浏览全部资源
扫码关注微信
南开大学化学学院 功能高分子材料教育部重点实验室 天津 300071
[ "万相见,男,1978年7月生. 南开大学化学学院教授,博士生导师. 2000年本科毕业于东北师范大学,2003年大连理工大学获工学硕士学位,2006年于南开大学获理学博士学位,随后留校工作至今. 主要研究方向为有机太阳能电池材料与器件." ]
收稿日期:2025-06-09,
录用日期:2025-07-29,
网络出版日期:2025-09-25,
移动端阅览
肖政, 李龙钰, 万相见. 柔性透明电极基底及其在有机光伏中的应用进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25142
Xiao, Z.; Li, L. Y.; Wan, X. J. Flexible transparent electrode substrates and their application progress in organic photovoltaics. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25142
肖政, 李龙钰, 万相见. 柔性透明电极基底及其在有机光伏中的应用进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25142 DOI: CSTR: 32057.14.GFZXB.2025.7453.
Xiao, Z.; Li, L. Y.; Wan, X. J. Flexible transparent electrode substrates and their application progress in organic photovoltaics. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25142 DOI: CSTR: 32057.14.GFZXB.2025.7453.
柔性有机太阳能电池(flexible organic solar cells
FOSCs)由于具有柔性、重量轻、成本低和可印刷等优势,在智能建筑、便携式供电设备以及可穿戴器件等领域展现出广阔的市场前景. 作为FOSCs的核心组成部分,柔性基底不仅决定了器件的机械性能,还对柔性透明电极的透射率、耐用性等关键特性产生影响. 本文系统综述了各类柔性基底的最新研究进展,探讨了柔性基底对器件结构及性能的影响,并分析了不同类型柔性基底所面临的挑战. 最后,针对柔性基底在提升器件性能与稳定性方面的关键问题进行了探讨,并展望了其在未来柔性器件中的应用潜力.
Flexible organic solar cells (FOSCs) offer vast market potential in fields such as smart buildings
portable power supply devices
and wearable electronics due to their advantages of flexibility
lightweight design
low cost
and printability. As a core component of FOSCs
flexible substrates not only determine the mechanical properties of the devices but also significantly impact key characteristics such as the transmittance and durability of flexible transparent electrodes. This paper systematically reviews the latest research progress on various flexible substrates
explores their influence on device structure and performance
and analyzes the challenges faced by different types of flexible substrates. Finally
key issues related to improving device performance and stability are discussed
and the potential applications of flexible substrates in future flexible electronic devices are envisioned.
Xu X. P. ; Jing W. W. ; Meng H. F. ; Guo Y. Y. ; Yu L. Y. ; Li R. P. ; Peng Q. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells . Adv. Mater. , 2023 , 35 ( 12 ), 2208997 . doi: 10.1002/adma.202208997 http://dx.doi.org/10.1002/adma.202208997
Li Y. W. ; Xu G. Y. ; Cui C. H. ; Li Y. F. Flexible and semitransparent organic solar cells . Adv. Energy Mater. , 2018 , 8 ( 7 ), 1701791 . doi: 10.1002/aenm.201701791 http://dx.doi.org/10.1002/aenm.201701791
Liu K. ; Larsen-Olsen T. T. ; Lin Y. Z. ; Beliatis M. ; Bundgaard E. ; Jørgensen M. ; Krebs F. C. ; Zhan X. W. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems . J. Mater. Chem. A , 2016 , 4 ( 3 ), 1044 - 1051 . doi: 10.1039/c5ta07357j http://dx.doi.org/10.1039/c5ta07357j
王泽宇 , 闫晗 . 分子掺杂半透明有机太阳能电池研究进展 . 高分子学报 , 2025 , 56 ( 7 ), 1063 - 1073 .
Wang X. ; Jin H. ; Nagiri R. C. R. ; Poliquit B. Z. L. ; Subbiah J. ; Jones D. J. ; Kopidakis N. ; Burn P. L. ; Yu J. S. Flexible ITO-free organic photovoltaics on ultra-thin flexible glass substrates with high efficiency and improved stability . Sol. RRL , 2019 , 3 ( 4 ), 1800286 . doi: 10.1002/solr.201800286 http://dx.doi.org/10.1002/solr.201800286
Song W. ; Fan X. ; Xu B. G. ; Yan F. ; Cui H. Q. ; Wei Q. ; Peng R. X. ; Hong L. ; Huang J. M. ; Ge Z. Y. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency . Adv. Mater. , 2018 , 30 ( 26 ), 1800075 . doi: 10.1002/adma.201800075 http://dx.doi.org/10.1002/adma.201800075
崔超华 . 有机光伏材料的分子设计与器件性能研究 . 高分子学报 , 2021 , 52 ( 6 ), 663 - 678 . doi: 10.11777/j.issn1000-3304.2021.21068 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21068
Marchwiński J. ; Lucchi E. Firmitas, utilitas, and venustas of photovoltaic architecture . Sol. Energy , 2024 , 282 , 112974 . doi: 10.1016/j.solener.2024.112974 http://dx.doi.org/10.1016/j.solener.2024.112974
