浏览全部资源
扫码关注微信
1.西北工业大学,化学与化工学院,西安 710129
2.西北工业大学,伦敦玛丽女王大学工程学院,西安 710129
E-mail: gjw@nwpu.edu.cn
收稿日期:2025-06-12,
录用日期:2025-06-23,
网络出版日期:2025-07-14,
移动端阅览
郭永强, 李攀, 赵若琳, 顾军渭. 吸波型聚酰亚胺导热相变复合材料的制备及性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25144
Guo, Y. Q.; Li, P.; Zhao, R. L.; Gu, J. W. Preparation and mechanism of thermally conductive polyimide phase change composites with electromagnetic wave-absorbing performance. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25144
郭永强, 李攀, 赵若琳, 顾军渭. 吸波型聚酰亚胺导热相变复合材料的制备及性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25144 DOI: CSTR: 32057.14.GFZXB.2025.7443.
Guo, Y. Q.; Li, P.; Zhao, R. L.; Gu, J. W. Preparation and mechanism of thermally conductive polyimide phase change composites with electromagnetic wave-absorbing performance. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25144 DOI: CSTR: 32057.14.GFZXB.2025.7443.
电子元器件的高功率化和小型化发展使其面临愈发严重的热积聚和电磁波污染问题,对高导热和优异吸波性能的相变复合材料具有迫切的需求. 本工作通过共混电纺相分离法制备多孔聚酰亚胺(PI)纤维,以“静电喷雾-高温烧结”制备的异质结构BN@FeCo为导热/吸波填料,结合静电喷雾在PI纤维间构筑BN@FeCo导热通路,将其浸渍PW后制备吸波型BN@FeCo/PW/PI导热相变复合材料. 结果表明,当BN@FeCo质量分数为55 wt%时,厚度为2.1 mm的BN@FeCo/PW/PI复合材料具有最优的吸波性能,其最低反射损耗为-33.1 dB,导热系数为3.22 W/(m·K).
The trend toward high-power
miniaturized electronic components has intensified challenges related to heat accumulation and electromagnetic wave pollution
creating an urgent demand for phase change composites that simultaneously offer high thermal con
ductivity and excellent wave-absorption properties. In this work
porous polyimide (PI) fibers were fabricated
via
blend electrospinning coupled with phase separation. Heterostructured BN@FeCo particles
serving as dual-functional fillers for thermal conduction and microwave absorption
were synthesized using an "electrostatic spray-high-temperature sintering" method. These particles were then uniformly deposited onto the porous PI fiber skeleton
via
electrostatic spraying
thereby establishing efficient thermally conductive pathways within the fiber network. Subsequently
the resulting BN@FeCo/PI framework was impregnated with paraffin wax (PW) to produce the BN@FeCo/PW/PI composites. Results demonstrated that the BN@FeCo/PW/PI composites with a BN@FeCo mass fraction of 55 wt% and a thickness of 2.1 mm exhibited optimal wave absorption performance
achieving a minimum reflection loss (RL
min
) of -33.1 dB
alongside a thermal conductivity of 3.22 W/(m·K). This combination of effective electromagnetic wave attenuation and significant heat dissipation capability positions the composite as a promising solution for thermal management in advanced electronic systems.
Yin W. D. ; Qin M. M. ; Yu H. T. ; Sun J. X. ; Feng W. Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing . Adv. Fiber Mater. , 2023 , 5 ( 3 ), 1037 - 1049 . doi: 10.1007/s42765-023-00268-6 http://dx.doi.org/10.1007/s42765-023-00268-6
Liu X. ; Wu L. H. ; Liu J. ; Lv H. M. ; Mou P. P. ; Shi S. H. ; Yu L. ; Wan G. P. ; Wang G. Z. Dynamically frequency-tunable and environmentally stable microwave absorbers . Carbon Energy , 2024 , 6 ( 10 ), e 589 . doi: 10.1002/cey2.589 http://dx.doi.org/10.1002/cey2.589
Tang X. W. ; Lu Y. Z. ; Li S. S. ; Zhu M. Y. ; Wang Z. X. ; Li Y. ; Hu Z. Y. ; Zheng P. L. ; Wang Z. C. ; Liu T. X. Hierarchical polyimide nonwoven fabric with ultralow-reflectivity electromagnetic interference shielding and high-temperature resistant infrared stealth performance . Nanomicro Lett. , 2024 , 17 ( 1 ), 82 . doi: 10.1007/s40820-024-01590-3 http://dx.doi.org/10.1007/s40820-024-01590-3
Ruan K. P. ; Shi X. T. ; Zhang Y. L. ; Guo Y. Q. ; Zhong X. ; Gu J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films . Angew. Chem. Int. Ed , 2023 , 62 ( 38 ), e 202309010 . doi: 10.1002/anie.202309010 http://dx.doi.org/10.1002/anie.202309010
Zhang H. ; He Q. X. ; Zhang F. ; Duan Y. S. ; Qin M. M. ; Feng W. Biomimetic intelligent thermal management materials: from nature-inspired design to machine-learning-driven discovery . Adv. Mater. , 2025 , e 2503140 . doi: 10.1002/adma.202503140 http://dx.doi.org/10.1002/adma.202503140
任英浩 . 电磁辐射的危害及环境污染防护策略 . 皮革制作与环保科技 , 2022 , 3 ( 7 ), 90 - 92 .
