浏览全部资源
扫码关注微信
1.陕西师范大学材料科学与工程学院 西安 710119
2.江汉大学光电材料与技术学院 武汉 430056
E-mail: daodaohu@snnu.edu.cn
jiaxing@jhun.edu.cn
收稿日期:2025-05-16,
录用日期:2025-06-17,
网络出版日期:2025-07-10,
移动端阅览
晋圣林, 韩昌志, 张崇, 胡道道, 蒋加兴. 给/受体比例可调的呋喃基D-π-A型共轭微孔聚合物光催化产氢性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25125
Jin, S. L.; Han, C. Z.; Zhang, C.; Hu, D. D.; Jiang, J. X. Study on the performance of furan-based D-π-A conjugated microporous polymer photocatalyst with adjustable donor/acceptor ratio. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25125
晋圣林, 韩昌志, 张崇, 胡道道, 蒋加兴. 给/受体比例可调的呋喃基D-π-A型共轭微孔聚合物光催化产氢性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25125 DOI: CSTR: 32057.14.GFZXB.2025.7440.
Jin, S. L.; Han, C. Z.; Zhang, C.; Hu, D. D.; Jiang, J. X. Study on the performance of furan-based D-π-A conjugated microporous polymer photocatalyst with adjustable donor/acceptor ratio. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25125 DOI: CSTR: 32057.14.GFZXB.2025.7440.
随着全球经济的快速发展,传统化石燃料日益枯竭,且随之带来的环境问题也日益严重. 氢能由于其来源广泛、高的燃烧热值和环境友好等优点,已经吸引了大批研究人员的关注. 光催化分解水制取氢气是一种有效的策略,它不仅可以避免环境污染问题,还可以减缓能源危机. 目前报道的大部分光催化剂是无机半导体等材料,其存在光催化活性低和可见光响应弱等问题. 因此寻找制备简单、活性高且价格低廉的光催化剂成为制氢领域的热点研究课题之一. 对此本文以具有给电子特性的芘作为电子给体单元,具有吸电子特性的二苯并噻吩砜作为电子受体单元,呋喃单元为
π
桥,通过三元共聚的方法,调控聚合物中受体和给体的比例,制备了一系列给-
π
-受体型共轭聚合物光催化剂. 对比研究表明,聚合物中
π
单元的引入,可以有效地提高聚合物的共平面度,进而促进光生载流子的传输. 此外,高的共平面程度有利于提高聚合物的光吸收范围. 再者,优化电子受体和给体之间的相对比例,可以调控聚合物微结构变化,进而影响提升聚合物光催化产氢的活性. 当光催化剂供体与受体比例为1:10时,制备的Py-F-BTDO-3表现出较强的光吸收能力,在紫外-可见光照射下表现出最高的光催化产氢活性,为32.53 mmol·h
-1
·g
-1
.
With the rapid development of the global economy
traditional fossil fuels are becoming increasingly depleted
and the resulting environmental problems are becoming increasingly serious. Hydrogen energy has attracted considerable attention from researchers owing to its wide range of sources
high combustion heat value
and environmental friendliness. Photocatalytic decomposition of water to produce hydrogen is an effective strategy that can not only prevent environmental pollution problems
but also alleviate energy crises. At present
most of the reported photocatalysts are inorganic semiconductors and other materials
which have problems such as low photocatalytic activity and weak visible-light response. Therefore
finding photocatalysts with simple preparation
high activity
and low cost has become one of the hot research topics in the field of hydrogen production. In this article
pyrene with electron donating properties was used as the electron donor unit
dibenzothiophene sulfone with electron withdrawing properties was used as the electron acceptor unit
and furan units were used as
π
bridges. A series of donor-
π
-acceptor conjugated polymer photocatalysts were prepared by controlling the ratio of acceptor and donor in the polymer through ternary copolymerization. Comparative studies have shown that the introduction of
π
units in polymers can effectively improve the coplanarity of the
polymer
thereby promoting the transport of photogenerated charge carriers. In addition
a high degree of coplanarity is beneficial for improving the light-absorption range of the polymer. Furthermore
optimizing the relative ratio between the electron acceptor and donor can lead to changes in the polymer microstructure
thereby affecting the enhancement of the photocatalytic hydrogen production activity of the polymer. When the ratio of photocatalyst donor to acceptor is 1:10
the prepared Py-F-BTDO-3 exhibits strong light absorption ability and shows the highest hydrogen evolution rate under UV visible light irradiation
at 32.53 mmol·h
-1
·g
-1
.
