浏览全部资源
扫码关注微信
嘉兴大学材料与纺织工程学院 嘉兴 314001
E-mail: lmliu@zjxu.edu.cn
收稿日期:2025-06-28,
录用日期:2025-08-25,
网络出版日期:2025-09-26,
移动端阅览
肖礼宏, 程娜, 谢胜, 刘连梅. 螺纹结构聚吡咯/聚氨酯复合纤维的制备及其可穿戴应变传感性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25157
Xiao, L. H.; Cheng, N.; Xie, S.; Liu, L. M. Thread-type core-shell polypyrrole@polyurethane fiber for wearable strain sensor. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25157
肖礼宏, 程娜, 谢胜, 刘连梅. 螺纹结构聚吡咯/聚氨酯复合纤维的制备及其可穿戴应变传感性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25157 DOI: CSTR: 32057.14.GFZXB.2025.7461.
Xiao, L. H.; Cheng, N.; Xie, S.; Liu, L. M. Thread-type core-shell polypyrrole@polyurethane fiber for wearable strain sensor. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25157 DOI: CSTR: 32057.14.GFZXB.2025.7461.
本工作采用化学原位聚合法,在预拉伸聚氨酯(PU)纤维基体上成功构筑了高度有序的螺纹结构聚吡咯(PPy)层. 得益于该特殊结构,所制得的核壳聚吡咯/聚氨酯(PPy@PU)复合导电纤维,克服了PPy薄膜的脆性,展现出良好的柔性和可拉伸性,在200%应变下,结构完整性依然可以恢复良好. 优化后的复合纤维作为可穿戴应变传感器,表现出高灵敏度(GF约为12.4@200%)、快速响应(500 mm/min)及优异耐久性(100%应变下200次循环). 此外,基于PPy@PU设计的可穿戴应变传感器可满足不同的人体运动检测需求(如手指弯曲和肘部伸展),在可穿戴电子和智能纤维领域具有很好的应用潜力.
A novel thread-type core-shell polypyrrole@polyurethane (PPy@PU) fiber was fabricated
via in situ
polymerization of PPy on pre-stretched PU fiber
and applied as a durable
flexible
stretchable
conductive strain sensor for the first time. Benefiting from the highly ordered continuous stretchable structure
thread-type core-shell structure can effectively buffer the dramatic deformation and maintain the structure integrity of PPy@PU fiber
resulting in stable conductivity during the stretching/releasing cycles. The variations in morphology and chemical structures
stretchability
and conductivity as well as the sensitivity of resistance change under stretching cycles were investigated. The optimized PPy@PU fiber presents advantages of large detecting strain up to 200%
high gauge factor of about 12.4 at 200%
and can detect changes as fast as 500 mm/min
long durability of 200 cycling times. Furthermore
the advantages of thread PPy@P
U fiber were then used to construct a prototype of wearable sensor to detect finger's bending and elbow's extension which exhibited its great potential applications as wearable devices and smart fabrics.