Guo Y. Q. ; Wang S. S. ; Zhang H. T. ; Guo H. ; He M. K. ; Ruan K. P. ; Yu Z. ; Wang G. S. ; Qiu H. ; Gu J. W. Spring-like structured polydimethylsiloxane composites under large deformation . Adv. Mater. , 2024 , 36 , 2404648 . doi: 10.1002/adma.202404648 http://dx.doi.org/10.1002/adma.202404648
Yu X. K. ; Tao Y. B. Improvement of thermal cycle stability of paraffin/expanded graphite composite phase change materials and its application in thermal management . J. Energy Storage , 2023 , 63 , 107019 . doi: 10.1016/j.est.2023.107019 http://dx.doi.org/10.1016/j.est.2023.107019
Ahmed W. ; Hussain A. ; Shahid H. ; Ali I. ; Ali H. M. Experimental study on heat storage properties comparison of paraffin/metal foams phase change material composites . J. Therm. Sci. , 2023 , 33 ( 2 ), 469 - 478 . doi: 10.1007/s11630-023-1828-5 http://dx.doi.org/10.1007/s11630-023-1828-5
Qu N. ; Yu Z. ; Zhang J. M. ; Han H. C. ; Xing R. Z. ; Geng L. ; Kong J. Temperature-robust broadband metamaterial absorber via semiconductor MOFs/paraffin hybridization . Small , 2025 , 21 ( 6 ), e 2409874 . doi: 10.1002/smll.202409874 http://dx.doi.org/10.1002/smll.202409874
Yang M. Y. ; Guo L. ; Meng X. J. ; Shi Y. ; Sheng Q. ; Li X. H. ; Zhang N. ; Wu X. H. Anti-leakage mechanism of silica-paraffin material for building energy saving: role of silica-paraffin interactions . Int. J. Heat Mass Transf. , 2025 , 241 , 126751 . doi: 10.1016/j.ijheatmasstransfer.2025.126751 http://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.126751
Zhao Y. ; Zhang Z. G. ; Ling Z. Y. ; Fang X. M. Anti-leakage and recyclable phase change thermal conductive films with ultralow thermal impedance enabled by Field's metal via the generation and internalization of metal oxides . Chem. Eng. J. , 2023 , 477 , 146971 . doi: 10.1016/j.cej.2023.146971 http://dx.doi.org/10.1016/j.cej.2023.146971
Liu H. Q. ; Zhou F. ; Shi X. Y. ; Sun K. Y. ; Kou Y. ; Das P. ; Li Y. G. ; Zhang X. Y. ; Mateti S. ; Chen Y. ; Wu Z. S. ; Shi Q. A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management . Nanomicro Lett. , 2023 , 15 ( 1 ), 29 . doi: 10.1007/s40820-022-00991-6 http://dx.doi.org/10.1007/s40820-022-00991-6
Yang L. ; Yang J. ; Tang L. S. ; Feng C. P. ; Bai L. ; Bao R. Y. ; Liu Z. Y. ; Yang M. B. ; Yang W. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity . Energy Fuels , 2020 , 34 ( 2 ), 2471 - 2479 . doi: 10.1021/acs.energyfuels.9b04212 http://dx.doi.org/10.1021/acs.energyfuels.9b04212
Wu Y. H. ; Chen M. S. ; Zhao G. Z. ; Qi D. B. ; Zhang X. H. ; Li Y. R. ; Huang Y. B. ; Yang W. T. Recyclable solid-solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage . Adv. Mater. , 2024 , 36 ( 16 ), e 2311717 . doi: 10.1002/adma.202311717 http://dx.doi.org/10.1002/adma.202311717
Liu D. P. ; Yang F. ; Liu Y. ; Mu Y. ; Meng F. H. ; Wang C. ; Zhao B. L. ; Han L. ; Jia X. L. Anchoring Carbon Nanotubes onto Polyimide-Derived Vertical Carbon as Supporter of Paraffin for Thermal Interface Materials with High Thermal Conductivity . J. Electro. Mater. , 2024 , 53 , 743 - 752 . doi: 10.1007/s11664-023-10872-2 http://dx.doi.org/10.1007/s11664-023-10872-2
张鹏程 . 用于纸基微流控芯片制造的石蜡电喷规律实验研究 . 厦门 : 厦门大学 , 2018 .
