浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
[ "曹渊渊,女,1989年生. 2010年于西南科技大学获得学士学位. 2015年于上海交通大学获博士学位,2017年和2020年在英属哥伦比亚大学开展博士后研究,2020年起加入华东理工大学,任副研究员、副教授. 主要研究方向为仿生光学/力学材料的合成及胶体液晶自组装,主持国家自然科学基金面上基金和青年基金项目、国家重点研发计划子课题等." ]
[ "李永生,男,1972年生. 1994年于郑州大学获得学士学位. 2001年于大连理工大学获博士学位,后赴中国科学院硅酸盐研究所及法国国家科研中心里昂催化所从事博士后研究,2009年任华东理工大学教授. 主要研究方向为杂化生物材料、多孔材料及能源催化应用等. 现任中国生物材料学会常务理事,《无机材料学报》《The Innovation Materials》等期刊编委. 主持国家重点研发项目、国家自然科学基金中港合作项目及面上项目、上海市科委基础重点项目等. 入选教育部长江学者奖励计划特聘教授、国家百千万人才工程,获“有突出贡献中青年专家”“上海领军人才”“上海市优秀学术带头人”等称号,荣获上海市育才奖和上海市自然科学一等奖(2014年,排名第二)等." ]
收稿日期:2025-06-28,
录用日期:2025-08-11,
网络出版日期:2025-09-18,
移动端阅览
魏肖轶, 曹渊渊, 李永生. 金属-聚多巴胺基复合材料设计及其生物医学应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25158
Wei, X. Y.; Cao, Y. Y.; Li, Y. S. Fabrication of metal-polydopamine based composites and their biomedical applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25158
魏肖轶, 曹渊渊, 李永生. 金属-聚多巴胺基复合材料设计及其生物医学应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25158 DOI: CSTR: 32057.14.GFZXB.2025.7456.
Wei, X. Y.; Cao, Y. Y.; Li, Y. S. Fabrication of metal-polydopamine based composites and their biomedical applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25158 DOI: CSTR: 32057.14.GFZXB.2025.7456.
聚多巴胺是一种典型的黑色素衍生人工分子,其具有高黏附、生物相容性好、易修饰、光热活性高等诸多优良性质,在能源催化、表面化学以及生物医药领域具有广泛的应用. 金属-聚多巴胺复合纳米材料源于聚多巴胺对多种金属离子的强亲和力,其充分利用聚多巴胺的优良生物学效应,得益于不同金属独特的理化特征,具有抗肿瘤、抗菌消炎、抗氧化、免疫激活及促细胞再生等多种生物学功能,在肿瘤诊疗一体化、伤口愈疗、组织修复再生等领域展现出良好的应用前景. 本文聚焦5大类型金属-聚多巴胺复合材料,基于不同金属独到的生物学优势,综述了金属-聚多巴胺复合材料的设计合成、理化性质及其近年来在生物医学领域的典型应用,并展望了该类材料在未来临床转化及工业化生产方面面临的挑战和机遇. 通过本文详细的总结,有望启发设计更多新型金属-聚多巴胺类复合材料,挖掘更多聚多巴胺基新型生物医用材料的应用潜力,促进多酚化学与生物医学的进一步融合.
Polydopamine is a typical melanin-derived artificial molecule. It has numerous excellent properties such as high adhesion
good biocompatibility
easy modification
and high photothermal activity
and thus has wide applications in the fields of energy catalysis
surface chemistry
and biomedicine. Metal-polydopamine composite nanomaterials are fabricated based on the strong binding affinity of polydopamine for various metal ions. They make full use of the excellent biological effects of polydopamine
benefiting from the unique physical and chemical characteristics of different metals
possess multiple biological functions including anti-tumor
antibacterial
anti-inflammatory
antioxidant
immune activation
and cell regeneration promotion. These materials show promising application prospects in areas such as integrated tumor diagnosis and treatment
wound healing
and tissue repair and regeneration. This review focuses on five major types of metal-polydopamine composites
which contain unique biological advantages originated from different metals. This paper also reviews the design and synthesis
physical and chemical properties of metal-polydopamine composites
as well as their typical applications in the biomedical field in recent years. It also summarized the challenges and opportunities that these materials face in future clinical translation and industrial production. Through the detailed summary in this review
it is expected to inspire the design of more novel metal-polydopamine composites
promote the explore of the application potential of novel polydopamine based biomedical materials
and promote the further integration of polyphenol chemistry and biomedicine.
