浏览全部资源
扫码关注微信
海南大学材料科学与工程学院 热带岛屿资源先进材料教育部重点实验室 海口 570228
E-mail: psfczhao@hainanu.edu.cn
收稿日期:2025-06-24,
录用日期:2025-09-02,
网络出版日期:2025-09-26,
移动端阅览
张鸿, 赵富春, 廖双泉. 绿色柔性伽马射线屏蔽天然橡胶硫化胶膜的制备及其性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25152
Zhang, H.; Zhao, F. C.; Liao, S. Q. Preparation and properties of the green and flexible natural rubber vulcanized film for gamma-ray shielding. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25152
张鸿, 赵富春, 廖双泉. 绿色柔性伽马射线屏蔽天然橡胶硫化胶膜的制备及其性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25152 DOI: CSTR: 32057.14.GFZXB.2025.7462.
Zhang, H.; Zhao, F. C.; Liao, S. Q. Preparation and properties of the green and flexible natural rubber vulcanized film for gamma-ray shielding. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25152 DOI: CSTR: 32057.14.GFZXB.2025.7462.
随着高能伽马射线在现代医疗卫生、工业检测、航天航空等领域的广泛应用及世界各国对清洁核能的开发,人们对可穿戴性射线防护材料及其安全耐久性与使用舒适性等的需求日益增加. 然而,目前聚合物基柔性射线防护材料在添加高含量屏蔽性粒子提升防护效果时,往往出现材料柔韧性和力学强度下降,无法同时兼顾高屏蔽性和优异力学性能的问题. 采用功能化绿色屏蔽粒子三氧化二铋(Bi
2
O
3
)填充生物相容性的天然橡胶(NR),通过设计共聚硫交联网络和构建强氢键界面作用的策略,实现了高含量屏蔽粒子在NR中的良好分散,制备出新型绿
色柔性的伽马射线屏蔽硫化胶膜. 结果表明,本研究所采用的策略能显著提升屏蔽填料在NR基体中的均匀稳定分散性,获得密度小、强度高、耐穿刺的绿色柔性高能射线屏蔽复合胶膜材料.
With the widespread application of high-energy gamma rays in modern healthcare
industrial inspection
aerospace and other fields
coupled with the global development of clean nuclear energy
the demand for wearable radiation shielding materials with enhanced safety
durability
and comfort has significantly increased. However
current polymer-based flexible radiation shielding materials often face a dilemma: the incorporation of high loadings of shielding particles to improve protection effectiveness typically leads to a decline in material flexibility and mechanical strength
which is still a challenge of obtaining simultaneously both high shielding performance and excellent mechanical properties nowadays. This study addressed this issue by employing the functionalized eco-friendly shielding filler bismuth trioxide to fill biocompatible natural rubber (NR). Through this strategy of designing a crosslinking network by the co-polysulfide compound and constructing the strong hydrogen-bonding interfacial interactions
the excellent dispersion of the high-content shielding particles within the NR matrix was achieved and the novel
green
and flexible vulcanized composite film for gamma-ray shielding was prepared. The results demonstrated that this strategy employed can significantly enhance the uniform and stable dispersion of shielding fillers within the NR matrix. A new and effective way for preparation of a green
flexible
high-energy radiation shielding composite film material with low density
high strength
and excellent puncture resistance was provided.