Jang J. M. ; Kim J. H. ; Lee J. Y. ; Hong J. ; Kim D. W. ; Kim S. J. Gradient-structured MXene/ZIF/CNT hybrid films for largely enhanced electromagnetic absorption in EMI shielding . Chem. Eng. J. , 2025 , 503 , 158691 . doi: 10.1016/j.cej.2024.158691 http://dx.doi.org/10.1016/j.cej.2024.158691
Su M. J. ; Han G. J. ; Gao J. ; Feng Y. Z. ; He C. G. ; Ma J. M. ; Liu C. T. ; Shen C. Y. Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion . Chem. Eng. J. , 2022 , 427 , 131665 . doi: 10.1016/j.cej.2021.131665 http://dx.doi.org/10.1016/j.cej.2021.131665
Sun Z. X. ; Zhang H. Z. ; Zhang Q. F. ; Jing R. ; Wu B. J. ; Xu F. ; Sun L. X. ; Xia Y. P. ; Rosei F. ; Peng H. L. ; Lin X. C. Shape-stabilized phase change composites enabled by lightweight and bio-inspired interconnecting carbon aerogels for efficient energy storage and photo-thermal conversion . J. Mater. Chem. A , 2022 , 10 ( 25 ), 13556 - 13569 . doi: 10.1039/d2ta02024f http://dx.doi.org/10.1039/d2ta02024f
唐溯 ; 郑子鏖 ; 魏翰泽 ; 许晓玲 ; 翟晓强 . PMMA/PEG600/CNT复合定型相变材料制备与导热强化 . 化工学报 , 2024 , 75 , 309 - 320 . doi: 10.11949/0438-1157.20240272 http://dx.doi.org/10.11949/0438-1157.20240272
Zhang Q. R. ; Xue T. T. ; Tian J. ; Yang Y. ; Fan W. ; Liu T. X. Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation . Compos. Sci. Technol. , 2022 , 226 , 109541 . doi: 10.1016/j.compscitech.2022.109541 http://dx.doi.org/10.1016/j.compscitech.2022.109541
Guo Y. Q. ; Zhang L. ; Ruan K. P. ; Mu Y. ; He M. K. ; Gu J. W. Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification . Polymer , 2025 , 323 , 128189 . doi: 10.1016/j.polymer.2025.128189 http://dx.doi.org/10.1016/j.polymer.2025.128189
Clausi M. ; Zahid M. ; Shayganpour A. ; Bayer I. S. Polyimide foam composites with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage . Adv. Compos. Hybrid Mater. , 2022 , 5 ( 2 ), 798 - 812 . doi: 10.1007/s42114-022-00426-1 http://dx.doi.org/10.1007/s42114-022-00426-1
Chen J. X. ; Wang Y. R. ; Gu Z. M. ; Huang J. X. ; He W. J. ; Liu P. B. Rational design of hierarchical yolk-double shell Fe@NCNs/MnO 2 via thermal-induced phase separation toward wideband microwave absorption . Carbon , 2023 , 204 , 305 - 314 . doi: 10.1016/j.carbon.2022.12.069 http://dx.doi.org/10.1016/j.carbon.2022.12.069
Tang P. ; Du J. W. ; Li M. ; Zhao X. Y. ; Ren H. Q. ; Zhang X. Y. ; Wu G. H. ; Wang X. W. Hollow core-shell Fe 3 O 4 @PPy nanocomposites with tunable microwave absorption frequencies and high reflection loss. ACS Appl. Nano Mater. , 2024 , 7 , 10325 - 10337 . doi: 10.1021/acsanm.4c00782 http://dx.doi.org/10.1021/acsanm.4c00782
Zhang L. ; Shi C. S. ; Rhee K. Y. ; Zhao N. Q. Properties of Co 0.5 Ni 0.5 Fe 2 O 4 /carbon nanotubes/polyimide nanocomposites for microwave absorption . Compos. Part A Appl. Sci. Manuf. , 2012 , 43 ( 12 ), 2241 - 2248 . doi: 10.1016/j.compositesa.2012.08.014 http://dx.doi.org/10.1016/j.compositesa.2012.08.014