Albab M. F. ; Jahandar M. ; Kim Y. H. ; Kim Y. K. ; Shin M. ; Prasetio A. ; Kim S. ; Lim D. C. High-performance semi-transparent organic solar cells driven by the dipole-controlled optoelectrical response of bilateral self-assembled monolayer strategy . Nano Energy , 2024 , 121 , 109219 . doi: 10.1016/j.nanoen.2023.109219 http://dx.doi.org/10.1016/j.nanoen.2023.109219
Wang Z. Y. ; Bo Y. W. ; Bai P. J. ; Zhang S. C. ; Li G. H. ; Wan X. J. ; Liu Y. S. ; Ma R. J. ; Chen Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight . Science , 2023 , 382 ( 6676 ), 1291 - 1296 . doi: 10.1126/science.adj3654 http://dx.doi.org/10.1126/science.adj3654
Xie C. ; Xiong Z. D. ; Liu X. L. ; Wang W. ; Liu Y. ; Jiang X. S. ; Lu X. ; Sun L. L. ; Zhou Y. H. Efficient large-area flexible organic photovoltaic modules on transparent thin silver electrodes . Sci. China Chem. , 2025 , 68 ( 3 ), 1199 - 1206 . doi: 10.1007/s11426-024-2299-7 http://dx.doi.org/10.1007/s11426-024-2299-7
Li S. T. ; Li Z. X. ; Wan X. J. ; Chen Y. S. Recent progress in flexible organic solar cells . eScience , 2023 , 3 ( 1 ), 100085 . doi: 10.1016/j.esci.2022.10.010 http://dx.doi.org/10.1016/j.esci.2022.10.010
Wang C. ; Liu F. ; Chen Q. M. ; Xiao C. Y. ; Wu Y. G. ; Li W. W. Benzothiadiazole-based conjugated polymers for organic solar cells . Chinese J. Polym. Sci. , 2021 , 39 ( 5 ), 525 - 536 . doi: 10.1007/s10118-021-2537-8 http://dx.doi.org/10.1007/s10118-021-2537-8
Chen C. ; Wang L. ; Xia W. Y. ; Qiu K. ; Guo C. H. ; Gan Z. R. ; Zhou J. ; Sun Y. D. ; Liu D. ; Li W. ; Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20% . Nat. Commun. , 2024 , 15 ( 1 ), 6865 . doi: 10.1038/s41467-024-51359-w http://dx.doi.org/10.1038/s41467-024-51359-w
Fu J. H. ; Yang Q. G. ; Huang P. H. ; Chung S. ; Cho K. ; Kan Z. P. ; Liu H. ; Lu X. H. ; Lang Y. W. ; Lai H. J. ; He F. ; Fong P. W. K. ; Lu S. R. ; Yang Y. ; Xiao Z. Y. ; Li G. Rational molecular and device design enables organic solar cells approaching 20% efficiency . Nat. Commun. , 2024 , 15 , 1830 . doi: 10.1038/s41467-024-46022-3 http://dx.doi.org/10.1038/s41467-024-46022-3
Ye Q. R. ; Chen Z. Y. ; Yang D. B. ; Song W. ; Zhu J. T. ; Yang S. C. ; Ge J. F. ; Chen F. ; Ge Z. Y. Ductile oligomeric acceptor-modified flexible organic solar cells show excellent mechanical robustness and near 18% efficiency . Adv. Mater. , 2023 , 35 ( 44 ), 2305562 . doi: 10.1002/adma.202305562 http://dx.doi.org/10.1002/adma.202305562
Pagliaro M. ; Ciriminna R. ; Palmisano G. Flexible solar cells . ChemSusChem , 2008 , 1 ( 11 ), 880 - 891 . doi: 10.1002/cssc.200800127 http://dx.doi.org/10.1002/cssc.200800127
Jung H. S. ; Han G. S. ; Park N. G. ; Ko M. J. Flexible perovskite solar cells . Joule , 2019 , 3 ( 8 ), 1850 - 1880 . doi: 10.1016/j.joule.2019.07.023 http://dx.doi.org/10.1016/j.joule.2019.07.023
Ling H. F. ; Liu S. H. ; Zheng Z. J. ; Yan F. Organic flexible electronics . Small Meth. , 2018 , 2 ( 10 ), 1800070 . doi: 10.1002/smtd.201800070 http://dx.doi.org/10.1002/smtd.201800070
Li H. J. ; Le J. L. ; Tan H. ; Hu L. ; Li X. ; Zhang K. ; Zeng S. M. ; Liu Q. J. ; Zhang M. ; Shi L. F. ; Cai Z. R. ; Liu S. Q. ; Li H. X. ; Ye L. ; Hu X. T. ; Chen Y. W. Synergistic multimodal energy dissipation enhances certified efficiency of flexible organic photovoltaics beyond 19% . Adv. Mater. , 2025 , 37 ( 5 ), 2411989 . doi: 10.1002/adma.202411989 http://dx.doi.org/10.1002/adma.202411989
Chen X. Z. ; Luo Q. ; Ma C. Q. Inkjet-printed organic solar cells and perovskite solar cells: progress, challenges, and prospect . Chinese J. Polym. Sci. , 2023 , 41 ( 8 ), 1169 - 1197 . doi: 10.1007/s10118-023-2961-z http://dx.doi.org/10.1007/s10118-023-2961-z
Fukuda K. ; Yu K. ; Someya T. The future of flexible organic solar cells . Adv. Energy Mater. , 2020 , 10 ( 25 ), 2000765 . doi: 10.1002/aenm.202000765 http://dx.doi.org/10.1002/aenm.202000765
孙凌亚 , 刘世钊 , 张旭 , 马笑 , 高欢欢 , 阚媛媛 , 孙延娜 , 高珂 . 超薄柔性有机太阳能电池的研究进展 . 高分子学报 , 2025 , 56 ( 7 ), 1039 - 1062 .