2
Stuart M. A. C. ; Huck W. T. S. ; Genzer J. ; Müller M. ; Ober C. ; Stamm M. ; Sukhorukov G. B. ; Szleifer I. ; Tsukruk V. V. ; Urban M. ; Winnik F. ; Zauscher S. ; Luzinov I. ; Minko S. Emerging applications of stimuli-responsive polymer materials . Nat. Mater. , 2010 , 9 ( 2 ), 101 - 113 . doi: 10.1038/nmat2614 http://dx.doi.org/10.1038/nmat2614
Chen L. J. ; Yang H. B. Construction of stimuli-responsive functional mate rials via hierarchical self-assembly involving coordination interactions . Acc. Chem. Res. , 2018 , 51 ( 11 ), 2699 - 2710 . doi: 10.1021/acs.accounts.8b00317 http://dx.doi.org/10.1021/acs.accounts.8b00317
Yang P. ; Zhu F. ; Zhang Z. B. ; Cheng Y. Y. ; Wang Z. ; Li Y. W. Stimuli-responsive polydopamine-based smart materials . Chem. Soc. Rev. , 2021 , 50 ( 14 ), 8319 - 8343 . doi: 10.1039/d1cs00374g http://dx.doi.org/10.1039/d1cs00374g
Lavrador P. ; Esteves M. R. ; Gaspar V. M. ; Mano J. F. Stimuli-responsive nanocomposite hydrogels for biomedical applications . Adv. Funct. Mater. , 2021 , 31 ( 8 ), 2005941 . doi: 10.1002/adfm.202005941 http://dx.doi.org/10.1002/adfm.202005941
Cai W. ; Wang J. Q. ; Chu C. C. ; Chen W. ; Wu C. S. ; Liu G. Metal-organic framework-based stimuli-responsive systems for drug delivery . Adv. Sci. , 2019 , 6 ( 1 ), 1801526 . doi: 10.1002/advs.201801526 http://dx.doi.org/10.1002/advs.201801526
Fu X. ; Hosta-Rigau L. ; Chandrawati R. ; Cui J. W. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery . Chem , 2018 , 4 ( 9 ), 2084 - 2107 . doi: 10.1016/j.chempr.2018.07.002 http://dx.doi.org/10.1016/j.chempr.2018.07.002
Cheng W. ; Zeng X. W. ; Chen H. Z. ; Li Z. M. ; Zeng W. F. ; Mei L. ; Zhao Y. L. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine . ACS Nano , 2019 , 13 ( 8 ), 8537 - 8565 . doi: 10.1021/acsnano.9b04436 http://dx.doi.org/10.1021/acsnano.9b04436
Fu Y. ; Yang L. ; Zhang J. H. ; Hu J. F. ; Duan G. G. ; Liu X. H. ; Li Y. W. ; Gu Z. P. Polydopamine antibacterial materials . Mater. Horiz. , 2021 , 8 ( 6 ), 1618 - 1633 . doi: 10.1039/d0mh01985b http://dx.doi.org/10.1039/d0mh01985b
Xu Y. T. ; Hu J. F. ; Hu J. J. ; Cheng Y. Y. ; Chen X. C. ; Gu Z. P. ; Li Y. W. Bioinspired polydopamine hydrogels: strategies and applications . Prog. Polym. Sci. , 2023 , 146 , 101740 . doi: 10.1016/j.progpolymsci.2023.101740 http://dx.doi.org/10.1016/j.progpolymsci.2023.101740
Gao S. P. ; Zhang D. ; Pedrero M. ; Guo Z. M. ; Pingarrón J. M. ; Campuzano S. ; Zou X. B. Advances and opportunities of polydopamine coating in biosensing: preparation, functionality, and applications . Coord. Chem. Rev. , 2024 , 501 , 215564 . doi: 10.1016/j.ccr.2023.215564 http://dx.doi.org/10.1016/j.ccr.2023.215564
Battaglini M. ; Emanet M. ; Carmignani A. ; Ciofani G. Polydopamine-based nanostructures: a new generation of versatile, multi-tasking, and smart theranostic tools . Nano Today , 2024 , 55 , 102151 . doi: 10.1016/j.nantod.2024.102151 http://dx.doi.org/10.1016/j.nantod.2024.102151
Xu H. W. ; Zhang Y. ; Zhang H. T. ; Zhang Y. R. ; Xu Q. Q. ; Lu J. Y. ; Feng S. P. ; Luo X. Y. ; Wang S. L. ; Zhao Q. F. Smart polydopamine-based nanoplatforms for biomedical applications: state-of-art and further perspectives . Coord. Chem. Rev. , 2023 , 488 , 215153 . doi: 10.1016/j.ccr.2023.215153 http://dx.doi.org/10.1016/j.ccr.2023.215153