He M. K. ; Zhong X. ; Lu X. H. ; Hu J. W. ; Ruan K. P. ; Guo H. ; Zhang Y. L. ; Guo Y. Q. ; Gu J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers . Adv. Mater. , 2024 , 36 ( 48 ), e 2410186 . doi: 10.1002/adma.202410186 http://dx.doi.org/10.1002/adma.202410186
Jiang M. ; Xiao C. ; Ding X. ; Wang Y. Y. ; Zhang X. ; Du Y. H. ; Li X. F. ; Zheng K. ; Liu X. L. ; Chen L. ; Tian X. Y. Porous polyimide-based phase change materials with enhanced mechanical properties, thermal conductivity, and thermal shock resistance through precisely designed triple-functional layers . Sci. China Technol. Sci. , 2023 , 66 ( 9 ), 2716 - 2724 . doi: 10.1007/s11431-022-2307-6 http://dx.doi.org/10.1007/s11431-022-2307-6
Pan J. J. ; Tu W. J. ; Ma S. H. ; Sun X. ; Zhao Q. L. ; Qu H. J. ; Wang T. ; He J. P. Improvement of multiple attenuation characteristics of two-dimensional lamellar ferrocobalt@carbon nanocomposites as excellent electromagnetic wave absorbers . Dalton Trans. , 2022 , 51 ( 25 ), 9793 - 9802 . doi: 10.1039/d2dt01503j http://dx.doi.org/10.1039/d2dt01503j
Liu Y. D. ; Jiang D. W. ; Hessien M. M. ; Mahmoud M. H. H. ; Xu M. J. ; El-Bahy Z. M. Enhanced thermal and mechanical properties of boron-modified phenolic resin composites with multifiller system for aerospace applications . Adv. Compos. Hybrid Mater. , 2024 , 7 ( 5 ), 180 . doi: 10.1007/s42114-024-00961-z http://dx.doi.org/10.1007/s42114-024-00961-z
Yuan J. ; Qian X. T. ; Meng Z. C. ; Yang B. ; Liu Z. Q. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation . ACS Appl. Mater. Interfaces , 2019 , 11 ( 19 ), 17915 - 17924 . doi: 10.1021/acsami.9b06062 http://dx.doi.org/10.1021/acsami.9b06062
Ruan K. P. ; Li M. K. ; Pang Y. H. ; He M. K. ; Guo H. ; Shi X. T. ; Gu J. W. Molecular brush-grafted liquid crystalline hetero-structured fillers for boosting thermal conductivity of polyimide composite films . Adv. Funct. Mater. , 2025 , 2506563 . doi: 10.1002/adfm.202506563 http://dx.doi.org/10.1002/adfm.202506563
Wei C. H. ; Shi L. Z. ; Li M. Q. ; He M. K. ; Li M. J. ; Jing X. R. ; Liu P. B. ; Gu J. W. Hollow engineering of sandwich NC@Co/NC@MnO 2 composites toward strong wideband electromagnetic wave attenuation . J. Mater. Sci. Technol. , 2024 , 175 , 194 - 203 . doi: 10.1016/j.jmst.2023.08.020 http://dx.doi.org/10.1016/j.jmst.2023.08.020
Wang S. S. ; Feng D. Y. ; Zhang Z. M. ; Liu X. ; Ruan K. P. ; Guo Y. Q. ; Gu J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method . Chinese J. Polym. Sci. , 2024 , 42 ( 7 ), 897 - 906 . doi: 10.1007/s10118-024-3098-4 http://dx.doi.org/10.1007/s10118-024-3098-4
Chang M. S. ; Hwang S. S. ; Jeong S. J. ; Jeong J. W. ; Park B. ; Yang S. S. ; Park C. R. ; Kwon Y. T. FeCo-BN magnetic composite membrane prepared via an atomized aerosol process for electromagnetic wave absorption and thermal management . Chem. Eng. J. , 2023 , 475 , 146496 . doi: 10.1016/j.cej.2023.146496 http://dx.doi.org/10.1016/j.cej.2023.146496
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构