Sun Y. N. ; Liu T. ; Kan Y. Y. ; Gao K. ; Tang B. ; Li Y. L. Flexible organic solar cells: progress and challenges . Small Sci. , 2021 , 1 ( 5 ), 2100001 . doi: 10.1002/smsc.202100001 http://dx.doi.org/10.1002/smsc.202100001
Liu R. Y. ; Takakuwa M. ; Li A. L. ; Inoue D. ; Hashizume D. ; Yu K. ; Umezu S. ; Fukuda K. ; Someya T. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors . Adv. Energy Mater. , 2020 , 10 ( 20 ), 2000523 . doi: 10.1002/aenm.202070090 http://dx.doi.org/10.1002/aenm.202070090
Sun Y. N. ; Chang M. J. ; Meng L. X. ; Wan X. J. ; Gao H. H. ; Zhang Y. M. ; Zhao K. ; Sun Z. H. ; Li C. X. ; Liu S. R. ; Wang H. K. ; Liang J. J. ; Chen Y. S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes . Nat. Electron. , 2019 , 2 ( 11 ), 513 - 520 . doi: 10.1038/s41928-019-0315-1 http://dx.doi.org/10.1038/s41928-019-0315-1
Lewis J. S. ; Weaver M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices . IEEE J. Sel. Top. Quantum Electron. , 2004 , 10 ( 1 ), 45 - 57 . doi: 10.1109/jstqe.2004.824072 http://dx.doi.org/10.1109/jstqe.2004.824072
Garner S. M. ; Lewis S. C. ; Chowdhury D. Q. Flexible glass and its application for electronic devices . 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) . Kyoto, Japan: IEEE, 2017 . 28 - 33 . doi: 10.23919/am-fpd66451.2025 http://dx.doi.org/10.23919/am-fpd66451.2025
Cardinaletti I. ; Vangerven T. ; Nagels S. ; Cornelissen R. ; Schreurs D. ; Hruby J. ; Vodnik J. ; Devisscher D. ; Kesters J. ; D'Haen J. ; Franquet A. ; Spampinato V. ; Conard T. ; Maes W. ; Deferme W. ; Manca J. V. Organic and perovskite solar cells for space applications . Sol. Energy Mater. Sol. Cells , 2018 , 182 , 121 - 127 . doi: 10.1016/j.solmat.2018.03.024 http://dx.doi.org/10.1016/j.solmat.2018.03.024
Sun Y. N. ; Meng L. X. ; Wan X. J. ; Guo Z. Q. ; Ke X. ; Sun Z. H. ; Zhao K. ; Zhang H. T. ; Li C. X. ; Chen Y. S. Flexible high-performance and solution-processed organic photovoltaics with robust mechanical stability . Adv. Funct. Mater. , 2021 , 31 ( 16 ), 2010000 . doi: 10.1002/adfm.202010000 http://dx.doi.org/10.1002/adfm.202010000
Sheehan S. ; Surolia P. K. ; Byrne O. ; Garner S. ; Cimo P. ; Li X. ; Dowling D. P. ; Thampi K. R. Flexible glass substrate based dye sensitized solar cells . Sol. Energy Mater. Sol. Cells , 2015 , 132 , 237 - 244 . doi: 10.1016/j.solmat.2014.09.001 http://dx.doi.org/10.1016/j.solmat.2014.09.001
Hou H. Y. ; Zhang Y. F. ; Chen J. D. ; Liu H. M. ; Ren H. ; Li Y. Q. ; Mao H. Y. ; Tang J. X. Boosted radiative energy transfer of plasmonic electrodes enables flexible organic photovoltaics with efficiency over 18% . Chem. Eng. J. , 2022 , 450 , 138181 . doi: 10.1016/j.cej.2022.138181 http://dx.doi.org/10.1016/j.cej.2022.138181
Nagatsuma T. Breakthroughs in photonics 2013: THz communications based on photonics . IEEE Photonics J. , 2014 , 6 ( 2 ), 0701505 . doi: 10.1109/jphot.2014.2309643 http://dx.doi.org/10.1109/jphot.2014.2309643
Kim N. ; Kang H. ; Lee J. H. ; Kee S. ; Lee S. H. ; Lee K. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method . Adv. Mater. , 2015 , 27 ( 14 ), 2317 - 2323 . doi: 10.1002/adma.201500078 http://dx.doi.org/10.1002/adma.201500078
Dou B. J. ; Miller E. M. ; Christians J. A. ; Sanehira E. M. ; Klein T. R. ; Barnes F. S. ; Shaheen S. E. ; Garner S. M. ; Ghosh S. ; Mallick A. ; Basak D. ; van Hest M. F. A. M. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO . J. Phys. Chem. Lett. , 2017 , 8 ( 19 ), 4960 - 4966 . doi: 10.1021/acs.jpclett.7b02128 http://dx.doi.org/10.1021/acs.jpclett.7b02128
Liu X. Y. ; Zheng Z. ; Wang J. Q. ; Wang Y. F. ; Xu B. W. ; Zhang S. Q. ; Hou J. H. Fluidic manipulating of printable zinc oxide for flexible organic solar cells . Adv. Mater. , 2022 , 34 ( 3 ), 2106453 . doi: 10.1002/adma.202106453 http://dx.doi.org/10.1002/adma.202106453
