浏览全部资源
扫码关注微信
华东理工大学机械与动力工程学院 上海 200237
[ "沙金,男,1982年生. 华东理工大学副教授、硕士生导师. 2011~2013年在美国威斯康辛麦迪逊大学访学,2014年在华东理工大学获得工学博士学位. 获得上海市科技进步奖二等奖. 主要研究方向为高性能材料成型制造及智能装备,及其在多元组分、功能化表界面微图案及生物芯片系统中的应用. 于Lab on Chip、Biomacromolecules、Biomaterials、Composite Part A等国际知名刊物上发表论文二十余篇." ]
收稿日期:2025-06-26,
录用日期:2025-08-15,
网络出版日期:2025-09-22,
移动端阅览
祁纪浩, 陈欣, 庞志威, 林增, 王超元, 刘虎, 沙金, 白志山. 基于物理信息深度学习的高分子流变学研究:挑战、方法与应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25155
Qi J. H.; Chen X.; Pang Z. W.; Lin Z.; Wang C. Y.; Liu H.; Sha J.; Bai Z. S. Physics-informed deep learning for polymer rheology: investigating challenges, methodologies, and applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25155
祁纪浩, 陈欣, 庞志威, 林增, 王超元, 刘虎, 沙金, 白志山. 基于物理信息深度学习的高分子流变学研究:挑战、方法与应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25155 DOI: CSTR: 32057.14.GFZXB.2025.7457.
Qi J. H.; Chen X.; Pang Z. W.; Lin Z.; Wang C. Y.; Liu H.; Sha J.; Bai Z. S. Physics-informed deep learning for polymer rheology: investigating challenges, methodologies, and applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25155 DOI: CSTR: 32057.14.GFZXB.2025.7457.
高分子流变学旨在理解材料从微观到宏观的流动与变形特性,但传统建模方法在处理复杂非线性、多尺度模拟及数据解析方面长期面临挑战. 物理信息深度学习(PIDL)通过将流变学物理定律嵌入深度神经网络,减少对大量数据的依赖,提高模型泛化能力和物理合理性,为解决高分子流变学面临的挑战提供新的途径. 通过探讨PIDL的基本原理,包括其模型架构、物理信息损失函数设计(如MSE、MAE及稀疏/残差损失)和损失函数优化方法(如梯度下降、自适应权重调整),并分析PIDL在高分子流变学中的具体应用,涵盖了概率模型、生成式模型、神经算子、图神经网络和强化学习等多种模型架构,展示其在参数优化、流变特性预测、逆问题求解及数字孪生集成等方面的潜力. 尽管PIDL展现出显著优势,但仍面临数据获取成本高、模型可解释性弱、多尺度求解精度不足及鲁棒性等问题. 未来发展方向包括利用多保真技术、物理信息增强数据、优化算法、结合数字孪生、推断因果关系以及应用元学习和可解释人工智能(XAI)来提升模型性能和实用性.
Polymer rheology aims to understand the multiscale flow and deformation of macromolecular materials
yet conventional constitutive approaches have long struggled with pronounced nonlinearities
cross-scale coupling and sparse
noisy data inversion. Physics-informed deep learning (PIDL) embeds rheological conservation laws and constitutive relations directly into deep neural networks
substantially reducing the demand for large labelled datasets while enhancing model generalization and physical interpretability. This review systematically outlines the foundational principles of PIDL
covering network architectures
physics-informed loss functions such as MSE
MAE
sparse and residual variants
and optimization strategies including gradient descent and adaptive weighting. We further survey five PIDL paradigms—probabilistic models
generative models
neural operators
graph neural networks and reinforcement learning—and demonstrate their potential for parameter identification
rheological property prediction
inverse problem solving and digital-twin integration. Despite these advantages
PIDL still contends with high data acquisition costs
limited interpretability
insufficient accuracy across scales and uncertain robustness under extreme conditions. Future research should exploit multi-fidelity techniques
physics-augmented data generation
advanced optimization
causal inference and explainable AI to deliver trustworthy
industrially viable rheological models.
Wilson, D. I. What is rheology? Eye , 2018 , 32 ( 2 ), 179 - 183 . doi: 10.1038/eye.2017.267 http://dx.doi.org/10.1038/eye.2017.267
Deshpande A. P. ; Krishnan J. M. ; Sunil Kumar P. B. , ed . Rheology of complex fluids . New York : Springer , 2010 : 171 - 191 . doi: 10.1007/978-1-4419-6494-6 http://dx.doi.org/10.1007/978-1-4419-6494-6
Polychronopoulos N. D. ; Vlachopoulos J. Polymer processing and rheology . Functional Polymers. Cham : Springer International Publishing , 2019 , 133 - 180 . doi: 10.1007/978-3-319-95987-0_4 http://dx.doi.org/10.1007/978-3-319-95987-0_4
Mahesh B. Machine learning algorithms—a review . Int. J. Sci. Res. , 2020 , 9 ( 1 ), 381 - 386 . doi: 10.21275/art20203995 http://dx.doi.org/10.21275/art20203995
Bertolini M. ; Mezzogori D. ; Neroni M. ; Zammori F. Machine Learning for industrial applications: a comprehensive literature review . Expert Syst. Appl. , 2021 , 175 , 114820 . doi: 10.1016/j.eswa.2021.114820 http://dx.doi.org/10.1016/j.eswa.2021.114820
Meng C. Z. ; Griesemer S. ; Cao D. F. ; Seo S. ; Liu Y. When physics meets machine learning: a survey of physics-informed machine learning . Mach. Learn. Comput. Sci. Eng. , 2025 , 1 ( 1 ), 20 . doi: 10.1007/s44379-025-00016-0 http://dx.doi.org/10.1007/s44379-025-00016-0
Hao Z. K. ; Liu S. M. ; Zhang Y. C. ; Ying C. Y. ; Feng Y. ; Su H. ; Zhu J. Physics-informed machine learning: a survey on problems, methods and applications . arXiv E Prints , 2022 , arXiv, 2211.08064.