Wang Z. ; Zou Y. ; Li Y. W. ; Cheng Y. Y. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics . Small , 2020 , 16 ( 18 ), 1907042 . doi: 10.1002/smll.202070102 http://dx.doi.org/10.1002/smll.202070102
Zou Y. ; Wang X. H. ; Li Y. W. ; Cheng Y. Y. Design of metal ion-catecholate complexes towards advanced materials . Mater. Today , 2024 , 79 , 112 - 133 . doi: 10.1016/j.mattod.2024.07.010 http://dx.doi.org/10.1016/j.mattod.2024.07.010
Li H. ; Jia Y. ; Bai S. W. ; Peng H. N. ; Li J. B. Metal-chelated polydopamine nanomaterials: nanoarchitectonics and applications in biomedicine, catalysis, and energy storage . Adv. Colloid Interface Sci. , 2024 , 334 , 103316 . doi: 10.1016/j.cis.2024.103316 http://dx.doi.org/10.1016/j.cis.2024.103316
Xiang J. J. ; Zhang Y. F. ; Liu X. ; Zhou Q. ; Piao Y. ; Shao S. Q. ; Tang J. B. ; Zhou Z. X. ; Xie T. ; Shen Y. Q. Natural polyphenols-platinum nanocomplexes stimulate immune system for combination cancer therapy . Nano Lett. , 2022 , 22 ( 13 ), 5615 - 5625 . doi: 10.1021/acs.nanolett.2c02161 http://dx.doi.org/10.1021/acs.nanolett.2c02161
Yu R. X. ; Chen H. P. ; He J. ; Zhang Z. C. ; Zhou J. J. ; Zheng Q. Q. ; Fu Z. P. ; Lu C. Y. ; Lin Z. X. ; Caruso F. ; Zhang X. C. Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing . Adv. Mater. , 2024 , 36 ( 6 ), 2307680 . doi: 10.1002/adma.202307680 http://dx.doi.org/10.1002/adma.202307680
Dougherty D. A. Cation- π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp . Science , 1996 , 271 ( 5246 ), 163 - 168 . doi: 10.1126/science.271.5246.163 http://dx.doi.org/10.1126/science.271.5246.163
Harrington M. J. ; Masic A. ; Holten-Andersen N. ; Waite J. H. ; Fratzl P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings . Science , 2010 , 328 ( 5975 ), 216 - 220 . doi: 10.1126/science.1181044 http://dx.doi.org/10.1126/science.1181044
Ma S. H. ; Wu Y. ; Zhou F. Bioinspired synthetic wet adhesives: from permanent bonding to reversible regulation . Curr. Opin. Colloid Interface Sci. , 2020 , 47 , 84 - 98 . doi: 10.1016/j.cocis.2019.11.010 http://dx.doi.org/10.1016/j.cocis.2019.11.010
Wang L. H. ; Song K. Y. ; Jiang C. ; Liu S. P. ; Huang S. R. ; Yang H. ; Li X. L. ; Zhao F. Metal-coordinated polydopamine structures for tumor imaging and therapy . Adv. Healthc. Mater. , 2024 , 13 ( 28 ), 2401451 . doi: 10.1002/adhm.202401451 http://dx.doi.org/10.1002/adhm.202401451
Geng H. M. ; Zhong Q. Z. ; Li J. H. ; Lin Z. X. ; Cui J. W. ; Caruso F. ; Hao J. C. Metal ion-directed functional metal-phenolic materials . Chem. Rev. , 2022 , 122 ( 13 ), 11432 - 11473 . doi: 10.1021/acs.chemrev.1c01042 http://dx.doi.org/10.1021/acs.chemrev.1c01042
Ye Q. ; Zhou F. ; Liu W. M. Bioinspired catecholic chemistry for surface modification . Chem. Soc. Rev. , 2011 , 40 ( 7 ), 4244 - 4258 . doi: 10.1039/c1cs15026j http://dx.doi.org/10.1039/c1cs15026j
Holten-Andersen N. ; Harrington M. J. ; Birkedal H. ; Lee B. P. ; Messersmith P. B. ; Lee K. Y. C. ; Waite J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli . Proc. Natl. Acad. Sci. U.S.A. , 2011 , 108 ( 7 ), 2651 - 2655 . doi: 10.1073/pnas.1015862108 http://dx.doi.org/10.1073/pnas.1015862108