Huang J. M. ; Ren Z. W. ; Zhang Y. K. ; Liu K. ; Zhang H. K. ; Tang H. ; Yan C. Q. ; Zheng Z. J. ; Li G. Stretchable ITO-free organic solar cells with intrinsic anti-reflection substrate for high-efficiency outdoor and indoor energy harvesting . Adv. Funct. Mater. , 2021 , 31 ( 16 ), 2010172 . doi: 10.1002/adfm.202010172 http://dx.doi.org/10.1002/adfm.202010172
Park M. ; Lee S. H. ; Kim D. ; Kang J. ; Lee J. Y. ; Han S. M. Fabrication of a combustion-reacted high-performance ZnO electron transport layer with silver nanowire electrodes for organic solar cells . ACS Appl. Mater. Interfaces , 2018 , 10 ( 8 ), 7214 - 7222 . doi: 10.1021/acsami.7b17148 http://dx.doi.org/10.1021/acsami.7b17148
Zhang Y. F. ; Ren H. ; Chen J. D. ; Hou H. Y. ; Liu H. M. ; Tian S. ; Chen W. S. ; Ge H. R. ; Li Y. Q. ; Mao H. Y. ; Su Z. S. ; Tang J. X. Efficient and stable flexible organic solar cells via the enhanced optical-thermal radiative transfer . Adv. Funct. Mater. , 2023 , 33 ( 18 ), 2212260 . doi: 10.1002/adfm.202212260 http://dx.doi.org/10.1002/adfm.202212260
Cazzaniga A. ; Crovetto A. ; Ettlinger R. ; Canulescu S. ; Hansen O. Flexible kesterite solar cells on ceramic substrates for advanced thermal processing . IEEE J. Sel. Top. Quantum Electron. , 2015 , 1 - 4 . doi: 10.1109/pvsc.2015.7355905 http://dx.doi.org/10.1109/pvsc.2015.7355905
Han D. X. ; Zhou K. K. ; Li X. ; Lv P. F. ; Wu J. J. ; Ke H. Z. ; Zhao W. C. ; Ye L. Intrinsically stretchable organic solar cells and sensors enabled by extensible composite electrodes . Adv. Funct. Mater. , 2024 , 34 ( 44 ), 2407392 . doi: 10.1002/adfm.202407392 http://dx.doi.org/10.1002/adfm.202407392
Arkhireyeva A. ; Hashemi S. Fracture behaviour of polyethylene naphthalate (PEN) . Polymer , 2002 , 43 ( 2 ), 289 - 300 . doi: 10.1016/s0032-3861(01)00623-1 http://dx.doi.org/10.1016/s0032-3861(01)00623-1
Wu X. L. ; Zheng X. J. ; Chen T. Y. ; Zhang S. ; Zhou Y. ; Wang M. T. ; Chen T. J. ; Wang Y. M. ; Bi Z. Z. ; Fu W. F. ; Du M. ; Ma W. ; Zuo L. J. ; Chen H. Z. High-performance intrinsically stretchable organic photovoltaics enabled by robust silver nanowires/S-PH1000 hybrid transparent electrodes . Adv. Mater. , 2024 , 36 ( 40 ), 2406879 . doi: 10.1002/adma.202406879 http://dx.doi.org/10.1002/adma.202406879
Wang Z. Y. ; Zhang D. ; Yang L. P. ; Allam O. ; Gao Y. R. ; Su Y. ; Xu M. C. ; Mo S. M. ; Wu Q. H. ; Wang Z. ; Liu J. F. ; He J. Y. ; Li R. ; Jia X. W. ; Li Z. L. ; Yang L. ; Weber M. D. ; Yu Y. ; Zhang X. L. ; Marks T. J. ; Stingelin N. ; Kacher J. ; Jang S. S. ; Facchetti A. ; Shao M. Mechanically robust and stretchable organic solar cells plasticized by small-molecule acceptors . Science , 2025 , 387 ( 6732 ), 381 - 387 . doi: 10.1126/science.adp9709 http://dx.doi.org/10.1126/science.adp9709
Hong K. H. ; Kang T. J. Hydraulic permeabilities of PET and nylon 6 electrospun fiber webs . J. Appl. Polym. Sci. , 2006 , 100 ( 1 ), 167 - 177 . doi: 10.1002/app.22651 http://dx.doi.org/10.1002/app.22651
Ito H. ; Oka W. ; Goto H. ; Umeda H. Plastic substrates for flexible displays . Jpn. J. Appl. Phys. , 2006 , 45 ( 5 S), 4325 . doi: 10.1143/jjap.45.4325 http://dx.doi.org/10.1143/jjap.45.4325
Wang Y. M. ; Chen Q. M. ; Zhang G. C. ; Xiao C. Y. ; Wei Y. ; Li W. W. Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells . ACS Appl. Mater. Interfaces , 2022 , 14 ( 4 ), 5699 - 5708 . doi: 10.1021/acsami.1c18866 http://dx.doi.org/10.1021/acsami.1c18866
Wang Y. M. ; Chen Q. M. ; Wang Y. P. ; Zhang G. C. ; Zhang Z. ; Fang J. ; Zhao C. W. ; Li W. W. Mechanically and ultraviolet light stable ultrathin organic solar cell via semi-embedding silver nanowires in a hydrogen bonds-based polyimide . Macromol. Rapid Commun. , 2022 , 43 ( 22 ), 2200432 . doi: 10.1002/marc.202200432 http://dx.doi.org/10.1002/marc.202200432
Xiong S. X. ; Fukuda K. ; Lee S. ; Nakano K. ; Dong X. Y. ; Yokota T. ; Tajima K. ; Zhou Y. H. ; Someya T. Ultrathin and efficient organic photovoltaics with enhanced air stability by suppression of zinc element diffusion . Adv. Sci. , 2022 , 9 ( 8 ), 2105288 . doi: 10.1002/advs.202105288 http://dx.doi.org/10.1002/advs.202105288
