浏览全部资源
扫码关注微信
1.浙江农林大学化学与材料工程学院 杭州 311300
2.杭州海维特化工科技有限公司 杭州 311300
E-mail: xiaoyouhua@zafu.edu.cn
收稿日期:2025-05-21,
录用日期:2025-07-10,
网络出版日期:2025-08-18,
移动端阅览
尚星宇, 俞骁, 金慧丽, 宋元龙, 宋志鹏, 许华君, 肖友华. 阻燃型聚氨酯介电弹性体的设计制备及其电驱动性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25132
Shang, X. Y.; Yu, X.; Jin, H. L.; Song, Y. L.; Song, Z. P.; Xu, H. J.; Xiao, Y. H. Flame-retardant polyurethane dielectric elastomers: design, fabrication, and electroactuation performance. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25132
尚星宇, 俞骁, 金慧丽, 宋元龙, 宋志鹏, 许华君, 肖友华. 阻燃型聚氨酯介电弹性体的设计制备及其电驱动性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25132 DOI: CSTR: 32057.14.GFZXB.2025.7447.
Shang, X. Y.; Yu, X.; Jin, H. L.; Song, Y. L.; Song, Z. P.; Xu, H. J.; Xiao, Y. H. Flame-retardant polyurethane dielectric elastomers: design, fabrication, and electroactuation performance. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25132 DOI: CSTR: 32057.14.GFZXB.2025.7447.
介电弹性体(DE)材料在外电场作用下可发生电致驱动变形,能够将电能转换成机械能,在柔性驱动器和软体机器人等领域具有广阔的应用前景. 然而,DE材料在高电场下驱动时存在电击穿燃烧风险. 为此,本研究以木质素衍生物丁香醛为原料设计合成了一种生物基磷氮型阻燃剂(DHBOP),并将其作为聚氨酯(PU)硬段改性剂改性制备阻燃型PU-DE材料. 结果表明,在PU硬段中引入刚性阻燃剂结构能够避免材料的硬化问题,改性PU的初始模量小于0.5 MPa,符合DE材料电场驱动时的柔软要求. 相比于未阻燃改性的PU-DE材料,当PU预聚物的硬段中含阻燃剂结构的占比超过50%时,可实现UL-94 V-0评级;并且当PU预聚物的硬段中都含DHBOP时(100% DHBOP-PU),其总释放热以及峰值热释放速率分别最大减少了26%和35%,热失重残炭率从未改性PU-DE材料的0.31 wt%增加至的9.99 wt%,熔滴质量最大减少了62%. 在无预拉伸驱动下,50% DHBOP-PU材料在52 MV/m的电场强度下可获得最大的面积应变为63%,该阻燃改性PU材料在DE驱动防火方面有重要意义,将为未来人机交互提供更安全的材料支撑.
Dielectric elastomer (DE) materials exhibit electro-induced actuation deformation under external electric fields
enabling efficient conversion of electrical energy to mechanical energy
demonstrating promising applications in flexible actuators and soft robotics. However
DE materials face inherent risks of electrical breakdown and combustion during high-field actuation. To address this challenge
this study designed and synthesized a bio-based phosphorus-nitrogen flame retardant (DHBOP) from lignin-derived syringaldehyde
which was subsequently incorporated as a hard-segment modifier to develop flame-retardant PU-DE materials. Key findings reveal that introducing the rigid flame-retardant structure into PU hard segments effectively prevents material hardening issues. The modified PU demonstrates a low initial modulus (<0.5 MPa)
satisfying the softness requirements for electric field-driven DE materials. Compared with pristine PU-DE
the modified PU-DE materials achieves UL-94 V-0 rating when the flame-retardant content exceeds 50% in the hard segments of PU prepolymer. Notably
the 100% DHBOP-PU formulation exhibits remarkable fire safety improvements: total heat release (THR) and peak heat release rate (PHRR) are reduced by 26% and 35%
respectively
while the residual char yield increases from 0.31 wt% to 9.99 wt% during thermogravimetric analysis. Melt dripping mass shows a maximum 62% reduction. Without pre-stretching
the 50% DHBOP-PU achieves maximum 63% area strain under 52 MV/m electric field
maintaining high actuation performance. This work provides a strategy for developing fire-safety DE actuators
with significant implications for human-machine interactive systems.
