浏览全部资源
扫码关注微信
1.合肥工业大学,化学与化工学院 高分子材料与工程系,北京 102200
2.(合肥工业大学,先进功能材料与器件安徽省重点实验室 合肥 230009) (,北京 102200)
3.合肥工业大学,北京铁科首钢轨道技术股份有限公司,北京 102200
E-mail: dingys@hfut.edu.cn
收稿日期:2025-05-30,
录用日期:2025-06-26,
网络出版日期:2025-09-13,
移动端阅览
王俊杰, 叶安淇, 方华高, 董晓宇, 张远庆, 张勇, 刘志, 丁运生. 非对称氢键同时提升生物基聚氨酯自修复与力学性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25136
Wang, J. J.; Ye, A. Q.; Fang, H. G.; Dong, X. Y.; Zhang, Y. Q.; Zhang, Y.; Liu, Z.; Ding, Y. S. Simultaneous enhancement of self-healing and mechanical properties in bio-based polyurethane via asymmetric hydrogen bonds. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25136
王俊杰, 叶安淇, 方华高, 董晓宇, 张远庆, 张勇, 刘志, 丁运生. 非对称氢键同时提升生物基聚氨酯自修复与力学性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25136 DOI: CSTR: 32057.14.GFZXB.2025.7444.
Wang, J. J.; Ye, A. Q.; Fang, H. G.; Dong, X. Y.; Zhang, Y. Q.; Zhang, Y.; Liu, Z.; Ding, Y. S. Simultaneous enhancement of self-healing and mechanical properties in bio-based polyurethane via asymmetric hydrogen bonds. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25136 DOI: CSTR: 32057.14.GFZXB.2025.7444.
以生物基聚碳酸酯二元醇(PCDL)、生物基赖氨酸二异氰酸酯(LDI)和异佛尔酮二异氰酸酯(IPDI)为主要原料,异佛尔酮二胺(IPDA)与
双(2-羟基乙基)二硫醚(HEDS)为扩链剂制备了高强度可自修复的生物基聚氨酯. 研究表明,与PCDL-I-AH (PCDL-IPDI-IPDA/HEDS)相比,生物基聚氨酯中非对称氢键减少了其多重相分离结构间的差异,改善了PCDL-IL-AH (PCDL-IPDI/LDI-IPDA/HEDS)的力学性能;同时,非对称氢键还促进了生物基聚氨酯中动态共价键自修复能力的提升;其中,PCDL-IL-AH-7样品室温下的拉伸强度和断裂伸长率分别为45.22 MPa和1021%,断裂强度和断裂能分别为207.64 MJ/m
3
和182.78 kJ/cm
2
,呈现出强而韧的特性;其样品表面宽约100 μm的划痕,在80 ℃,空气氛围中放置2 h后完全愈合,表现出优良的自修复能力;研究工作为高强高韧和高自修复效率生物基聚氨酯材料设计合成提供了新方法.
High-strength self-healing bio-based polyurethanes was synthesized using bio-based polycarbonate diol (PCDL)
bio-based lysine diisocyanate (LDI) and isophorone diisocyanate (IPDI) as primary raw materials
with isophorone diamine (IPDA) and bis(2-hydroxyethyl) disulfide (HEDS) as chain extenders. The results demonstrated that
compared with PCDL-I-AH (PCDL-IPDI-IPDA/HEDS)
the asymmetric hydrogen bonding in the bio-based polyurethanes reduced the disparities between their multiple phase-separated structures
thereby enhanced the mechanical properties of PCDL-IL-AH (PCDL-IPDI/LDI-IPDA/HEDS). Simultaneously
the asymmetric hydrogen bonds further enhanced the self-healing capability of the bio-based polyurethane through dynamic covalent bonds. The tensile strength and elon
gation at break of the PCDL-IL-AH-7 samples at room temperature were 45.22 MPa and 1021%
respectively
alongside a fracture strength of 207.64 MJ/m
3
and a fracture energy of 182.78 kJ/cm
2
demonstrating strong and tough characteristics. Furthermore
the scratches approximately 100 µm wide on the surface of sample completely healed after 2 h at 80 ℃ in air
indicating an exceptional self-healing efficiency. This study provides a novel strategy for the designation and synthesis of bio-based polyurethane materials with high strength
toughness
and self-healing efficiency.