Cui N. ; Song Y. ; Tan C. H. ; Zhang K. ; Yang X. Y. ; Dong S. ; Xie B. M. ; Huang F. Stretchable transparent electrodes for conformable wearable organic photovoltaic devices . NPJ Flex. Electron. , 2021 , 5 , 31 . doi: 10.1038/s41528-021-00127-7 http://dx.doi.org/10.1038/s41528-021-00127-7
MacDonald W. A. Engineered films for display technologies . J. Mater. Chem. , 2004 , 14 ( 1 ), 4 - 10 . doi: 10.1039/b310846p http://dx.doi.org/10.1039/b310846p
Lu X. ; Xie C. ; Liu Y. ; Zheng H. ; Feng K. ; Xiong Z. D. ; Wei W. X. ; Zhou Y. H. Increase in the efficiency and stability of large-area flexible organic photovoltaic modules via improved electrical contact . Nat. Energy , 2024 , 9 ( 7 ), 793 - 802 . doi: 10.1038/s41560-024-01501-1 http://dx.doi.org/10.1038/s41560-024-01501-1
Liu Y. Q. ; Qi N. ; Song T. ; Jia M. L. ; Xia Z. H. ; Yuan Z. C. ; Yuan W. ; Zhang K. Q. ; Sun B. Q. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin . ACS Appl. Mater. Interfaces , 2014 , 6 ( 23 ), 20670 - 20675 . do i: 10.1021/am504163r http://dx.doi.org/10.1021/am504163r
Kim T. S. ; Na S. I. ; Kim S. S. ; Yu B. K. ; Yeo J. S. ; Kim D. Y. Solution-processible polymer solar cells fabricated on a papery substrate . Phys. Status Solidi RRL , 2012 , 6 ( 1 ), 13 - 15 . doi: 10.1002/pssr.201105440 http://dx.doi.org/10.1002/pssr.201105440
Hu L. B. ; Zheng G. Y. ; Yao J. ; Liu N. ; Weil B. ; Eskilsson M. ; Karabulut E. ; Ruan Z. C. ; Fan S. H. ; Bloking J. T. ; McGehee M. D. ; Wågberg L. ; Cui Y. Transparent and conductive paper from nanocellulose fibers . Energy Environ. Sci. , 2013 , 6 ( 2 ), 513 - 518 . doi: 10.1039/c2ee23635d http://dx.doi.org/10.1039/c2ee23635d
Znajdek K. ; Sibiński M. ; Strąkowska A. ; Lisik Z. Polymer substrates for flexible photovoltaic cells application in personal electronic system . Opto-Electron. Rev. , 2016 , 24 ( 1 ), 20 - 24 . doi: 10.1515/oere-2016-0001 http://dx.doi.org/10.1515/oere-2016-0001
Lin P. C. ; Hsieh C. T. ; Liu X. ; Chang F. C. ; Chen W. C. ; Yu J. S. ; Chueh C. C. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate . Chem. Eng. J. , 2021 , 405 , 126996 . doi: 10.1016/j.cej.2020.126996 http://dx.doi.org/10.1016/j.cej.2020.126996
Zhou Y. H. ; Fuentes-Hernandez C. ; Khan T. M. ; Liu J. C. ; Hsu J. ; Shim J. W. ; Dindar A. ; Youngblood J. P. ; Moon R. J. ; Kippelen B. Recyclable organic solar cells on cellulose nanocrystal substrates . Sci. Rep. , 2013 , 3 , 1536 . doi: 10.1038/srep01536 http://dx.doi.org/10.1038/srep01536
Leem J. W. ; Kim S. ; Lee S. H. ; Rogers J. A. ; Kim E. ; Yu J. S. Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films . Adv. Energy Mater. , 2014 , 4 ( 8 ), 1301315 . doi: 10.1002/aenm.201301315 http://dx.doi.org/10.1002/aenm.201301315
Huang L. W. ; Li Y. B. ; Zheng Z. ; Bai Y. ; Russell T. P. ; He C. F. Flexible, transparent, and sustainable cellulose-based films for organic solar cell substrates . Mater. Horiz. , 2024 , 11 ( 6 ), 1560 - 1566 . doi: 10.1039/d3mh01998e http://dx.doi.org/10.1039/d3mh01998e
Xiao Z. ; Li S. T. ; Liu J. ; Chen X. ; Suo Z. C. ; Li C. X. ; Wan X. J. ; Chen Y. S. Ecofriendly cellulose substrate-based flexible transparent electrode for flexible organic solar cells with efficiency over 18% . Sol. RRL , 2024 , 8 ( 11 ), 2400206 . doi: 10.1002/solr.202400206 http://dx.doi.org/10.1002/solr.202400206
Xiao Z. ; Liu J. ; Chen X. ; Suo Z. C. ; Cao X. J. ; Xu N. ; Yao Z. Y. ; Li C. X. ; Wan X. J. ; Chen Y. S. Ultra-flexible organic solar cells based on eco-friendly cellulose substrate with efficiency approaching 19% . J. Mater. Chem. A , 2025 , 13 ( 3 ), 2301 - 2308 . doi: 10.1039/d4ta07622b http://dx.doi.org/10.1039/d4ta07622b