Guo Y. X. ; Qin Q. C. ; Han Z. Q. ; Plamthottam R. ; Possinger M. ; Pei Q. B. Dielectric elastomer artificial muscle materials advancement and soft robotic applications . SmartMat , 2023 , 4 ( 4 ), e 1203 . doi: 10.1002/smm2.1203 http://dx.doi.org/10.1002/smm2.1203
锁志刚 , 曲绍兴 . 介电高弹聚合物理论 . 力学进展 , 2011 , 41 ( 6 ), 730 - 750 .
Li G. R. ; Chen X. P. ; Zhou F. H. ; Liang Y. M. ; Xiao Y. H. ; Cao X. N. ; Zhang Z. ; Zhang M. Q. ; Wu B. S. ; Yin S. Y. ; Xu Y. ; Fan H. B. ; Chen Z. ; Song W. ; Yang W. J. ; Pan B. B. ; Hou J. Y. ; Zou W. F. ; He S. P. ; Yang X. X. ; Mao G. Y. ; Jia Z. ; Zhou H. F. ; Li T. F. ; Qu S. X. ; Xu Z. B. ; Huang Z. L. ; Luo Y. W. ; Xie T. ; Gu J. ; Zhu S. Q. ; Yang W. Self-powered soft robot in the Mariana trench . Nature , 2021 , 591 ( 7848 ), 66 - 71 . doi: 10.1038/s41586-020-03153-z http://dx.doi.org/10.1038/s41586-020-03153-z
Shi Y. ; Askounis E. ; Plamthottam R. ; Libby T. ; Peng Z. H. ; Youssef K. ; Pu J. H. ; Pelrine R. ; Pei Q. B. A processable, high-performance dielectric elastomer and multilayering process . Science , 2022 , 377 ( 6602 ), 228 - 232 . doi: 10.1126/science.abn0099 http://dx.doi.org/10.1126/science.abn0099
Yin L. J. ; Du B. Y. ; Hu H. Y. ; Dong W. Z. ; Zhao Y. ; Zhang Z. L. ; Zhao H. C. ; Zhong S. L. ; Yi C. Y. ; Qu L. T. ; Dang Z. M. A high-response-frequency bimodal network polyacrylate elastomer with ultrahigh power density under low electric field . Nat. Commun. , 2024 , 15 , 9819 . doi: 10.1038/s41467-024-54278-y http://dx.doi.org/10.1038/s41467-024-54278-y
Xiao Y. H. ; Mao J. ; Shan Y. J. ; Yang T. ; Chen Z. Q. ; Zhou F. H. ; He J. ; Shen Y. Q. ; Zhao J. J. ; Li T. F. ; Luo Y. W. Anisotropic electroactive elastomer for highly maneuverable soft robotics . Nanoscale , 2020 , 12 ( 14 ), 7514 - 7521 . doi: 10.1039/d0nr00924e http://dx.doi.org/10.1039/d0nr00924e
Zhang C. C. ; Chen G. C. ; Zhang K. H. ; Jin B. J. ; Zhao Q. ; Xie T. Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuation . Adv. Mater. , 2024 , 36 ( 16 ), 2313078 . doi: 10.1002/adma.202313078 http://dx.doi.org/10.1002/adma.202313078
Tang C. ; Du B. Y. ; Jiang S. W. ; Shao Q. ; Dong X. G. ; Liu X. J. ; Zhao H. C. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale . Sci. Robot. , 2022 , 7 ( 66 ), eabm 8597 . doi: 10.1126/scirobotics.abm8597 http://dx.doi.org/10.1126/scirobotics.abm8597
Gu G. Y. ; Zou J. ; Zhao R. K. ; Zhao X. H. ; Zhu X. Y. Soft wall-climbing robots . Sci. Robot. , 2018 , 3 ( 25 ), eaat 2874 . doi: 10.1126/scirobotics.aat2874 http://dx.doi.org/10.1126/scirobotics.aat2874
Feng W. W. ; Sun L. ; Jin Z. K. ; Chen L. L. ; Liu Y. C. ; Xu H. ; Wang C. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot . Nat. Commun. , 2024 , 15 ( 1 ), 4222 . doi: 10.1038/s41467-024-48243-y http://dx.doi.org/10.1038/s41467-024-48243-y