Karniadakis G. E. ; Kevrekidis I. G. ; Lu L. ; Perdikaris P. ; Wang S. F. ; Yang L. Physics-informed machine learning . Nat. Rev. Phys. , 2021 , 3 ( 6 ), 422 - 440 . doi: 10.1038/s42254-021-00314-5 http://dx.doi.org/10.1038/s42254-021-00314-5
Sharma P. ; Chung W. T. ; Akoush B. ; Ihme M. A review of physics-informed machine learning in fluid mechanics . Energies , 2023 , 16 ( 5 ), 2343 . doi: 10.3390/en16052343 http://dx.doi.org/10.3390/en16052343
Yao L. J. ; Wang J. X. ; Chuai M. Y. ; Lomov S. V. ; Carvelli V. Physics-informed machine learning for loading history dependent fatigue delamination of composite laminates . Compos. Part A Appl. Sci. Manuf. , 2024 , 187 , 108474 . doi: 10.1016/j.compositesa.2024.108474 http://dx.doi.org/10.1016/j.compositesa.2024.108474
Latrach A. ; Malki M. L. ; Morales M. ; Mehana M. ; Rabiei M. A critical review of physics-informed machine learning applications in subsurface energy systems . Geoenergy Sci. Eng. , 2024 , 239 , 212938 . doi: 10.1016/j.geoen.2024.212938 http://dx.doi.org/10.1016/j.geoen.2024.212938
Rao C. P. ; Sun H. ; Liu Y. Physics-informed deep learning for incompressible laminar flows . Theor. Appl. Mech. Lett. , 2020 , 10 ( 3 ), 207 - 212 . doi: 10.1016/j.taml.2020.01.039 http://dx.doi.org/10.1016/j.taml.2020.01.039
Xu G. J. ; Ji C. J. ; Xu Y. ; Yu E. B. ; Cao Z. Y. ; Wu Q. H. ; Lin P. Z. ; Wang J. S. Machine learning in coastal bridge hydrodynamics: a state-of-the-art review . Appl. Ocean. Res. , 2023 , 134 , 103511 . doi: 10.1016/j.apor.2023.103511 http://dx.doi.org/10.1016/j.apor.2023.103511
Zhao F. ; Zhang Z. Y. ; Yang J. J. ; Yu J. X. ; Feng J. Y. ; Zhou H. X. ; Shi C. J. ; Meng F. N. Advanced nonlinear rheology magnetorheological finishing: a review . Chin. J. Aeronaut. , 2024 , 37 ( 4 ), 54 - 92 . doi: 10.1016/j.cja.2023.06.006 http://dx.doi.org/10.1016/j.cja.2023.06.006
Alkalbani A. M. ; Chala G. T. A comprehensive review of nanotechnology applications in oil and gas well drilling operations . Energies , 2024 , 17 ( 4 ), 798 . doi: 10.3390/en17040798 http://dx.doi.org/10.3390/en17040798
Pipintakos G. ; Sreeram A. ; Mirwald J. ; Bhasin A. Engineering bitumen for future asphalt pavements: a review of chemistry, structure and rheology . Mater. Des. , 2024 , 244 , 113157 . doi: 10.1016/j.matdes.2024.113157 http://dx.doi.org/10.1016/j.matdes.2024.113157
Raihan M. K. ; Jagdale P. P. ; Wu S. ; Shao X. C. ; Bostwick J. B. ; Pan X. X. ; Xuan X. C. Flow of non-Newtonian fluids in a single-cavity microchannel . Micromachines , 2021 , 12 ( 7 ), 836 . doi: 10.3390/mi12070836 http://dx.doi.org/10.3390/mi12070836
Moradpour N. ; Yang J. Y. ; Tsai P. A. Liquid foam: fundamentals, rheology, and applications of foam displacement in porous structures . Curr. Opin. Colloid Interface Sci. , 2024 , 74 , 101845 . doi: 10.1016/j.cocis.2024.101845 http://dx.doi.org/10.1016/j.cocis.2024.101845
Ahuja A. ; Lee R. ; Joshi Y. M. Advances and challenges in the high-pressure rheology of complex fluids . Adv. Colloid Interface Sci. , 2021 , 294 , 102472 . doi: 10.1016/j.cis.2021.102472 http://dx.doi.org/10.1016/j.cis.2021.102472
Taira K. ; Hemati M. S. ; Brunton S. L. ; Sun Y. Y. ; Duraisamy K. ; Bagheri S. ; Dawson S. T. M. ; Yeh C. A. Modal analysis of fluid flows: applications and outlook . AIAA j. , 2019 , 58 ( 3 ), 998 - 1022 . doi: 10.2514/1.j058462 http://dx.doi.org/10.2514/1.j058462
Wu S. L. ; Chen Q. Advances and new opportunities in the rheology of physically and chemically reversible polymers . Macromolecules , 2022 , 55 ( 3 ), 697 - 714 . doi: 10.1021/acs.macromol.1c01605 http://dx.doi.org/10.1021/acs.macromol.1c01605
Huang Q. When polymer chains are highly aligned: a perspective on extensional rheology . Macromolecules , 2022 , 55 ( 3 ), 715 - 727 . doi: 10.1021/acs.macromol.1c02262 http://dx.doi.org/10.1021/acs.macromol.1c02262
Münstedt H. Rheological measurements and structural analysis of polymeric materials . Polymers , 2021 , 13 ( 7 ), 1123 . doi: 10.3390/polym13071123 http://dx.doi.org/10.3390/polym13071123
Romberg S. K. ; Kotula A. P. Simultaneous rheology and cure kinetics dictate thermal post-curing of thermoset composite resins for material extrusion . Addit. Manuf. , 2023 , 71 , 103589 . doi: 10.1016/j.addma.2023.103589 http://dx.doi.org/10.1016/j.addma.2023.103589