Wang D. R. ; Zhang Y. K. ; Lu X. ; Ma Z. J. ; Xie C. ; Zheng Z. J. Chemical formation of soft metal electrodes for flexible and wearable electronics . Chem. Soc. Rev. , 2018 , 47 ( 12 ), 4611 - 4641 . doi: 10.1039/c7cs00192d http://dx.doi.org/10.1039/c7cs00192d
Søndergaard R. R. ; Makris T. ; Lianos P. ; Manor A. ; Katz E. A. ; Gong W. ; Tuladhar S. M. ; Nelson J. ; Tuomi R. ; Sommeling P. ; Veenstra S. C. ; Rivaton A. ; Dupuis A. ; Teran-Escobar G. ; Lira-Cantu M. ; Sapkota S. B. ; Zimmermann B. ; Würfel U. ; Matzarakis A. ; Krebs F. C. The use of polyurethane as encapsulating method for polymer solar cells: an inter laboratory study on outdoor stability in 8 countries . Sol. Energy Mater. Sol. Cells , 2012 , 99 , 292 - 300 . doi: 10.1016/j.solmat.2011.12.013 http://dx.doi.org/10.1016/j.solmat.2011.12.013
Bonomo M. ; Taheri B. ; Bonandini L. ; Castro-Hermosa S. ; Brown T. M. ; Zanetti M. ; Menozzi A. ; Barolo C. ; Brunetti F. Thermosetting polyurethane resins as low-cost, easily scalable, and effective oxygen and moisture barriers for perovskite solar cells . ACS Appl. Mater. Interfaces , 2020 , 12 ( 49 ), 54862 - 54875 . doi: 10.1021/acsami.0c17652 http://dx.doi.org/10.1021/acsami.0c17652
Mannix A. J. ; Ye A. ; Sung S. H. ; Ray A. ; Mujid F. ; Park C. ; Lee M. ; Kang J. H. ; Shreiner R. ; High A. A. ; Muller D. A. ; Hovden R. ; Park J. Robotic four-dimensional pixel assembly of van der Waals solids . Nat. Nanotechnol. , 2022 , 17 ( 4 ), 361 - 366 . doi: 10.1038/s41565-021-01061-5 http://dx.doi.org/10.1038/s41565-021-01061-5
Yan Y. D. ; Duan B. W. ; Ru M. ; Gu Q. Y. ; Li S. S. ; Zhao W. C. Toward flexible and stretchable organic solar cells: a comprehensive review of transparent conductive electrodes, photoactive materials, and device performance . Adv. Energy Mater. , 2025 , 15 ( 7 ), 2404233 . doi: 10.1002/aenm.202404233 http://dx.doi.org/10.1002/aenm.202404233
Noh J. ; Kim G. U. ; Han S. ; Oh S. J. ; Jeon Y. ; Jeong D. ; Kim S. W. ; Kim T. S. ; Kim B. J. ; Lee J. Y. Intrinsically stretchable organic solar cells with efficiencies of over 11% . ACS Energy Lett. , 2021 , 6 ( 7 ), 2512 - 2518 . doi: 10.1021/acsenergylett.1c00829 http://dx.doi.org/10.1021/acsenergylett.1c00829
Lee S. ; Jeon Y. ; Lee S. Y. ; Ma B. S. ; Song M. ; Jeong D. ; Jo J. ; Kim G. U. ; Lee J. ; Kim T. S. ; Kim B. J. ; Lee J. Y. Intrinsically stretchable organic solar cells without cracks under 40% strain . Adv. Energy Mater. , 2023 , 13 ( 30 ), 2300533 . doi: 10.1002/aenm.202300533 http://dx.doi.org/10.1002/aenm.202300533
Zheng X. J. ; Wu X. L. ; Wu Q. ; Han Y. F. ; Ding G. Y. ; Wang Y. M. ; Kong Y. B. ; Chen T. Y. ; Wang M. T. ; Zhang Y. Q. ; Xue J. W. ; Fu W. F. ; Luo Q. ; Ma C. Q. ; Ma W. ; Zuo L. J. ; Shi M. M. ; Chen H. Z. Thorough optimization for intrinsically stretchable organic photovoltaics . Adv. Mater. , 2024 , 36 ( 11 ), 2307280 . doi: 10.1002/adma.202307280 http://dx.doi.org/10.1002/adma.202307280
Huang J. M. ; Lu Z. ; He J. Q. ; Hu H. ; Liang Q. ; Liu K. ; Ren Z. W. ; Zhang Y. K. ; Yu H. Y. ; Zheng Z. J. ; Li G. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process . Energy Environ. Sci. , 2023 , 16 ( 3 ), 1251 - 1263 . doi: 10.1039/d2ee03096a http://dx.doi.org/10.1039/d2ee03096a
Huang G. S. ; Yao C. X. ; Huang M. M. ; Zhou J. J. ; Hao X. G. ; Ma X. J. ; He S. Q. ; Liu H. ; Liu W. T. ; Zhu C. S. Colorless, transparent, and high-performance polyurethane with intrinsic ultraviolet resistance and its anti-UV mechanism . ACS Appl. Mater. Interfaces , 2023 , 15 ( 14 ), 18300 - 18310 . doi: 10.1021/acsami.2c23317 http://dx.doi.org/10.1021/acsami.2c23317
Cao S. ; Li S. H. ; Li M. ; Xu L. N. ; Ding H. Y. ; Xia J. L. ; Zhang M. ; Huang K. A thermal self-healing polyurethane thermoset based on phenolic urethane . Polym. J. , 2017 , 49 ( 11 ), 775 - 781 . doi: 10.1038/pj.2017.48 http://dx.doi.org/10.1038/pj.2017.48
Wang T. ; Segura J. J. ; Graversen E. ; Weinell C. E. ; Dam-Johansen K. ; Kiil S. Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatings . J. Coat. Technol. Res. , 2021 , 18 ( 2 ), 349 - 359 . doi: 10.1007/s11998-020-00407-3 http://dx.doi.org/10.1007/s11998-020-00407-3