Liu Y. C. ; Chen T. ; Jin Z. K. ; Li M. X. ; Zhang D. D. ; Duan L. ; Zhao Z. G. ; Wang C. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments . Nat. Commun. , 2022 , 13 , 1338 . doi: 10.1038/s41467-022-29084-z http://dx.doi.org/10.1038/s41467-022-29084-z
Xu J. ; Chen J. ; Zhang Y. ; Liu T. ; Fu J. A fast room-temperature self-healing glassy polyurethane . Angew. Chem. Int. Ed. , 2021 , 60 ( 14 ), 7947 - 7955 . doi: 10.1002/anie.202017303 http://dx.doi.org/10.1002/anie.202017303
Wang Z. H. ; Lu X. L. ; Sun S. J. ; Yu C. J. ; Xia H. S. Preparation, characterization and properties of intrinsic self-healing elastomers . J. Mater. Chem. B , 2019 , 7 ( 32 ), 4876 - 4926 . doi: 10.1039/c9tb00831d http://dx.doi.org/10.1039/c9tb00831d
Zhang L. S. ; Huang M. M. ; Yu R. L. ; Huang J. C. ; Dong X. ; Zhang R. Y. ; Zhu J. Bio-based shape memory polyurethanes(Bio-SMPUs) with short side chains in the soft segment . J. Mater. Chem. A , 2014 , 2 ( 29 ), 11490 - 11498 . doi: 10.1039/c4ta01640h http://dx.doi.org/10.1039/c4ta01640h
Kreye O. ; Mutlu H. ; Meier M. A. R. Sustainable routes to polyurethane precursors . Green Chem. , 2013 , 15 ( 6 ), 1431 - 1455 . doi: 10.1039/c3gc40440d http://dx.doi.org/10.1039/c3gc40440d
Han F. L. ; Xu B. W. ; Ali Shah S. A. ; Zhang J. Y. ; Cheng J. Thermally reversible crosslinked polyurethanes based on blocking and deblocking reaction . Macromol. Mater. Eng. , 2020 , 305 ( 5 ), 1900782 . doi: 10.1002/mame.201900782 http://dx.doi.org/10.1002/mame.201900782
Su B. N. ; Yang M. C. ; Gao B. ; Li Z. Y. ; Zhao X. J. ; Zhang S. G. ; Cheng D. D. ; Shen T. L. ; Yao Y. Y. ; Yang Y. C. Ceresin wax enhances hydrophobicity and density of bio-based polyurethane of controlled-release fertilizers: streamlined production, improved nutrient release performance, and reduced cost . J. Clean. Prod. , 2024 , 452 , 142145 . doi: 10.1016/j.jclepro.2024.142145 http://dx.doi.org/10.1016/j.jclepro.2024.142145
Wang X. ; Sun J. Engineering of reversibly cross-linked elastomers toward flexible and recyclable elastomer/carbon fiber composites with extraordinary tearing resistance . Adv. Mater. , 2024 , 36 ( 35 ), e 2406252 . doi: 10.1002/adma.202406252 http://dx.doi.org/10.1002/adma.202406252
Huang L. Q. ; Huang H. X. ; Yu N. Chen, C. Z.; Liu, Y.; Hu, G. H.; Du, J.; Zhao, H. High-strength and excellent self-healing polyurethane elastomer based on rigid chain segment reinforcement . Macromolecules , 2025 , 58 ( 3 ), 1425 - 1434 . doi: 10.1021/acs.macromol.5c00013 http://dx.doi.org/10.1021/acs.macromol.5c00013
Xu H. ; Tu J. ; Li H. Z. ; Ji J. ; Liang L. ; Tian J. Q. ; Guo X. D. Room-temperature self-healing, high ductility, recyclable polyurethane elastomer fabricated via asymmetric dynamic hard segments strategy combined with self-cleaning function application . Chem. Eng. J. , 2023 , 454 , 140101 . doi: 10.1016/j.cej.2022.140101 http://dx.doi.org/10.1016/j.cej.2022.140101
Wu X. K. ; Zhang J. L. ; Li H. N. ; Gao H. H. ; Wu M. ; Wang Z. K. ; Wang Z. Dual-hard phase structures make mechanically tough and autonomous self-healable polyurethane elastomers . Chem. Eng. J. , 2023 , 454 , 140268 . doi: 10.1016/j.cej.2022.140268 http://dx.doi.org/10.1016/j.cej.2022.140268
Wang J. J. ; Dong X. Y. ; Qiu H. J. ; University A. ; Liu Z. X. ; Kang Y. F. ; Du J. H. ; Yang X. F. ; University A. ; Li X. L. ; Ding Y. S. Bioinspired structure with hierarchical hydrogen bonding and metal coordination for enhanced properties of biobased polyurethane applied in artificial ligaments . Chem. Mater. , 2025 , 37 ( 4 ), 1609 - 1620 . doi: 10.1021/acs.chemmater.4c03228 http://dx.doi.org/10.1021/acs.chemmater.4c03228