Ackermann A. C. ; Carosella S. ; Rettenmayr M. ; Fox B. L. ; Middendorf P. Rheology, dispersion, and cure kinetics of epoxy filled with amine- and non-functionalized reduced graphene oxide for composite manufacturing . J. Appl. Polym. Sci. , 2022 , 139 ( 8 ), 51664 . doi: 10.1002/app.51664 http://dx.doi.org/10.1002/app.51664
Song H. W. ; Li X. L. An overview on the rheology, mechanical properties , durability , 3 printingD, and microstructural performance of nanomaterials in cementitious composites. Materials, 2021, 14 ( 11 ), 2950 . doi: 10.3390/ma14112950 http://dx.doi.org/10.3390/ma14112950
Gonzalez-Saiz E. ; Garcia-Gonzalez D. Model-driven identification framework for optimal constitutive modeling from kinematics and rheological arrangement . Comput. Meth. Appl. Mech. Eng. , 2023 , 415 , 116211 . doi: 10.1016/j.cma.2023.116211 http://dx.doi.org/10.1016/j.cma.2023.116211
Larson R. G. ; Desai P. S. Modeling the rheology of polymer melts and solutions . Annu. Rev. Fluid Mech. , 2015 , 47 , 47 - 65 . doi: 10.1146/annurev-fluid-010814-014612 http://dx.doi.org/10.1146/annurev-fluid-010814-014612
Sato T. ; Yoshimoto K. Recent developments on multiscale simulations for rheology and complex flow of polymers . Korea Aust. Rheol. J. , 2024 , 36 ( 4 ), 253 - 269 . doi: 10.1007/s13367-024-00112-2 http://dx.doi.org/10.1007/s13367-024-00112-2
Liu N. P. ; Zhang D. ; Gao H. ; Hu Y. L. ; Duan L. C. Real-time measurement of drilling fluid rheological properties: a review . Sensors , 2021 , 21 ( 11 ), 3592 . doi: 10.3390/s21113592 http://dx.doi.org/10.3390/s21113592
Raissi M. ; Perdikaris P. ; Karniadakis G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations . J. Comput. Phys. , 2019 , 378 , 686 - 707 . doi: 10.1016/j.jcp.2018.10.045 http://dx.doi.org/10.1016/j.jcp.2018.10.045
Lai Z. L. ; Mylonas C. ; Nagarajaiah S. ; Chatzi E. Structural identification with physics-informed neural ordinary differential equations . J. Sound Vib. , 2021 , 508 , 116196 . doi: 10.1016/j.jsv.2021.116196 http://dx.doi.org/10.1016/j.jsv.2021.116196
Janiesch C. ; Zschech P. ; Heinrich K. Machine learning and deep learning . Electron. Mark. , 2021 , 31 ( 3 ), 685 - 695 . doi: 10.1007/s12525-021-00475-2 http://dx.doi.org/10.1007/s12525-021-00475-2
Dong S. ; Wang P. ; Abbas K. A survey on deep learning and its applications . Comput. Sci. Rev. , 2021 , 40 , 100379 . doi: 10.1016/j.cosrev.2021.100379 http://dx.doi.org/10.1016/j.cosrev.2021.100379
Das S. ; Tesfamariam S. State-of-the-art review of design of experiments for physics-informed deep learning . 2022 : arXiv: 2202. 06416 . https://arxiv.org/abs/2202.06416
Wang S. F. ; Sankaran S. ; Wang H. W. ; Perdikaris P. An expert's guide to training physics-informed neural networks . 2023 : arXiv: 2308. 08468 . https://arxiv.org/abs/2308.08468. doi: 10.1016/j.cma.2024.116813 http://dx.doi.org/10.1016/j.cma.2024.116813
Bilodeau C. ; Kazakov A. ; Mukhopadhyay S. ; Emerson J. ; Kalantar T. ; Muzny C. ; Jensen K. Machine learning for predicting the viscosity of binary liquid mixtures . Chem. Eng. J. , 2023 , 464 , 142454 . doi: 10.1016/j.cej.2023.142454 http://dx.doi.org/10.1016/j.cej.2023.142454
Nazar S. ; Yang J. ; Thomas B. S. ; Azim I. ; Ur Rehman S. K. Rheological properties of cementitious composites with and without nano-materials: a comprehensive review . J. Clean. Prod. , 2020 , 272 , 122701 . doi: 10.1016/j.jclepro.2020.122701 http://dx.doi.org/10.1016/j.jclepro.2020.122701
Khan W. A. ; Farooq S. ; Kadry S. ; Hanif M. ; Iftikhar F. J. ; Abbas S. Z. Variable characteristics of viscosity and thermal conductivity in peristalsis of magneto-Carreau nanoliquid with heat transfer irreversibilities . Comput. Meth. Programs Biomed. , 2020 , 190 , 105355 . doi: 10.1016/j.cmpb.2020.105355 http://dx.doi.org/10.1016/j.cmpb.2020.105355
Jin X. W. ; Cai S. Z. ; Li H. ; Karniadakis G. E. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations . J. Comput. Phys. , 2021 , 426 , 109951 . doi: 10.1016/j.jcp.2020.109951 http://dx.doi.org/10.1016/j.jcp.2020.109951