Xiong S. X. ; Fukuda K. ; Nakano K. ; Lee S. ; Sumi Y. ; Takakuwa M. ; Inoue D. ; Hashizume D. ; Du B. C. ; Yokota T. ; Zhou Y. H. ; Tajima K. ; Someya T. Waterproof and ultraflexible organic photovoltaics with improved interface adhesion . Nat. Commun. , 2024 , 15 , 681 . doi: 10.1038/s41467-024-44878-z http://dx.doi.org/10.1038/s41467-024-44878-z
Zhang G. C. ; Chen Q. M. ; Xie C. C. ; Wang Y. M. ; Zhao C. W. ; Xiao C. Y. ; Wei Y. ; Li W. W. Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells . NPJ Flex. Electron. , 2022 , 6 , 37 . doi: 10.1038/s41528-022-00166-8 http://dx.doi.org/10.1038/s41528-022-00166-8
Acar H. ; Çınar S. ; Thunga M. ; Kessler M. R. ; Hashemi N. ; Montazami R. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics . Adv. Funct. Mater. , 2014 , 24 ( 26 ), 4135 - 4143 . doi: 10.1002/adfm.201304186 http://dx.doi.org/10.1002/adfm.201304186
Bettinger C. J. ; Bao Z. N. Organic thin-film transistors fabricated on resorbable biomaterial substrates . Adv. Mater. , 2010 , 22 ( 5 ), 651 - 655 . doi: 10.1002/adma.200902322 http://dx.doi.org/10.1002/adma.200902322
Sau S. ; Pandit S. ; Kundu S. Crosslinked poly(vinyl alcohol): structural, optical and mechanical properties . Surf. Interfaces , 2021 , 25 , 101198 . doi: 10.1016/j.surfin.2021.101198 http://dx.doi.org/10.1016/j.surfin.2021.101198
do Nascimento F. C. ; de Aguiar L. C. V. ; Costa L. A. T. ; Fernandes M. T. ; Marassi R. J. ; de Souza Gomes A. ; de Castro J. A. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: Effects of the crosslinking agents . Polym. Bull. , 2021 , 78 ( 2 ), 917 - 929 . doi: 10.1007/s00289-020-03142-2 http://dx.doi.org/10.1007/s00289-020-03142-2
Wan X. L. ; Zhang M. Y. ; Wang Y. ; Chen B. ; Gui Z. P. ; Xu Y. H. ; Zhang Y. ; Chen D. H. ; Du Z. A. ; Nathabeth Jah T. Molecule structure design by synergistic crosslinking in the PVA matrix and its physical properties regulation . Colloids Surf. A Physicochem. Eng. Aspects , 2024 , 683 , 133104 . doi: 10.1016/j.colsurfa.2023.133104 http://dx.doi.org/10.1016/j.colsurfa.2023.133104
Lu X. ; Liu Y. ; Tian R. Y. ; Liu X. J. ; Wang Y. Y. ; Zhou Y. H. Enhanced moisture and thermal stability of transparent electrodes via crosslinking for large-area flexible organic photovoltaic modules . Energy Environ. Sci. , 2025 , 18 ( 5 ), 2426 - 2435 . doi: 10.1039/d4ee05154h http://dx.doi.org/10.1039/d4ee05154h
Irimia-Vladu M. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future . Chem. Soc. Rev. , 2014 , 43 ( 2 ), 588 - 610 . doi: 10.1039/c3cs60235d http://dx.doi.org/10.1039/c3cs60235d
Liu C. X. ; Zhou H. ; Xu Y. J. ; Xu W. J. ; Zhou J. X. ; Zhang T. S. ; Ma X. L. ; Wang J. ; Zhang F. J. ; Sun Q. Q. Highly efficient inverted organic solar cells with natural biomaterial histidine as electron transport layer . Org. Electron. , 2022 , 106 , 106538 . doi: 10.1016/j.orgel.2022.106538 http://dx.doi.org/10.1016/j.orgel.2022.106538
Brunetti F. ; Operamolla A. ; Castro-Hermosa S. ; Lucarelli G. ; Manca V. ; Farinola G. M. ; Brown T. M. Printed solar cells and energy storage devices on paper substrates . Adv. Funct. Mater. , 2019 , 29 ( 21 ), 1806798 . doi: 10.1002/adfm.201806798 http://dx.doi.org/10.1002/adfm.201806798
Bledzki A. K. ; Jaszkiewicz A. ; Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres . Compos. Part A Appl. Sci. Manuf. , 2009 , 40 ( 4 ), 404 - 412 . doi: 10.1016/j.compositesa.2009.01.002 http://dx.doi.org/10.1016/j.compositesa.2009.01.002
Wen D. L. ; Sun D. H. ; Huang P. ; Huang W. ; Su M. ; Wang Y. ; Han M. D. ; Kim B. ; Brugger J. ; Zhang H. X. ; Zhang X. S. Recent progress in silk fibroin-based flexible electronics . Microsyst. Nanoeng. , 2021 , 7 , 35 . doi: 10.1038/s41378-021-00261-2 http://dx.doi.org/10.1038/s41378-021-00261-2