Dou X. R. ; Chen Z. Q. ; Ren F. H. ; He L. J. ; Chen J. X. ; Yin L. J. ; Luo Y. W. ; Dang Z. M. ; Mao J. Dielectric elastomer network with large side groups achieves large electroactive deformation for soft robotic grippers . Adv. Funct. Mater. , 2024 , 34 ( 44 ), 2407049 . doi: 10.1002/adfm.202407049 http://dx.doi.org/10.1002/adfm.202407049
He J. ; Chen Z. Q. ; Xiao Y. H. ; Cao X. N. ; Mao J. ; Zhao J. J. ; Gao X. ; Li T. F. ; Luo Y. W. Intrinsically anisotropic dielectric elastomer fiber actuators . ACS Mater. Lett. , 2022 , 4 ( 3 ), 472 - 479 . doi: 10.1021/acsmaterialslett.1c00742 http://dx.doi.org/10.1021/acsmaterialslett.1c00742
Chen Y. F. ; Zhao H. C. ; Mao J. ; Chirarattananon P. ; Helbling E. F. ; Hyun N. P. ; Clarke D. R. ; Wood R. J. Controlled flight of a microrobot powered by soft artificial muscles . Nature , 2019 , 575 ( 7782 ), 324 - 329 . doi: 10.1038/s41586-019-1737-7 http://dx.doi.org/10.1038/s41586-019-1737-7
Zhang Y. ; Ellingford C. ; Zhang R. N. ; Roscow J. ; Hopkins M. ; Keogh P. ; McNally T. ; Bowen C. ; Wan C. Y. Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials . Adv. Funct. Mater. , 2019 , 29 ( 15 ), 1808431 . doi: 10.1002/adfm.201808431 http://dx.doi.org/10.1002/adfm.201808431
Zhang Y. ; Khanbareh H. ; Roscow J. ; Pan M. ; Bowen C. ; Wan C. Y. Self-healing of materials under high electrical stress . Matter , 2020 , 3 ( 4 ), 989 - 1008 . doi: 10.1016/j.matt.2020.07.020 http://dx.doi.org/10.1016/j.matt.2020.07.020
Yu L. Y. ; Skov A. L. Molecular strategies for improved dielectric elastomer electrical breakdown strengths . Macromol. Rapid Commun. , 2018 , 39 ( 16 ), 1800383 . doi: 10.1002/marc.201800383 http://dx.doi.org/10.1002/marc.201800383
La T. G. ; Lau G. K. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating . Appl. Phys. Lett. , 2016 , 108 ( 1 ), 012903 . doi: 10.1063/1.4939550 http://dx.doi.org/10.1063/1.4939550
Yin Y. T. ; University T. ; Li W. ; Feng M. ; Hu X. D. ; Niu J. R. ; University T. ; Yao J. B. ; University T. Fabrication of flame-retardant and anti-dripping waterborne polyurethane containing phosphorus/silicon via a green and feasible strategy . ACS Sustainable Chem. Eng. , 2025 , 13 ( 9 ), 3522 - 3533 . doi: 10.1021/acssuschemeng.4c09232 http://dx.doi.org/10.1021/acssuschemeng.4c09232
Liu B. W. ; Zhao H. B. ; Wang Y. Z. Advanced flame-retardant methods for polymeric materials . Adv. Mater. , 2022 , 34 ( 46 ), 2107905 . doi: 10.1002/adma.202107905 http://dx.doi.org/10.1002/adma.202107905
Chattopadhyay D. K. ; Webster D. C. Thermal stability and flame retardancy of polyurethanes . Prog. Polym. Sci. , 2009 , 34 ( 10 ), 1068 - 1133 . doi: 10.1016/j.progpolymsci.2009.06.002 http://dx.doi.org/10.1016/j.progpolymsci.2009.06.002
Lazar S. T. ; Kolibaba T. J. ; Grunlan J. C. Flame-retardant surface treatments . Nat. Rev. Mater. , 2020 , 5 ( 4 ), 259 - 275 . doi: 10.1038/s41578-019-0164-6 http://dx.doi.org/10.1038/s41578-019-0164-6