Kimondo J. J. ; Said R. R. ; Wu J. ; Tian C. ; Wu Z. Mechanical rheological model on the assessment of elasticity and viscosity in tissue inflammation: a systematic review . PLoS One , 2024 , 19 ( 7 ), e 0307113 . doi: 10.1371/journal.pone.0307113 http://dx.doi.org/10.1371/journal.pone.0307113
Ling S. B. ; Wu Z. ; Mei J. Comparison and review of classical and machine learning-based constitutive models for polymers used in aeronautical thermoplastic composites . Rev. Adv. Mater. Sci. , 2023 , 62 , 20230107 . doi: 10.1515/rams-2023-0107 http://dx.doi.org/10.1515/rams-2023-0107
Abueidda D. W. ; Koric S. ; Abu Al-Rub R. ; Parrott C. M. ; James K. A. ; Sobh N. A. A deep learning energy method for hyperelasticity and viscoelasticity . Eur. J. Mech. A/solids , 2022 , 95 , 104639 . doi: 10.1016/j.euromechsol.2022.104639 http://dx.doi.org/10.1016/j.euromechsol.2022.104639
Chen X. X. ; Zhang P. ; Yu H. S. ; Yin Z. Y. ; Sheil B. Parsimonious universal function approximator for elastic and elastoplastic cavity expansion problems . J. Geotech. Geoenviron. Eng. , 2025 , 151 ( 9 ), 04025093 . doi: 10.1061/jggefk.gteng-13267 http://dx.doi.org/10.1061/jggefk.gteng-13267
Tian Y. J. ; Zhang Y. Q. A comprehensive survey on regularization strategies in machine learning . Inf. Fusion , 2022 , 80 , 146 - 166 . doi: 10.1016/j.inffus.2021.11.005 http://dx.doi.org/10.1016/j.inffus.2021.11.005
Wang M. H. ; Wang Q. ; Chanussot J. ; Hong D. F. L₀-l₁ hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing . IEEE Trans. Geosci. Remote. Sens. , 2021 , 59 ( 9 ), 7695 - 7710 . doi: 10.1109/tgrs.2021.3055516 http://dx.doi.org/10.1109/tgrs.2021.3055516
Florez W. F. ; Popov V. ; Gaviria-Cardona J. P. ; Bustamante C. A. ; Martínez-Tejada H. V. ; Garcia-Tamayo E. A local collocation method with radial basis functions for an electrospinning problem . Eng. Anal. Bound. Elem. , 2022 , 134 , 398 - 411 . doi: 10.1016/j.enganabound.2021.10.013 http://dx.doi.org/10.1016/j.enganabound.2021.10.013
Rüttgers A. ; Griebel M. Multiscale simulation of polymeric fluids using the sparse grid combination technique . Appl. Math. Comput. , 2018 , 319 , 425 - 443 . doi: 10.1016/j.amc.2017.04.025 http://dx.doi.org/10.1016/j.amc.2017.04.025
Wang B. Y. ; Deng L. ; Qu Z. ; Li S. C. ; Zhang Z. ; Xie Y. Efficient processing of sparse tensor decomposition via unified abstraction and PE-interactive architecture . IEEE Trans. Comput. , 2022 , 71 ( 2 ), 266 - 281 . doi: 10.1109/tc.2020.3046617 http://dx.doi.org/10.1109/tc.2020.3046617
Messenger D. A. ; Bortz D. M. Weak SINDy for partial differential equations . J. Comput. Phys. , 2021 , 443 , 110525 . doi: 10.1016/j.jcp.2021.110525 http://dx.doi.org/10.1016/j.jcp.2021.110525
Bai J. S. ; Rabczuk T. ; Gupta A. ; Alzubaidi L. ; Gu Y. T. A physics-informed neural network technique based on a modified loss function for computational 2 D and 3 D solid mechanics . Comput. Mech., 2022, 71 ( 3 ), 543 - 562 . doi: 10.1007/s00466-022-02252-0 http://dx.doi.org/10.1007/s00466-022-02252-0
Thakur S. ; Mitra H. ; Ardekani A. M. Physics-informed neural network-based inverse framework for time-fractional differential equations for rheology . Biology , 2025 , 14 ( 7 ), 779 . doi: 10.3390/biology14070779 http://dx.doi.org/10.3390/biology14070779
Wang X. L. ; Jin Y. C. ; Schmitt S. ; Olhofer M. Recent advances in Bayesian optimization . ACM Comput. Surv. , 2023 , 55 ( 13 s), 1 - 36 . doi: 10.1145/3582078 http://dx.doi.org/10.1145/3582078
Khatamsaz D. ; Neuberger R. ; Roy A. M. ; Zadeh S. H. ; Otis R. ; Arróyave R. A physics informed Bayesian optimization approach for material design: application to NiTi shape memory alloys . NPJ Comput. Mater. , 2023 , 9 , 221 . doi: 10.1038/s41524-023-01173-7 http://dx.doi.org/10.1038/s41524-023-01173-7
Zhao X. G. ; Shirvan K. ; Salko R. K. ; Guo F. D. On the prediction of critical heat flux using a physics-informed machine learning-aided framework . Appl. Therm. Eng. , 2020 , 164 , 114540 . doi: 10.1016/j.applthermaleng.2019.114540 http://dx.doi.org/10.1016/j.applthermaleng.2019.114540
Kapoor T. ; Chandra A. ; Tartakovsky D. M. ; Wang H. R. ; Nunez A. ; Dollevoet R. Neural oscillators for generalization of physics-informed machine learning . Proc. AAAI Conf. Artif. Intell. , 2024 , 38 ( 12 ), 13059 - 13067 . doi: 10.1609/aaai.v38i12.29204 http://dx.doi.org/10.1609/aaai.v38i12.29204