Taylor D. ; Dalgarno S. J. ; Xu Z. T. ; Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications . Chem. Soc. Rev. , 2020 , 49 ( 12 ), 3981 - 4042 . doi: 10.1039/c9cs00315k http://dx.doi.org/10.1039/c9cs00315k
Dai C. H. ; Liu B. Conjugated polymers for visible-light-driven photocatalysis . Energy Environ. Sci. , 2020 , 13 ( 1 ), 24 - 52 . doi: 10.1039/c9ee01935a http://dx.doi.org/10.1039/c9ee01935a
Mansha M. ; Ahmad T. ; Ullah N. ; Akram Khan S. ; Ashraf M. ; Ali S. ; Tan B. ; Khan I. Photocatalytic water-splitting by organic conjugated polymers: opportunities and challenges . Chem. Rec. , 2022 , 22 ( 7 ), e 202100336 . doi: 10.1002/tcr.202100336 http://dx.doi.org/10.1002/tcr.202100336
Sahani S. ; Malika Tripathi K. ; Lee T. I. ; Dubal D. P. ; Wong C. P. ; Chandra Sharma Y. ; Kim T. Y. Recent advances in photocatalytic carbon-based materials for enhanced water splitting under visible-light irradiation . Energy Convers. Manag. , 2022 , 252 , 115133 . doi: 10.1016/j.enconman.2021.115133 http://dx.doi.org/10.1016/j.enconman.2021.115133
Wei S. H. ; Wang L. ; Yue J. Y. ; Wu R. ; Fang Z. B. ; Xu Y. X. Recent progress in polymer nanosheets for photocatalysis . J. Mater. Chem. A , 2023 , 11 ( 44 ), 23720 - 23741 . doi: 10.1039/d3ta05435g http://dx.doi.org/10.1039/d3ta05435g
Ran H. L. ; Xu Q. L. ; Yang Y. ; Li H. X. ; Fan J. J. ; Liu G. ; Zhang L. J. ; Zou J. ; Jin H. L. ; Wang S. Progress of covalent organic framework photocatalysts: from crystallinity-stability dilemma to photocatalytic performance improvement . ACS Catal. , 2024 , 14 ( 15 ), 11675 - 11704 . doi: 10.1021/acscatal.4c02738 http://dx.doi.org/10.1021/acscatal.4c02738
Zhu S. S. ; Zhang Z. W. ; Li Z. P. ; Liu X. M. Recent progress on covalent organic frameworks for photocatalytic hydrogen generation via water splitting . Mater. Chem. Front. , 2024 , 8 ( 6 ), 1513 - 1535 . doi: 10.1039/d3qm00965c http://dx.doi.org/10.1039/d3qm00965c
Wang L. ; Xu H. X. Two-dimensional conjugated polymer frameworks for solar fuel generation from water . Prog. Polym. Sci. , 2023 , 145 , 101734 . doi: 10.1016/j.progpolymsci.2023.101734 http://dx.doi.org/10.1016/j.progpolymsci.2023.101734
Guo Y. ; Zhou Q. X. ; Zhu B. W. ; Tang C. Y. ; Zhu Y. F. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction . EES Catal. , 2023 , 1 ( 4 ), 333 - 352 . doi: 10.1039/d3ey00047h http://dx.doi.org/10.1039/d3ey00047h
Wang, Y. Y.; Ding, Z.; Arif, N.; Jiang, W. C.; Zeng, Y. J. 2D material based heterostructures for solar light driven photocatalytic H 2 production . Mater. Adv. , 2022 , 3 ( 8 ), 3389 - 3417 . doi: 10.1039/d2ma00191h http://dx.doi.org/10.1039/d2ma00191h
Saber A. F. ; Elewa A. M. ; Chou H. H. ; EL-Mahdy A. F. M. Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H 2 and O 2 evolution from water splitting. Appl. Catal. B Environ. , 2022 , 316 , 121624 . doi: 10.1016/j.apcatb.2022.121624 http://dx.doi.org/10.1016/j.apcatb.2022.121624