Zhu B. W. ; Wang H. ; Leow W. R. ; Cai Y. R. ; Loh X. J. ; Han M. Y. ; Chen X. D. Silk fibroin for flexible electronic devices . Adv. Mater. , 2016 , 28 ( 22 ), 4250 - 4265 . doi: 10.1002/adma.201504276 http://dx.doi.org/10.1002/adma.201504276
Rouse J. G. ; Van Dyke M. E. A review of keratin-based biomaterials for biomedical applications . Materials , 2010 , 3 ( 2 ), 999 - 1014 . doi: 10.3390/ma3020999 http://dx.doi.org/10.3390/ma3020999
Posati T. ; Aluigi A. ; Donnadio A. ; Sotgiu G. ; Mosconi M. ; Muccini M. ; Ruani G. ; Zamboni R. ; Seri M. Keratin film as natural and eco-friendly support for organic optoelectronic devices . Adv. Sustain. Syst. , 2019 , 3 ( 11 ), 1900080 . doi: 10.1002/adsu.201900080 http://dx.doi.org/10.1002/adsu.201900080
Tu H. ; Zhu M. X. ; Duan B. ; Zhang L. N. Recent progress in high-strength and robust regenerated cellulose materials . Adv. Mater. , 2021 , 33 ( 28 ), 2000682 . doi: 10.1002/adma.202000682 http://dx.doi.org/10.1002/adma.202000682
Ray U. ; Zhu S. Z. ; Pang Z. Q. ; Li T. Mechanics design in cellulose-enabled high-performance functional materials . Adv. Mater. , 2021 , 33 ( 28 ), 2002504 . doi: 10.1002/adma.202002504 http://dx.doi.org/10.1002/adma.202002504
Zhu H. L. ; Fang Z. Q. ; Preston C. ; Li Y. Y. ; Hu L. B. Transparent paper: fabrications, properties, and device applications . Energy Environ. Sci. , 2014 , 7 ( 1 ), 269 - 287 . doi: 10.1039/c3ee43024c http://dx.doi.org/10.1039/c3ee43024c
Moon R. J. ; Martini A. ; Nairn J. ; Simonsen J. ; Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites . Chem. Soc. Rev. , 2011 , 40 ( 7 ), 3941 - 3994 . doi: 10.1039/c0cs00108b http://dx.doi.org/10.1039/c0cs00108b
Wang F. ; Chen Z. J. ; Xiao L. X. ; Qu B. ; Gong Q. H. Papery solar cells based on dielectric/metal hybrid transparent cathode . Sol. Energy Mater. Sol. Cells , 2010 , 94 ( 7 ), 1270 - 1274 . doi: 10.1016/j.solmat.2010.03.023 http://dx.doi.org/10.1016/j.solmat.2010.03.023
Abe K. ; Iwamoto S. ; Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood . Biomacromolecules , 2007 , 8 ( 10 ), 3276 - 3278 . doi: 10.1021/bm700624p http://dx.doi.org/10.1021/bm700624p
Habibi Y. Key advances in the chemical modification of nanocelluloses . Chem. Soc. Rev. , 2014 , 43 ( 5 ), 1519 - 1542 . doi: 10.1039/c3cs60204d http://dx.doi.org/10.1039/c3cs60204d
Chen W. S. ; Yu H. P. ; Lee S. Y. ; Wei T. ; Li J. ; Fan Z. J. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage . Chem. Soc. Rev. , 2018 , 47 ( 8 ), 2837 - 2872 . doi: 10.1039/c7cs00790f http://dx.doi.org/10.1039/c7cs00790f
Elazzouzi-Hafraoui S. ; Nishiyama Y. ; Putaux J. L. ; Heux L. ; Dubreuil F. ; Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose . Biomacromolecules , 2008 , 9 ( 1 ), 57 - 65 . doi: 10.1021/bm700769p http://dx.doi.org/10.1021/bm700769p
Zhou Y. H. ; Khan T. M. ; Liu J. C. ; Fuentes-Hernandez C. ; Shim J. W. ; Najafabadi E. ; Youngblood J. P. ; Moon R. J. ; Kippelen B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination . Org. Electron. , 2014 , 15 ( 3 ), 661 - 666 . doi: 10.1016/j.orgel.2013.12.018 http://dx.doi.org/10.1016/j.orgel.2013.12.018
Costa S. V. ; Pingel P. ; Janietz S. ; Nogueira A. F. Inverted organic solar cells using nanocellulose as substrate . J. Appl. Polym. Sci. , 2016 , 133 ( 28 ), 43679 . doi: 10.1002/app.43679 http://dx.doi.org/10.1002/app.43679
Lee K. Y. ; Aitomäki Y. ; Berglund L. A. ; Oksman K. ; Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites . Compos. Sci. Technol. , 2014 , 105 , 15 - 27 . doi: 10.1016/j.compscitech.2014.08.032 http://dx.doi.org/10.1016/j.compscitech.2014.08.032
Cheng Q. Y. ; Ye D. D. ; Yang W. T. ; Zhang S. H. ; Chen H. Z. ; Chang C. Y. ; Zhang L. N. Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells . ACS Sustainable Chem. Eng. , 2018 , 6 ( 6 ), 8040 - 8047 . doi: 10.1021/acssuschemeng.8b01599 http://dx.doi.org/10.1021/acssuschemeng.8b01599
0
浏览量
82
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构