Ahn K. H. ; Jamali S. Data-driven methods in rheology . Rheol. Acta , 2023 , 62 ( 10 ), 473 - 475 . doi: 10.1007/s00397-023-01416-w http://dx.doi.org/10.1007/s00397-023-01416-w
Shirangi M. G. ; Aragall R. ; Osgouei R. E. ; May R. ; Furlong E. ; Dahl T. G. ; Thompson C. A. Development of digital twins for drilling fluids: local velocities for hole cleaning and rheology monitoring . J. Energy Resour. Technol. , 2022 , 144 ( 12 ), 123003 . doi: 10.1115/1.4054463 http://dx.doi.org/10.1115/1.4054463
Butt J. ; Mohaghegh V. Combining digital twin and machine learning for the fused filament fabrication process . Metals , 2023 , 13 ( 1 ), 24 . doi: 10.3390/met13010024 http://dx.doi.org/10.3390/met13010024
Mahmoudabadbozchelou M. ; Kamani K. M. ; Rogers S. A. ; Jamali S. Digital rheometer twins: learning the hidden rheology of complex fluids through rheology-informed graph neural networks . Proc. Natl. Acad. Sci. U.S.A. , 2022 , 119 ( 20 ), e 2202234119 . doi: 10.1073/pnas.2202234119 http://dx.doi.org/10.1073/pnas.2202234119
Abadi M. , Barham P. , Chen J. , Chen Z. , Davis A. , Dean J. , Devin M. , Ghemawat S. , Irving G. , Isard M. , Kudlur M. , Levenberg J. , Monga R. , Moore S. , Murray D. G. , Steiner B. , Tucker P. , Vasudevan V. , Warden P. , Wicke M. , Yu Y. , Zheng X. TensorFlow: A System for Large-Scale Machine Learning . in : 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16 ). 2016 : 265 - 283 .
Paszke A. ; Gross S. ; Massa F. ; Lerer A. ; Bradbury J. ; Chanan G. ; Killeen T. ; Lin Z. M. ; Gimelshein N. ; Antiga L. ; Desmaison A. ; Köpf A. ; Yang E. ; DeVito Z. ; Raison M. ; Tejani A. ; Chilamkurthy S. ; Steiner B. ; Fang L. ; Bai J. J. ; Chintala S. PyTorch: an imperative style, high-performance deep learning library . 2019 , arXiv: 1912.01703 .
Ketkar N. Introduction to keras . Deep Learning with Python . Berkeley, CA: Apress, 2017 , 97 - 111 . doi: 10.1007/978-1-4842-2766-4_7 http://dx.doi.org/10.1007/978-1-4842-2766-4_7
Ma Y. ; Yu D. ; Wu T. ; Wang H. PaddlePaddle: an open-source deep learning platform from industrial practice . Front. Data Domputing , 2019 , 1 ( 1 ), 105 - 115 .
Lu L. ; Meng X. H. ; Mao Z. P. ; Karniadakis G. E. DeepXDE: a deep learning library for solving differential equations . SIAM Rev. , 2021 , 63 ( 1 ), 208 - 228 . doi: 10.1137/19m1274067 http://dx.doi.org/10.1137/19m1274067
Hennigh O. ; Narasimhan S. ; Nabian M. A. ; Subramaniam A. ; Tangsali K. ; Fang Z. W. ; Rietmann M. ; Byeon W. ; Choudhry S. NVIDIA SimNet TM : an AI-accelerated multi-physics simulation framework . Computational Science—ICCS 2021 . Cham : Springer International Publishing , 2021 , 447 - 461 . doi: 10.1007/978-3-030-77977-1_36 http://dx.doi.org/10.1007/978-3-030-77977-1_36
Koryagin A. ; Khudorozkov R. ; Tsimfer S. PyDEns: a Python framework for solving differential equations with neural networks . 2019 : arXiv: 1909. 11544 . https://arxiv.org/abs/1909.11544
Chen F. Y. ; Sondak D. ; Protopapas P. ; Mattheakis M. ; Liu S. H. ; Agarwal D. ; Di Giovanni M. NeuroDiffEq: a Python package for solving differential equations with neural networks . J. Open Source Softw. , 2020 , 5 ( 46 ), 1931 . doi: 10.21105/joss.01931 http://dx.doi.org/10.21105/joss.01931
Jospin L. V. ; Laga H. ; Boussaid F. ; Buntine W. ; Bennamoun M. Hands-on Bayesian neural networks: a tutorial for deep learning users . IEEE Comput. Intell. Mag. , 2022 , 17 ( 2 ), 29 - 48 . doi: 10.1109/mci.2022.3155327 http://dx.doi.org/10.1109/mci.2022.3155327
Yang L. ; Meng X. H. ; Karniadakis G. E. B-PINNs: bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data . J. Comput. Phys. , 2021 , 425 , 109913 . doi: 10.1016/j.jcp.2020.109913 http://dx.doi.org/10.1016/j.jcp.2020.109913
Linka K. ; Schäfer A. ; Meng X. H. ; Zou Z. R. ; Karniadakis G. E. ; Kuhl E. Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems . Comput. Meth. Appl. Mech. Eng. , 2022 , 402 , 115346 . doi: 10.1016/j.cma.2022.115346 http://dx.doi.org/10.1016/j.cma.2022.115346
Sun L. N. ; Wang J. X. Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data . Theor. Appl. Mech. Lett. , 2020 , 10 ( 3 ), 161 - 169 . doi: 10.1016/j.taml.2020.01.031 http://dx.doi.org/10.1016/j.taml.2020.01.031