Li G. ; Xue Y. S. ; Peng H. ; Qin W. F. ; Zhou B. ; Zhao X. ; Liu G. C. ; Li S. Y. ; Guo R. H. Wide strain range and high sensitivity sandwich structure CNTs/AgNWs/CNTs/TPU strain sensors for human motion detection . Sens. Actuat. A Phys. , 2024 , 366 , 114998 . doi: 10.1016/j.sna.2023.114998 http://dx.doi.org/10.1016/j.sna.2023.114998
Paul S. J. ; Elizabeth I. ; Gupta B. K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring . ACS Appl. Mater. Interfaces , 2021 , 13 ( 7 ), 8871 - 8879 . doi: 10.1021/acsami.1c00946 http://dx.doi.org/10.1021/acsami.1c00946
Zhao W. ; Xu S. A facile structural strategy for a wearable strain sensor based on carbon nanotube modified helical yarns . Nanoscale Adv. , 2022 , 4 ( 1 ), 250 - 257 . doi: 10.1039/d1na00215e http://dx.doi.org/10.1039/d1na00215e
Lu Y. ; Jiang J. W. ; Yoon S. ; Kim K. S. ; Kim J. H. ; Park S. ; Kim S. H. ; Piao L. H. High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning . ACS Appl. Mater. Interfaces , 2018 , 10 ( 2 ), 2093 - 2104 . doi: 10.1021/acsami.7b16022 http://dx.doi.org/10.1021/acsami.7b16022
Xu S. M. ; Xiao X. ; Chen J. Stretchable fiber strain sensors for wearable biomonitoring . Natl. Sci. Rev. , 2024 , 11 ( 7 ), nwae 173 . doi: 10.1093/nsr/nwae173 http://dx.doi.org/10.1093/nsr/nwae173
Xu X. ; Liu Y. ; Zhou H. W. ; Li Z. ; Wang R. H. ; Jin B. R. ; Liu H. ; Fan Q. Q. ; Fang Y. S. ; Liu N. ; Wang D. ; Xu F. ; Zhao G. X. Wrinkled and fibrous conductive bandages with tunable mechanoelectrical response toward wearable strain sensors . Adv. Fiber Mater. , 2024 , 6 ( 4 ), 1174 - 1187 . doi: 10.1007/s42765-024-00417-5 http://dx.doi.org/10.1007/s42765-024-00417-5
He J. S. ; Li Y. Z. ; Yang F. P. ; Gan Z. X. ; Lu K. L. ; Deng Z. Y. ; Zhang K. B. ; Chen Z. M. ; Liu X. Z. ; Huang A. P. ; Luo J. Y. Waterproof, stretchable and wearable corrugated conductive carbon fiber strain sensors for underwater respiration monitoring and swimming instruction . Appl. Mater. Today , 2024 , 38 , 102165 . doi: 10.1016/j.apmt.2024.102165 http://dx.doi.org/10.1016/j.apmt.2024.102165
Lin Y. ; Liu S. Q. ; Chen S. ; Wei Y. ; Dong X. C. ; Liu L. A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network . J. Mater. Chem. C , 2016 , 4 ( 26 ), 6345 - 6352 . doi: 10.1039/c6tc01925k http://dx.doi.org/10.1039/c6tc01925k
Zhao S. Q. ; Liu D. P. ; Yan F. Wearable resistive-type stretchable strain sensors: materials and applications . Adv. Mater. , 2025 , 37 ( 5 ), 2413929 . doi: 10.1002/adma.202413929 http://dx.doi.org/10.1002/adma.202413929
Luo Y. ; A . M . R.; Ahn, J. H. ; Someya, T.; Wang, Z. L. Technol ogy roadmap for flexible sensors. ACS Nano, 2023 , 17 ( 6 ), 5211 - 5295 .
Du J. ; Han Q. H. ; Chen A. B. A liquid metal/polypyrrole electrospun TPU composite conductive network for highly sensitive strain sensing in human motion monitoring . J. Mater. Chem. B , 2024 , 12 ( 19 ), 4655 - 4665 . doi: 10.1039/d3tb02394j http://dx.doi.org/10.1039/d3tb02394j
Wang X. ; Liu X. H. ; Schubert D. W. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks . Nano Micro Lett. , 2021 , 13 ( 1 ), 64 . doi: 10.1007/s40820-021-00592-9 http://dx.doi.org/10.1007/s40820-021-00592-9
Zhu G. X. ; Li H. ; Peng M. L. ; Zhao G. Y. ; Chen J. W. ; Zhu Y. T. Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor . Carbon , 2022 , 195 , 364 - 371 . doi: 10.1016/j.carbon.2022.04.033 http://dx.doi.org/10.1016/j.carbon.2022.04.033
Jae K. ; Kim D. H. ; Seob C. ; Yim J. H. A multi-functional ammonia gas and strain sensor with 3D-printed thermoplastic polyurethane-polypyrrole composites . Polymer , 2022 , 240 , 124490 . doi: 10.1016/j.polymer.2021.124490 http://dx.doi.org/10.1016/j.polymer.2021.124490
张虎诚 , 黄汉雄 . 微褶皱吡咯层的聚合及提高互锁微柱阵列柔性压阻传感器的性能 . 高分子学报 , 2025 , 56 ( 5 ), 800 - 809 .