Velencoso M. M. ; Battig A. ; Markwart J. C. ; Schartel B. ; Wurm F. R. Molecular firefighting: How modern phosphorus chemistry can help solve the challenge of flame retardancy . Angew. Chem. Int. Ed. , 2018 , 57 ( 33 ), 10450 - 10467 . doi: 10.1002/anie.201711735 http://dx.doi.org/10.1002/anie.201711735
Liu M. Y. ; Qiao J. X. ; Zhang X. G. ; Guo Z. J. ; Liu X. J. ; Lin F. K. ; Yang M. Y. ; Fan J. H. ; Wu X. W. ; Huang Z. H. Flame retardant strategies and applications of organic phase change materials: a review . Adv. Funct. Mater. , 2025 , 35 ( 2 ), 2412492 . doi: 10.1002/adfm.202412492 http://dx.doi.org/10.1002/adfm.202412492
Hou Y. B. ; Liu L. X. ; Qiu S. L. ; Zhou X. ; Gui Z. ; Hu Y. DOPO-modified two-dimensional co-based metal-organic framework: preparation and application for enhancing fire safety of poly(lactic acid) . ACS Appl. Mater. Interfaces , 2018 , 10 ( 9 ), 8274 - 8286 . doi: 10.1021/acsami.7b19395 http://dx.doi.org/10.1021/acsami.7b19395
Xue Y. J. ; Zhang M. ; Huo S. Q. ; Ma Z. W. ; Lynch M. ; Tuten B. T. ; Sun Z. Q. ; Zheng W. ; Zhou Y. H. ; Song P. G. Engineered functional segments enabled mechanically robust, intrinsically fire-retardant, switchable, degradable PolyureThane adhesives . Adv. Funct. Mater. , 2024 , 34 ( 49 ), 2409139 . doi: 10.1002/adfm.202409139 http://dx.doi.org/10.1002/adfm.202409139
Yao Y. Q. ; Man J. ; Wang X. ; Gu X. Y. ; Zheng Z. F. ; Li H. F. ; Sun J. ; Meng D. ; Zhang S. ; Dong Q. X. Development of a DOPO-based flame retardant with pendant chains for enhanced polyurethane elastomers . Polym. Degrad. Stab. , 2025 , 236 , 111302 . doi: 10.1016/j.polymdegradstab.2025.111302 http://dx.doi.org/10.1016/j.polymdegradstab.2025.111302
Huo S. Q. ; Liu Z. T. ; Li C. ; Wang X. L. ; Cai H. P. ; Wang J. Synthesis of a phosphaphenanthrene/benzimidazole-based curing agent and its application in flame-retardant epoxy resin . Polym. Degrad. Stab. , 2019 , 163 , 100 - 109 . doi: 10.1016/j.polymdegradstab.2019.03.003 http://dx.doi.org/10.1016/j.polymdegradstab.2019.03.003
Liu Y. L. ; Yu Z. ; Lu G. M. ; Chen W. D. ; Ye Z. X. ; He Y. R. ; Tang Z. B. ; Zhu J. Versatile levulinic acid-derived dynamic covalent thermosets enabled by in situ generated imine and multiple hydrogen bonds . Chem. Eng. J. , 2023 , 451 , 139053 . doi: 10.1016/j.cej.2022.139053 http://dx.doi.org/10.1016/j.cej.2022.139053
Xiao , Y ; Chen , Z ; Mao , J ; Cao , X ; He , J ; Yang , T ; Chen , L ; Yang , X ; Zhao , J ; Li , T ; Luo , Y . Self-strengthening dielectric elastomer with improving the performance of soft actuator under sub-kV activation . Macromol. Mater. Eng. , 2021 , 306 , 2000732 . doi: 10.1002/mame.202000732 http://dx.doi.org/10.1002/mame.202000732
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构