Meng X. H. ; Babaee H. ; Karniadakis G. E. Multi-fidelity Bayesian neural networks: algorithms and applications . J. Comput. Phys. , 2021 , 438 , 110361 . doi: 10.1016/j.jcp.2021.110361 http://dx.doi.org/10.1016/j.jcp.2021.110361
Ji B. ; Sharma Bhattarai S. ; Na I. H. ; Kim H. A Bayesian deep learning approach for rheological properties prediction of asphalt binders considering uncertainty of output . Constr. Build. Mater. , 2023 , 408 , 133671 . doi: 10.1016/j.conbuildmat.2023.133671 http://dx.doi.org/10.1016/j.conbuildmat.2023.133671
Zhao L. F. ; Li Z. ; Wang Z. C. ; Caswell B. ; Ouyang J. ; Karniadakis G. E. Active- and transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows . J. Comput. Phys. , 2021 , 427 , 110069 . doi: 10.1016/j.jcp.2020.110069 http://dx.doi.org/10.1016/j.jcp.2020.110069
Hall E. J. ; Taverniers S. ; Katsoulakis M. A. ; Tartakovsky D. M. GINNs: graph-informed neural networks for multiscale physics . J. Comput. Phys. , 2021 , 433 , 110192 . doi: 10.1016/j.jcp.2021.110192 http://dx.doi.org/10.1016/j.jcp.2021.110192
Xing Z. Y. A non-Markov chain model of heterogeneous polymer dynamics for exploring relaxation and creep behavior . J. Phys. D: Appl. Phys. , 2025 , 58 ( 11 ), 115305 . doi: 10.1088/1361-6463/ada80c http://dx.doi.org/10.1088/1361-6463/ada80c
Gm H. ; Gourisaria M. K. ; Pandey M. ; Rautaray S. S. A comprehensive survey and analysis of generative models in machine learning . Comput. Sci. Rev. , 2020 , 38 , 100285 . doi: 10.1016/j.cosrev.2020.100285 http://dx.doi.org/10.1016/j.cosrev.2020.100285
Ghojogh B. ; Ghodsi A. ; Karray F. ; Crowley M. Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: tutorial and survey . 2021 , arXiv: 2101.00734 .
Gundersen K. ; Oleynik A. ; Blaser N. ; Alendal G. Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations . Phys. Fluids , 2021 , 33 , 017119 . doi: 10.1063/5.0025779 http://dx.doi.org/10.1063/5.0025779
Akkari N. ; Casenave F. ; Hachem E. ; Ryckelynck D. A Bayesian nonlinear reduced order modeling using variational AutoEncoders . Fluids , 2022 , 7 ( 10 ), 334 . doi: 10.3390/fluids7100334 http://dx.doi.org/10.3390/fluids7100334
Simpson T. ; Vlachas K. ; Garland A. ; Dervilis N. ; Chatzi E. VpROM: a novel variational autoencoder-boosted reduced order model for the treatment of parametric dependencies in nonlinear systems . Sci. Rep. , 2024 , 14 , 6091 . doi: 10.1038/s41598-024-56118-x http://dx.doi.org/10.1038/s41598-024-56118-x
Hora G. S. ; Gentine P. ; Momen M. ; Giometto M. G. Physics-informed data-driven reconstruction of turbulent wall-bounded flows from planar measurements . Phys. Fluids , 2024 , 36 ( 11 ), 115191 . doi: 10.1063/5.0239163 http://dx.doi.org/10.1063/5.0239163
Zhong, W. H.; Meidani, H. PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic differential equations . Comput. Meth. Appl. Mech. Eng. , 2023 , 403 , 115664 . doi: 10.1016/j.cma.2022.115664 http://dx.doi.org/10.1016/j.cma.2022.115664
Shin H. ; Choi M. Physics-informed variational inference for uncertainty quantification of stochastic differential equations . J. Comput. Phys. , 2023 , 487 , 112183 . doi: 10.1016/j.jcp.2023.112183 http://dx.doi.org/10.1016/j.jcp.2023.112183
Goodfellow I. ; Pouget-Abadie J. ; Mirza M. ; Xu B. ; Warde-Farley D. ; Ozair S. ; Courville A. ; Bengio Y. Generative adversarial networks . Commun. ACM , 2020 , 63 ( 11 ), 139 - 144 . doi: 10.1145/3422622 http://dx.doi.org/10.1145/3422622
Guo X. ; Chen Y. Q. Generative AI for synthetic data generation: Methods, challenges and the future . 2024 : arXiv: 2403. 04190 . https://arxiv.org/abs/2403.04190
Wang Z. Z. ; Jeong H. ; Gan Y. X. ; Pereira J. M. ; Gu Y. T. ; Sauret E. Pore-scale modeling of multiphase flow in porous media using a conditional generative adversarial network (cGAN) . Phys. Fluids , 2022 , 34 ( 12 ), 123325 . doi: 10.1063/5.0133054 http://dx.doi.org/10.1063/5.0133054
Xie P. X. ; Li R. ; Chen Y. R. ; Song B. Y. ; Chen W. L. ; Zhou D. ; Cao Y. A physics-informed deep learning model to reconstruct turbulent wake from random sparse data . Phys. Fluids , 2024 , 36 ( 6 ), 065145 . doi: 10.1063/5.0212298 http://dx.doi.org/10.1063/5.0212298