Hueso-González F. ; Casaña Copado J. V. ; Fernández Prieto A. ; Gallas Torreira A. ; Lemos Cid E. ; Ros García A. ; Vázquez Regueiro P. ; Llosá G. A dead-time-free data acquisition system for prompt gamma-ray measurements during proton therapy treatments . Nucl. Instrum. Meth. Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. , 2022 , 1033 , 166701 . doi: 10.1016/j.nima.2022.166701 http://dx.doi.org/10.1016/j.nima.2022.166701
Petringa G. ; Cirrone G. A. P. ; Caliri C. ; Cuttone G. ; Giuffrida L. ; Rosa G. L. ; Manna R. ; Manti L. ; Marchese V. ; Marchetta C. ; Margarone D. ; Milluzzo G. ; Picciotto A. ; Romano F. ; Romano F. P. ; Russo A. D. ; Russo G. ; Santonocito D. ; Scuderi V. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy . J. Instrum. , 2017 , 12 ( 03 ), C 03059 . doi: 10.1088/1748-0221/12/03/c03059 http://dx.doi.org/10.1088/1748-0221/12/03/c03059
Ohgaki H. ; Daito I. ; Zen H. ; Kii T. ; Masuda K. ; Misawa T. ; Hajima R. ; Hayakawa T. ; Shizuma T. ; Kando M. ; Fujimoto S. Nondestructive inspection system for special nuclear material using inertial electrostatic confinement fusion neutrons and laser Compton scattering gamma-rays . IEEE Trans. Nucl. Sci. , 2017 , 64 ( 7 ), 1635 - 1640 . doi: 10.1109/tns.2017.2652619 http://dx.doi.org/10.1109/tns.2017.2652619
Limkitjaroenporn P. ; Wongdamnern N. ; Kothan S. ; Kaewkhao J. Density measurement of multi-layered material using gamma-ray transmission technique . Radiat. Phys. Chem. , 2021 , 188 , 109618 . doi: 10.1016/j.radphyschem.2021.109618 http://dx.doi.org/10.1016/j.radphyschem.2021.109618
López-Saucedo F. ; Bucio E. ; Flores-Rojas G. G. ; Flores-Morales C. ; Martínez-Otero D. ; Zúñiga-Villarreal N. Gamma rays: an alternative energy source for the preparation of manganese carbonyls-based new materials . Appl. Radiat. Isot. , 2020 , 156 , 108983 . doi: 10.1016/j.apradiso.2019.108983 http://dx.doi.org/10.1016/j.apradiso.2019.108983
Amir S. M. M. ; Sultan M. T. H. ; Jawaid M. ; Safri S. N. A. ; Shah A. U. M. ; Yusof M. R. ; Naveen J. ; Mohd S. ; Salleh K. A. M. ; Saba N. Effects of layering sequence and gamma radiation on mechanical properties and morphology of Kevlar/oil palm EFB/epoxy hybrid composites . J. Mater. Res. Technol. , 2019 , 8 ( 6 ), 5362 - 5373 . doi: 10.1016/j.jmrt.2019.09.003 http://dx.doi.org/10.1016/j.jmrt.2019.09.003
Song L. ; Zheng T. S. ; Wang J. X. ; Guo L. L. An improvement growing neural gas method for online anomaly detection of aerospace payloads . Soft Comput. , 2020 , 24 ( 15 ), 11393 - 11405 . doi: 10.1007/s00500-019-04603-1 http://dx.doi.org/10.1007/s00500-019-04603-1
Issa S. A. M. ; Mostafa A. M. A. ; Auda S. H. Radio-protective properties of some sunblock agents against ionizing radiation . Prog. Nucl. Energy , 2018 , 107 , 184 - 192 . doi: 10.1016/j.pnucene.2018.04.027 http://dx.doi.org/10.1016/j.pnucene.2018.04.027
Plangpleng N. ; Charoenphun P. ; Polpanich D. ; Sakulkaew K. ; Buasuwan N. ; Onjun O. ; Chuamsaamarkkee K. Flexible gamma ray shielding based on natural Rubber/BaSO 4 nanocomposites . Radiat. Phys. Chem. , 2022 , 199 , 110311 . doi: 10.1016/j.radphyschem.2022.110311 http://dx.doi.org/10.1016/j.radphyschem.2022.110311
Cai T. Y. ; He F. F. ; Li Y. S. ; Li Y. J. ; Jiang Z. N. ; Li J. L. ; Zhou Y. L. ; Chen Z. G. ; Yang W. B. Flexible and mechanically enhanced polyurethane composite for γ -ray shielding and thermal regulation . ACS Appl. Mater. Interfaces , 2023 , 15 ( 3 ), 4690 - 4702 . doi: 10.1021/acsami.2c18252 http://dx.doi.org/10.1021/acsami.2c18252