Wang J. J. ; Liu Z. X. ; Qiu H. J. ; Wang C. X. ; Dong X. Y. ; Du J. H. ; Li X. L. ; Yang X. F. ; Fang H. G. ; Ding Y. S. A robust bio-based polyurethane employed as surgical suture with help to promote skin wound healing . Biomater. Adv. , 2025 , 166 , 214048 . doi: 10.1016/j.bioadv.2024.214048 http://dx.doi.org/10.1016/j.bioadv.2024.214048
Ying W. B. ; Wang G. Y. ; Kong Z. Y. ; Yao C. K. ; Wang Y. B. ; Hu H. ; Li F. L. ; Chen C. ; Tian Y. ; Zhang J. W. ; Zhang R. Y. ; Zhu J. A biologically muscle-inspired polyurethane with super-tough, thermal reparable and self-healing capabilities for stretchable electronics . Adv. Funct. Mater. , 2021 , 31 ( 10 ), 2009869 . doi: 10.1002/adfm.202009869 http://dx.doi.org/10.1002/adfm.202009869
Xu J. B. ; Shi Z. Y. ; Xing Y. D. ; Niu W. Z. ; Yang Y. T. ; Xu X. ; Zhang F. A. Rapid UV-curable constructing rosin-based superhydrophobic composite coatings with self-healing properties for anticorrosion and anti-icing . Prog. Org. Coat. , 2025 , 205 , 109314 . doi: 10.1016/j.porgcoat.2025.109314 http://dx.doi.org/10.1016/j.porgcoat.2025.109314
Wan K. Z. ; Cai Y. ; Chen Q. H. ; Hong M. C. ; Zhou Z. X. ; Fu H. Q. Self-healing polyurethane composite films loaded with Ni@C nanoparticles . Eur. Polym. J. , 2023 , 199 , 112479 . doi: 10.1016/j.eurpolymj.2023.112479 http://dx.doi.org/10.1016/j.eurpolymj.2023.112479
Xu W. X. ; Liu H. ; He J. M. ; Bao B. T. ; Jiang J. ; Ren H. Z. ; Xu Y. T. ; Zeng B. R. ; Yuan C. H. ; Dai L. Z. Fabrication of multifunction polyurethane with robust, self-healing and anti-corrosion performance based multiple dynamic bonds strategy . Prog. Org. Coat. , 2024 , 192 , 108513 . doi: 10.1016/j.porgcoat.2024.108513 http://dx.doi.org/10.1016/j.porgcoat.2024.108513
Shen R. L. ; Lei C. D. ; Long M. J. ; Gao W. ; Yu G. P. ; Tang J. T. Trajectory controlling and collision warning device based on self-healing and conductive castor oil-based waterborne polyurethane in automated guided vehicles . Adv. Funct. Mater. , 2023 , 33 ( 12 ), 2212455 . doi: 10.1002/adfm.202212455 http://dx.doi.org/10.1002/adfm.202212455
Ye T. ; Tan J. L. ; Wu T. ; Zhang F. ; Chen S. Y. ; Wang C. X. Self-healable and mechanically robust supramolecular-covalent poly(oxime-urethane) elastomers with information encryption via hydrogen bonds and coordinate interactions . Sci. China Chem. , 2025 , 68 ( 5 ), 1998 - 2009 . doi: 10.1007/s11426-024-2367-8 http://dx.doi.org/10.1007/s11426-024-2367-8
Chen K. ; Ren Q. B. ; Li J. J. ; Chen D. F. ; Li C. X. A highly stretchable and self-healing hydroxy-terminated polybutadiene elastomer . J. Saudi Chem. Soc. , 2020 , 24 ( 12 ), 1034 - 1041 . doi: 10.1016/j.jscs.2020.11.002 http://dx.doi.org/10.1016/j.jscs.2020.11.002
Liu S. X. ; Chen Y. ; Qiao Y. ; Li Z. Q. ; Wei Y. Y. Preparation and properties of self-healing polyurethane based on disulfide and hydrogen bonding . Carbon Lett. , 2023 , 33 ( 1 ), 163 - 175 . doi: 10.1007/s42823-022-00413-y http://dx.doi.org/10.1007/s42823-022-00413-y
Fan Z. J. ; Liu Z. ; Zhang X. D. ; Cui X. X. ; Li H. Z. ; Xu H. ; Guo X. D. A cephalopod-inspired multi-environmental adaptive self-healing polyurethanes . Mater. Today Chem. , 2025 , 44 , 102580 . doi: 10.1016/j.mtchem.2025.102580 http://dx.doi.org/10.1016/j.mtchem.2025.102580
0
浏览量
88
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构