Cheng M. ; Fang F. ; Pain C. C. ; Navon I. M. An advanced hybrid deep adversarial autoencoder for parameterized nonlinear fluid flow modelling . Comput. Meth. Appl. Mech. Eng. , 2020 , 372 , 113375 . doi: 10.1016/j.cma.2020.113375 http://dx.doi.org/10.1016/j.cma.2020.113375
Niu Z. J. ; Yu K. ; Wu X. F. LSTM-based VAE-GAN for time-series anomaly detection . Sensors , 2020 , 20 ( 13 ), 3738 . doi: 10.3390/s20133738 http://dx.doi.org/10.3390/s20133738
Jiang Y. ; Liang Y. F. ; Yuan X. F. Super-resolution reconstruction of turbulence for Newtonian and viscoelastic fluids with a physical constraint . Phys. Fluids , 2024 , 36 ( 10 ), 103114 . doi: 10.1063/5.0232224 http://dx.doi.org/10.1063/5.0232224
Wang Y. J. ; Shan L. Y. ; Yan J. M. ; Pang Y. Z. A data augmentation method for establishing a relationship model between composition and viscoelastic properties of asphalt binder . IEEE Trans. Intell. Transp. Syst. , 2025 , 26 ( 8 ), 12446 - 12460 . doi: 10.1109/tits.2025.3558911 http://dx.doi.org/10.1109/tits.2025.3558911
Lu L. ; Jin P. Z. ; Pang G. F. ; Zhang Z. Q. ; Karniadakis G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators . Nat. Mach. Intell. , 2021 , 3 ( 3 ), 218 - 229 . doi: 10.1038/s42256-021-00302-5 http://dx.doi.org/10.1038/s42256-021-00302-5
Wang S. F. ; Wang H. W. ; Perdikaris P. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets . Sci. Adv. , 2021 , 7 ( 40 ), eabi 8605 . doi: 10.1126/sciadv.abi8605 http://dx.doi.org/10.1126/sciadv.abi8605
Kovachki N. ; Li Z. Y. ; Liu B. ; Azizzadenesheli K. ; Bhattacharya K. ; Stuart A. ; Anandkumar A. Neural operator: learning maps between function spaces with applications to PDEs . J. Mach. Learn. Res. , 2023 , 24 ( 1 ), 4061 - 4157 .
Li Z. Y. ; Kovachki N. ; Azizzadenesheli K. ; Liu B. ; Bhattacharya K. ; Stuart A. ; Anandkumar A. Fourier neural operator for parametric partial differential equations . 2020 : arXiv: 2010. 08895 . https://arxiv.org/abs/2010.08895
Li Z. Y. ; Zheng H. K. ; Kovachki N. ; Jin D. ; Chen H. X. ; Liu B. ; Azizzadenesheli K. ; Anandkumar A. Physics-informed neural operator for learning partial differential equations . ACM / IMS J. Data Sci. , 2024 , 1 ( 3 ), 1 - 27 . doi: 10.1145/3648506 http://dx.doi.org/10.1145/3648506
Cao Q. Y. ; Goswami S. ; Karniadakis G. E. Laplace neural operator for solving differential equations . Nat. Mach. Intell. , 2024 , 6 ( 6 ), 631 - 640 . doi: 10.1038/s42256-024-00844-4 http://dx.doi.org/10.1038/s42256-024-00844-4
Lowery M. ; Turnage J. ; Morrow Z. ; Jakeman J. D. ; Narayan A. ; Zhe S. D. ; Shankar V. Kernel neural operators (KNOs) for scalable, memory-efficient, geometrically-flexible operator learning . 2024 : arXiv: 2407. 00809 . https://arxiv.org/abs/2407.00809
Jeyaraj D. ; Eivazi H. ; Tröger J. A. ; Wittek S. ; Hartmann S. ; Rausch A. A neural operator based hybrid microscale model for multiscale simulation of rate-dependent materials . 2025 : arXiv: 2506. 16918 . https://arxiv.org/abs/2506.16918
Mangal D. ; Saadat M. ; Jamali S. Learning a family of rheological constitutive models using neural operators . J. Rheol. , 2025 , 69 ( 2 ), 55 - 67 . doi: 10.1122/8.0000908 http://dx.doi.org/10.1122/8.0000908
Zhou J. ; Cui G. Q. ; Hu S. D. ; Zhang Z. Y. ; Yang C. ; Liu Z. Y. ; Wang L. F. ; Li C. C. ; Sun M. S. Graph neural networks: a review of methods and applications . AI Open , 2020 , 1 , 57 - 81 . doi: 10.1016/j.aiopen.2021.01.001 http://dx.doi.org/10.1016/j.aiopen.2021.01.001
Liu S. C. ; Li T. ; Ding H. Y. ; Tang B. Z. ; Wang X. L. ; Chen Q. C. ; Yan J. ; Zhou Y. A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction . Int. J. Mach. Learn. Cybern. , 2020 , 11 ( 12 ), 2849 - 2856 . doi: 10.1007/s13042-020-01155-x http://dx.doi.org/10.1007/s13042-020-01155-x
Atkinson O. ; Bhardwaj A. ; Englert C. ; Ngairangbam V. S. ; Spannowsky M. Anomaly detection with convolutional graph neural networks . J. High Energy Phys. , 2021 , 2021 ( 8 ), 80 . doi: 10.1007/jhep08(2021)080 http://dx.doi.org/10.1007/jhep08(2021)080
Du X. S. ; Yu J. ; Chu Z. ; Jin L. N. ; Chen J. Y. Graph autoencoder-based unsupervised outlier detection . Inf. Sci. , 2022 , 608 , 532 - 550 . doi: 10.1016/j.ins.2022.06.039 http://dx.doi.org/10.1016/j.ins.2022.06.039