Wang Z. Y. ; Zhou F. K. ; Li Y. M. ; Wang S. S. ; Li W. ; Liu H. Z. ; Hu M. Q. ; Wang F. J. ; Wang L. ; Mao J. F. Hierarchical polypyrrole@MXene (Ti 3 C 2 Tx) fiber strain sensors for wearable healthcare electronics. Chem. Eng. J. , 2024 , 498 , 155352 . doi: 10.1016/j.cej.2024.155352 http://dx.doi.org/10.1016/j.cej.2024.155352
Li Y. ; Cheng X. Y. ; Leung M. Y. ; Tsang J. ; Tao X. M. ; Yuen M. C. W. A flexible strain sensor from polypyrrole-coated fabrics . Synth. Met. , 2005 , 155 ( 1 ), 89 - 94 . doi: 10.1016/j.synthmet.2005.06.008 http://dx.doi.org/10.1016/j.synthmet.2005.06.008
He Y. L. ; Gui Q. Y. ; Liao S. L. ; Jia H. Y. ; Wang Y. P. Coiled fiber-shaped stretchable thermal sensors for wearable electronics . Adv. Mater. Technol. , 2016 , 1 ( 8 ), 1600170 . doi: 10.1002/admt.201600170 http://dx.doi.org/10.1002/admt.201600170
Wang J. P. ; Xue P. ; Tao X. M. Statistical analysis of micro-crack parameters for PPy-coated fiber strain sensors applicable for large deformation . Adv. Mater. Res. , 2011 , 197 - 198 , 1350 - 1353 .
Wei Y. ; Chen S. ; Yuan X. ; Wang P. P. ; Liu L. Multiscale wrinkled microstructures for piezoresistive fibers . Adv. Funct. Mater. , 2016 , 26 ( 28 ), 5078 - 5085 . doi: 10.1002/adfm.201600580 http://dx.doi.org/10.1002/adfm.201600580
Wu J. P. ; Sang M. ; Zhang J. Y. ; Sun Y. X. ; Wang X. Y. ; Zhang J. S. ; Pang H. M. ; Luo T. Z. ; Pan S. S. ; Xuan S. H. ; Gong X. L. Ultra-stretchable spiral hybrid conductive fiber with 500%-strain electric stability and deformation-independent linear temperature response . Small , 2023 , 19 ( 19 ), 2207454 . doi: 10.1002/smll.202207454 http://dx.doi.org/10.1002/smll.202207454
Cateto C. A. ; Barreiro M. F. ; Rodrigues A. E. Monitoring of lignin-based polyurethane synthesis by FTIR-ATR . Ind. Crops Prod. , 2008 , 27 ( 2 ), 168 - 174 . doi: 10.1016/j.indcrop.2007.07.018 http://dx.doi.org/10.1016/j.indcrop.2007.07.018
Zia K. M. ; Zuber M. ; Barikani M. ; Jabbar A. ; Khosa M. K. XRD pattern of chitin based polyurethane bio-nanocomposites . Carbohydr. Polym. , 2010 , 80 ( 2 ), 539 - 543 . doi: 10.1016/j.carbpol.2009.12.017 http://dx.doi.org/10.1016/j.carbpol.2009.12.017
Trovati G. ; Sanches E. A. ; Neto S. C. ; Mascarenhas Y. P. ; Chierice G. O. Characterization of polyurethane resins by FTIR, TGA, and XRD . J. Appl. Polym. Sci. , 2010 , 115 ( 1 ), 263 - 268 . doi: 10.1002/app.31096 http://dx.doi.org/10.1002/app.31096
Cheah K. ; Forsyth M. ; Truong V. T. An XRD/XPS approach to structural change in conducting PPy . Synth. Met. , 1999 , 101 ( 1-3 ), 19 . doi: 10.1016/s0379-6779(98)00790-5 http://dx.doi.org/10.1016/s0379-6779(98)00790-5
Li M. F. ; Li H. Y. ; Zhong W. B. ; Zhao Q. H. ; Wang D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection . ACS Appl. Mater. Interfaces , 2014 , 6 ( 2 ), 1313 - 1319 . doi: 10.1021/am4053305 http://dx.doi.org/10.1021/am4053305
