252 http://dx.doi.org/10.1021/ja2067252
Wang C. W. ; Sinton D. ; Moffitt M. G. Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip . ACS Nano , 2013 , 7 ( 2 ), 1424 - 1436 . doi: 10.1021/nn305197m http://dx.doi.org/10.1021/nn305197m
Tan Z. P. ; Hou Z. Y. ; Wang K. ; Li Y. C. ; Zhang L. B. ; Zhu J. T. ; Xu J. P. Kinetic control of length and morphology of segmented polymeric nanofibers in microfluidic chips . Langmuir , 2020 , 36 ( 44 ), 13364 - 13370 . doi: 10.1021/acs.langmuir.0c02904 http://dx.doi.org/10.1021/acs.langmuir.0c02904
Oh S. Y. ; Lee C. S. Comparison and analysis of mixing efficiency in various micromixer designs . Korean J. Chem. Eng. , 2024 , 41 ( 8 ), 2449 - 2458 . doi: 10.1007/s11814-024-00161-x http://dx.doi.org/10.1007/s11814-024-00161-x
Ripoll M. ; Martin E. ; Enot M. ; Robbe O. ; Rapisarda C. ; Nicolai M. C. ; Deliot A. ; Tabeling P. ; Authelin J. R. ; Nakach M. ; Wils P. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer . Sci. Rep. , 2022 , 12 , 9483 . doi: 10.1038/s41598-022-13112-5 http://dx.doi.org/10.1038/s41598-022-13112-5
Wang X. ; Liu Z. Q. ; Wang B. ; Cai Y. K. ; Song Q. H. An overview on state-of-art of micromixer designs, characteristics and applications . Anal. Chim. Acta , 2023 , 1279 , 341685 . doi: 10.1016/j.aca.2023.341685 http://dx.doi.org/10.1016/j.aca.2023.341685
López R. R. ; Ocampo I. ; Sánchez L. M. ; Alazzam A. ; Bergeron K. F. ; Camacho-León S. ; Mounier C. ; Stiharu I. ; Nerguizian V. Surface response based modeling of liposome characteristics in a periodic disturbance mixer . Micromachines , 2020 , 11 ( 3 ), 235 . doi: 10.3390/mi11030235 http://dx.doi.org/10.3390/mi11030235
Lee J. S. ; Lee M. G. ; Jung C. ; Park Y. H. ; Song C. ; Choi M. C. ; Park H. G. ; Park J. K. High-throughput nanoscale lipid vesicle synthesis in a semicircular contraction-expansion array microchannel . BioChip J. , 2013 , 7 ( 3 ), 210 - 217 . doi: 10.1007/s13206-013-7303-8 http://dx.doi.org/10.1007/s13206-013-7303-8
Koide Y. ; Goto S. Effect of scission on alignment of nonionic surfactant micelles under shear flow . Soft Matter , 2023 , 19 ( 23 ), 4323 - 4332 . doi: 10.1039/d3sm00167a http://dx.doi.org/10.1039/d3sm00167a
Liu S. Y. ; Sureshkumar , R. Deformation , rupture , and morphology hysteresis of copolymer nanovesicles in uniform shear flow . Langmuir , 2025 , 41 ( 8 ), 5083 - 5096 . doi: 10.1021/acs.langmuir.4c04200 http://dx.doi.org/10.1021/acs.langmuir.4c04200
Prhashanna A. ; Khan S. A. ; Chen S. B. Micelle morphology and chain conformation of triblock copolymers under shear: LA-DPD study . Colloids Surf. A Physicochem. Eng. Aspects , 2016 , 506 , 457 - 466 . doi: 10.1016/j.colsurfa.2016.07.003 http://dx.doi.org/10.1016/j.colsurfa.2016.07.003
Zhou Y. ; Zhou C. ; He X. ; Xue X. G. ; Qian W. ; Luo S. K. ; Xia H. G. Shear-induced self-assembly of linear ABC triblock copolymers in solution: Creation of 1D cylindrical micellar structures . RSC Adv. , 2016 , 6 ( 7 ), 5711 - 5717 . doi: 10.1039/c5ra23474c http://dx.doi.org/10.1039/c5ra23474c
Liu Z. ; Shi X. J. ; Shu W. C. ; Qi S. ; Wang X. S. ; He X. H. The effect of hydration and dehydration on the conformation, assembling behavior and photoluminescence of PBLG . Soft Matter , 2022 , 18 ( 23 ), 4396 - 4401 . doi: 10.1039/d2sm00344a http://dx.doi.org/10.1039/d2sm00344a
Haataja J. S. ; Houbenov N. ; Iatrou H. ; Hadjichristidis N. ; Karatzas A. ; Faul C. F. J. ; Rannou P. ; Ikkala O. Double smectic self-assembly in block copolypeptide complexes . Biomacromolecules , 2012 , 13 ( 11 ), 3572 - 3580 . doi: 10.1021/bm3010275 http://dx.doi.org/10.1021/bm3010275
Presa-Soto D. ; Carriedo G. A. ; de la Campa R. ; Presa Soto A. Formation and reversible morphological transition of bicontinuous nanospheres and toroidal micelles by the self-assembly of a crystalline-b-coil diblock copolymer . Angew Chem Int Ed , 2016 , 55 ( 34 ), 10102 - 10107 . doi: 10.1002/anie.201605317 http://dx.doi.org/10.1002/anie.201605317
Lee Y. H. ; Yang Y. L. ; Yen W. C. ; Su W. F. ; Dai C. A. Solution self-assembly and phase transformations of form II crystals in nanoconfined poly(3-hexyl thiophene) based rod-coil block copolymers . Nanoscale , 2014 , 6 ( 4 ), 2194 . doi: 10.1039/c3nr04214f http://dx.doi.org/10.1039/c3nr04214f
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构