Jin G. Y. ; Liang Y. X. ; Fang Y. C. ; Shao Z. Z. ; Huang J. C. ; Zhang J. B. ; Zheng Y. Spatio-temporal graph neural networks for predictive learning in urban computing: a survey . IEEE Trans. Knowl. Data Eng. , 2024 , 36 ( 10 ), 5388 - 5408 . doi: 10.1109/tkde.2023.3333824 http://dx.doi.org/10.1109/tkde.2023.3333824
Li Z. J. ; Farimani A. B. Graph neural network-accelerated Lagrangian fluid simulation . Comput. Graph. , 2022 , 103 , 201 - 211 . doi: 10.1016/j.cag.2022.02.004 http://dx.doi.org/10.1016/j.cag.2022.02.004
Jiang S. L. ; Dieng A. B. ; Webb M. A. Property-guided generation of complex polymer topologies using variational autoencoders . NPJ Comput. Mater. , 2024 , 10 , 139 . doi: 10.1038/s41524-024-01328-0 http://dx.doi.org/10.1038/s41524-024-01328-0
Shukla K. ; Xu M. J. ; Trask N. ; Karniadakis G. E. Scalable algorithms for physics-informed neural and graph networks . Data Centric Eng. , 2022 , 3 , e24 . doi: 10.1017/dce.2022.24 http://dx.doi.org/10.1017/dce.2022.24
Gao H. ; Zahr M. J. ; Wang J. X. Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems . Comput. Meth. Appl. Mech. Eng. , 2022 , 390 , 114502 . doi: 10.1016/j.cma.2021.114502 http://dx.doi.org/10.1016/j.cma.2021.114502
Li Z. Y. ; Kovachki N. ; Azizzadenesheli K. ; Liu B. ; Bhattacharya K. ; Stuart A. ; Anandkumar A. Multipole graph neural operator for parametric partial differential equations . 2020 : arXiv: 2006. 09535 . https://arxiv.org/abs/2006.09535
Storm J. ; Rocha I. B. C. M. ; van der Meer F. P. A microstructure-based graph neural network for accelerating multiscale simulations . Comput. Meth. Appl. Mech. Eng. , 2024 , 427 , 117001 . doi: 10.1016/j.cma.2024.117001 http://dx.doi.org/10.1016/j.cma.2024.117001
Du W. ; Ding S. F. A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications . Artif. Intell. Rev. , 2021 , 54 ( 5 ), 3215 - 3238 . doi: 10.1007/s10462-020-09938-y http://dx.doi.org/10.1007/s10462-020-09938-y
Garnier P. ; Viquerat J. ; Rabault J. ; Larcher A. ; Kuhnle A. ; Hachem E. A review on deep reinforcement learning for fluid mechanics . Comput. Fluids , 2021 , 225 , 104973 . doi: 10.1016/j.compfluid.2021.104973 http://dx.doi.org/10.1016/j.compfluid.2021.104973
Banerjee C. ; Nguyen K. ; Fookes C. ; Raissi M. A survey on physics informed reinforcement learning: review and open problems . Expert Syst. Appl. , 2025 , 287 , 128166 . doi: 10.1016/j.eswa.2025.128166 http://dx.doi.org/10.1016/j.eswa.2025.128166
Liu X. Y. ; Wang J. X. Physics-informed Dyna-style model-based deep reinforcement learning for dynamic control . Proc. Math. Phys. Eng. Sci. , 2021 , 477 ( 2255 ), 1 - 24 . doi: 10.1098/rspa.2021.0618 http://dx.doi.org/10.1098/rspa.2021.0618
Hu W. L. ; Jiang Z. Z. ; Xu M. Y. ; Hu H. Y. Efficient deep reinforcement learning strategies for active flow control based on physics-informed neural networks . Phys. Fluids , 2024 , 36 ( 7 ), 074112 . doi: 10.1063/5.0213256 http://dx.doi.org/10.1063/5.0213256
Faria R. R. ; Capron B. D. O. ; Secchi A. R. ; De Souza M. B. A data-driven tracking control framework using physics-informed neural networks and deep reinforcement learning for dynamical systems . Eng. Appl. Artif. Intell. , 2024 , 127 , 107256 . doi: 10.1016/j.engappai.2023.107256 http://dx.doi.org/10.1016/j.engappai.2023.107256
San O. ; Pawar S. ; Rasheed A. Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems . Sci. Rep. , 2022 , 12 , 17947 . doi: 10.1038/s41598-022-22598-y http://dx.doi.org/10.1038/s41598-022-22598-y
Gyimah N. ; Scheler O. ; Rang T. ; Pardy T. Deep reinforcement learning-based digital twin for droplet microfluidics control . Phys. Fluids , 2023 , 35 ( 8 ), 082020 . doi: 10.1063/5.0159981 http://dx.doi.org/10.1063/5.0159981
Fuks O. ; Tchelepi H. A. Limitations of physics informed machine learning for nonlinear two-phase transport in porous media . J. Mach. Learn. Model. Comput. , 2020 , 1 ( 1 ), 19 - 37 . doi: 10.1615/jmachlearnmodelcomput.2020033905 http://dx.doi.org/10.1615/jmachlearnmodelcomput.2020033905
Miyamoto S. Short review on machine learning-based multi-scale simulation in rheology . J. Soc. Rheol. , Jpn, 2024 , 52 ( 1 ), 15 - 19 . doi: 10.1678/rheology.52.15 http://dx.doi.org/10.1678/rheology.52.15
0
浏览量
92
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构