Park H. ; Kim J. W. ; Hong S. Y. ; Lee G. ; Kim D. S. ; Oh J. H. ; Jin S. W. ; Jeong Y. R. ; Oh S. Y. ; Yun J. Y. ; Ha J. S. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors . Adv. Funct. Mater. , 2018 , 28 ( 33 ), 1707013 . doi: 10.1002/adfm.201707013 http://dx.doi.org/10.1002/adfm.201707013
Tian M. W. ; Wang Y. J. ; Qu L. J. ; Zhu S. F. ; Han G. T. ; Zhang X. S. ; Zhou Q. ; Du M. Z. ; Chi S. L. Electromechanical deformation sensors based on polyurethane/polyaniline electrospinning nanofibrous mats . Synth. Met. , 2016 , 219 , 11 - 19 . doi: 10.1016/j.synthmet.2016.05.005 http://dx.doi.org/10.1016/j.synthmet.2016.05.005
Zhang C. ; Xue P. ; Luo Y. B. Flexible polypyrrole-coated conductive fabric sensor for large deformation measurement . Int. J. Cloth. Sci. Technol. , 2019 , 31 ( 5 ), 609 - 618 . doi: 10.1108/ijcst-06-2018-0083 http://dx.doi.org/10.1108/ijcst-06-2018-0083
Niu H. T. ; Zhou H. ; Wang H. X. ; Lin T. Polypyrrole-coated PDMS fibrous membrane: flexible strain sensor with distinctive resistance responses at different strain ranges . Macromol. Mater. Eng. , 2016 , 301 ( 6 ), 707 - 713 . doi: 10.1002/mame.201500447 http://dx.doi.org/10.1002/mame.201500447
Chen X. D. ; Li B. T. ; Qiao Y. ; Lu Z. S. Preparing polypyrrole-coated stretchable textile via low-temperature interfacial polymerization for highly sensitive strain sensor . Micromachines , 2019 , 10 ( 11 ), 788 . doi: 10.3390/mi10110788 http://dx.doi.org/10.3390/mi10110788
Wang J. P. ; Xue P. ; Tao X. M. ; Yu T. X. Strain sensing behavior and its mechanisms of electrically conductive PPy-coated fabric . Adv. Eng. Mater. , 2014 , 16 ( 5 ), 565 - 570 . doi: 10.1002/adem.201300407 http://dx.doi.org/10.1002/adem.201300407
Seyedin M. Z. ; Razal J. M. ; Innis P. C. ; Wallace G. G. Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity . Adv. Funct. Mater. , 2014 , 24 ( 20 ), 2957 - 2966 . doi: 10.1002/adfm.201303905 http://dx.doi.org/10.1002/adfm.201303905
Pan J. J. ; Yang M. Y. ; Luo L. ; Xu A. C. ; Tang B. ; Cheng D. S. ; Cai G. M. ; Wang X. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications . ACS Appl. Mater. Interfaces , 2019 , 11 ( 7 ), 7338 - 7348 . doi: 10.1021/acsami.8b18823 http://dx.doi.org/10.1021/acsami.8b18823
Seyedin S. ; Razal J. M. ; Innis P. C. ; Jeiranikhameneh A. ; Beirne S. ; Wallace G. G. Knitted strain sensor textiles of highly conductive all-polymeric fibers . ACS Appl. Mater. Interfaces , 2015 , 7 ( 38 ), 21150 - 21158 . doi: 10.1021/acsami.5b04892 http://dx.doi.org/10.1021/acsami.5b04892
Xue P. ; Wang J. P. ; Tao X. M. Flexible textile strain sensors from polypyrrole-coated XLA TM elastic fibers . High Perform. Polym. , 2014 , 26 ( 3 ), 364 - 370 . doi: 10.1177/0954008313515284 http://dx.doi.org/10.1177/0954008313515284
Li T. ; Wang X. ; Jiang S. ; Ding X. ; Li Q. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns . Sens. Actuat. A Phys. , 2020 , 306 , 111958 . doi: 10.1016/j.sna.2020.111958 http://dx.doi.org/10.1016/j.sna.2020.111958
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构