Chen P. Y. ; Ru C. L. ; Hu L. L. ; Yang X. ; Wu X. ; Zhang M. C. ; Zhao H. ; Wu J. C. ; Pan X. B. Construction of efficient D-A-type photocatalysts by B-N bond substitution for water splitting . Macromolecules , 2023 , 56 ( 3 ), 858 - 866 . doi: 10.1021/acs.macromol.2c02117 http://dx.doi.org/10.1021/acs.macromol.2c02117
Jin S. L. ; Han C. Z. ; Xiang S. H. ; Zhang C. ; Jiang J. X. Furan-based conjugated polymer photocatalysts for highly active photocatalytic hydrogen evolution under visible light . J. Catal. , 2023 , 427 , 115091 . doi: 10.1016/j.jcat.2023.08.007 http://dx.doi.org/10.1016/j.jcat.2023.08.007
Zhang H. T. ; Xu J. J. ; Liu D. ; Jiao Z. X. ; Ren R. T. ; Li Z. F. ; Tian Y. T. ; Si C. F. ; Liu B. Y. ; Yue G. ; Tian Y. Boosted hydrogen evolution in conjugated polymer photocatalyst by noncovalent conformation-locked architecture . J. Catal. , 2024 , 436 , 115615 . doi: 10.1016/j.jcat.2024.115615 http://dx.doi.org/10.1016/j.jcat.2024.115615
Ru C. L. ; Wang Y. ; Chen P. Y. ; Zhang Y. H. ; Wu X. ; Gong C. L. ; Zhao H. ; Wu J. C. ; Pan X. B. Replacing C-C unit with B←N unit in isoelectronic conjugated polymers for enhanced photocatalytic hydrogen evolution . Small , 2023 , 19 ( 36 ), e 2302384 . doi: 10.1002/smll.202302384 http://dx.doi.org/10.1002/smll.202302384
Huang T. F. ; Zhuang Y. R. ; Chang C. L. ; Huang C. L. ; Lin W. C. ; Jiang Z. C. ; Ting L. Y. ; Mekhemer I. M. A. ; Sun Y. E. ; Kidkhunthod P. ; Chen J. L. ; Huang Y. C. ; Hsu H. K. ; Tseng Y. T. ; Wu Y. H. ; Li B. H. ; Yang S. D. ; Cheng Y. J. ; Chou H. H. Indanone-based conjugated polymers enabling ultrafast electron transfer for visible light-driven hydrogen evolution from water . J. Mater. Chem. A , 2024 , 12 ( 6 ), 3633 - 3643 . doi: 10.1039/d3ta06807b http://dx.doi.org/10.1039/d3ta06807b
Fan Y. L. ; Kong C. C. ; Zhang L. F. ; Wu H. D. ; Li J. D. ; Guo J. ; Yi Q. Enhancing photocatalytic hydrogen evolution performance for D- π -A conjugated polymers based on the perylene diimide . Sep. Purif. Technol. , 2025 , 355 , 129721 . doi: 10.1016/j.seppur.2024.129721 http://dx.doi.org/10.1016/j.seppur.2024.129721
Han C. Z. ; Xiang S. H. ; Jin S. L. ; Luo L. W. ; Zhang C. ; Yan C. ; Jiang J. X. Linear multiple-thiophene-containing conjugated polymer photocatalysts with narrow band gaps for achieving ultrahigh photocatalytic hydrogen evolution activity under visible light . J. Mater. Chem. A , 2022 , 10 ( 10 ), 5255 - 5261 . doi: 10.1039/d1ta11022e http://dx.doi.org/10.1039/d1ta11022e
Shu C. ; Han C. Z. ; Yang X. Y. ; Zhang C. ; Chen Y. ; Ren S. J. ; Wang F. ; Huang F. ; Jiang J. X. Boosting the photocatalytic hydrogen evolution activity for D-π-A conjugated microporous polymers by statistical copolymerization . Adv. Mater. , 2021 , 33 ( 26 ), e 2008498 . doi: 10.1002/adma.202008498 http://dx.doi.org/10.1002/adma.202008498
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构