Li G. L. ; Zhang Q. P. ; Li J. L. ; Zhao X. T. ; Xu W. D. ; Wang M. X. ; Xu D. G. ; Zhou Y. L. A facile route to prepare lead borate crystals for jointly shielding neutron and gamma rays . Inorg. Chem. Commun. , 2020 , 112 , 107719 . doi: 10.1016/j.inoche.2019.107719 http://dx.doi.org/10.1016/j.inoche.2019.107719
Bayoumi E. E. ; Abd El-Magied M. O. ; Elshehy E. A. ; Atia B. M. ; Mahmoud K. A. ; Khalil L. H. ; Mohamed A. A. Lead-bismuth tungstate composite as a protective barrier against gamma rays . Mater. Chem. Phys. , 2022 , 275 , 125262 . doi: 10.1016/j.matchemphys.2021.125262 http://dx.doi.org/10.1016/j.matchemphys.2021.125262
Azman N. Z. N. ; Siddiqui S. A. ; Hart R. ; Low I. M. Microstructural design of lead oxide-epoxy composites for radiation shielding purposes . J. Appl. Polym. Sci. , 2013 , 128 ( 5 ), 3213 - 3219 . doi: 10.1002/app.38515 http://dx.doi.org/10.1002/app.38515
Ambika M. R. ; Nagaiah N. ; Suman S. K. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites . J. Appl. Polym. Sci. , 2017 , 134 ( 13 ), 44657 . doi: 10.1002/app.44657 http://dx.doi.org/10.1002/app.44657
More C. V. ; Alsayed Z. ; Badawi M. S. ; Thabet A. A. ; Pawar P. P. Polymeric composite materials for radiation shielding: a review . Environ. Chem. Lett. , 2021 , 19 ( 3 ), 2057 - 2090 . doi: 10.1007/s10311-021-01189-9 http://dx.doi.org/10.1007/s10311-021-01189-9
Intom S. ; Kalkornsurapranee E. ; Johns J. ; Kaewjaeng S. ; Kothan S. ; Hongtong W. ; Chaiphaksa W. ; Kaewkhao J. Mechanical and radiation shielding properties of flexible material based on natural rubber/Bi 2 O 3 composites . Radiat. Phys. Chem. , 2020 , 172 , 108772 . doi: 10.1016/j.radphyschem.2020.108772 http://dx.doi.org/10.1016/j.radphyschem.2020.108772
Saenpoowa J. ; Ruksakulpiwat C. ; Yenchai C. ; Kobdaj C. Fabrication and development of neutron shielding materials based on natural rubber and boron carbide . J. Phys. Conf. Ser. , 2023 , 2431 ( 1 ), 012079 . doi: 10.1088/1742-6596/2431/1/012079 http://dx.doi.org/10.1088/1742-6596/2431/1/012079
李银涛 , 刘栋梁 , 周元林 , 张全平 , 李迎军 . Bi 2 O 3 和WO 3 纳米粒子协同增强NR/WO 3 /Bi 2 O 3 复合材料γ射线屏蔽性能 . 高分子材料科学与工程 , 2015 , 31 ( 12 ), 57 - 62 .
Atashi P. ; Rahmani S. ; Ahadi B. ; Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi 2 O 3 for gamma ray shielding application . J. Mater. Sci. Mater. Electron. , 2018 , 29 ( 14 ), 12306 - 12322 . doi: 10.1007/s10854-018-9344-1 http://dx.doi.org/10.1007/s10854-018-9344-1
Huang Y. S. ; Liu Y. ; Si G. F. ; Tan C. Self-healing and recyclable vulcanized polyisoprene based on a sulfur-rich copolymer cross-linking agent derived from inverse vulcanization . ACS Sustainable Chem. Eng. , 2024 , 12 ( 6 ), 2212 - 2224 . doi: 10.1021/acssuschemeng.3c05929 http://dx.doi.org/10.1021/acssuschemeng.3c05929
Wei Y. C. ; Liu G. X. ; Zhang L. ; Xu W. Z. ; Liao S. Q. ; Luo M. C. Mimicking the mechanical robustness of natural rubber based on a sacrificial network constructed by phospholipids . ACS Appl. Mater. Interfaces , 2020 , 12 ( 12 ), 14468 - 14475 . doi: 10.1021/acsami.0c01994 http://dx.doi.org/10.1021/acsami.0c01994
Wang Y. H. ; Yang J. W. ; Ouyang D. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism . Materials , 2019 , 12 ( 22 ), 3753 . doi: 10.3390/ma12223753 http://dx.doi.org/10.3390/ma12223753
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构