Ju K. Y. ; Lee J. W. ; Im G. H. ; Lee S. ; Pyo J. ; Park S. B. ; Lee J. H. ; Lee J. K. Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T 1 -weighted magnetic resonance imaging . Biomacromolecules , 2013 , 14 ( 10 ), 3491 - 3497 . doi: 10.1021/bm4008138 http://dx.doi.org/10.1021/bm4008138
Wang Z. ; Xie Y. J. ; Li Y. W. ; Huang Y. R. ; Parent L. R. ; Ditri T. ; Zang N. Z. ; Rinehart J. D. ; Gianneschi N. C. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry . Chem. Mater. , 2017 , 29 ( 19 ), 8195 - 8201 . doi: 10.1021/acs.chemmater.7b02262 http://dx.doi.org/10.1021/acs.chemmater.7b02262
Li Y. W. ; Xie Y. J. ; Wang Z. ; Zang N. Z. ; Carniato F. ; Huang Y. R. ; Andolina C. M. ; Parent L. R. ; Ditri T. B. ; Walter E. D. ; Botta M. ; Rinehart J. D. ; Gianneschi N. C. Structure and function of iron-loaded synthetic melanin . ACS Nano , 2016 , 10 ( 11 ), 10186 - 10194 . doi: 10.1021/acsnano.6b05502 http://dx.doi.org/10.1021/acsnano.6b05502
Hou X. Q. ; Yang X. ; Xu Y. W. ; Lin J. Y. ; Zhang F. ; Duan X. H. ; Liu S. T. ; Liu J. ; Shen J. ; Shuai X. T. ; Cao Z. Manganese-doped mesoporous polydopamine nanoagent for T 1 - T 2 magnetic resonance imaging and tumor therapy . Nano Res. , 2023 , 16 ( 2 ), 2991 - 3003 . doi: 10.1007/s12274-022-4877-4 http://dx.doi.org/10.1007/s12274-022-4877-4
Xu N. ; Hu A. ; Pu X. M. ; Wang J. ; Liao X. M. ; Huang Z. B. ; Yin G. F. Cu-Chelated polydopamine nanoparticles as a photothermal medium and "immunogenic cell death" inducer for combined tumor therapy . J. Mater. Chem. B , 2022 , 10 ( 16 ), 3104 - 3118 . doi: 10.1039/d2tb00025c http://dx.doi.org/10.1039/d2tb00025c
Wang Z. ; Carniato F. ; Xie Y. J. ; Huang Y. R. ; Li Y. W. ; He S. ; Zang N. Z. ; Rinehart J. D. ; Botta M. ; Gianneschi N. C. High relaxivity gadolinium-polydopamine nanoparticles . Small , 2017 , 13 ( 43 ), 1701830 . doi: 10.1002/smll.201701830 http://dx.doi.org/10.1002/smll.201701830
Zhang Y. J. ; Zhao J. J. ; Zhang L. M. ; Zhao Y. R. ; Zhang Y. Y. ; Cheng L. L. ; Wang D. ; Liu C. ; Zhang M. X. ; Fan K. L. ; Zhang M. Z. A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage . Nano Today , 2023 , 49 , 101798 . doi: 10.1016/j.nantod.2023.101798 http://dx.doi.org/10.1016/j.nantod.2023.101798
Zhang W. ; Liu W. Q. ; Long L. Y. ; He S. Y. ; Wang Z. C. ; Liu Y. ; Yang L. ; Chen N. B. ; Hu C. ; Wang Y. B. Responsive multifunctional hydrogels emulating the chronic wounds healing cascade for skin repair . J. Control. Rel. , 2023 , 354 , 821 - 834 . doi: 10.1016/j.jconrel.2023.01.049 http://dx.doi.org/10.1016/j.jconrel.2023.01.049
Wei X. H. ; Zhou W. H. ; Tang Z. ; Wu H. ; Liu Y. C. ; Dong H. ; Wang N. ; Huang H. ; Bao S. S. ; Shi L. ; Li X. K. ; Zheng Y. F. ; Guo Z. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis . Bioact. Mater. , 2023 , 20 , 16 - 28 . doi: 10.1016/j.bioactmat.2022.05.011 http://dx.doi.org/10.1016/j.bioactmat.2022.05.011
Guo Z. Y. ; Zhang Z. Z. ; Zhang N. ; Gao W. X. ; Li J. ; Pu Y. J. ; He B. ; Xie J. A Mg 2+ /polydopamine composite hydrogel for the acceleration of infected wound healing . Bioact. Mater. , 2022 , 15 , 203 - 213 . doi: 10.1016/j.bioactmat.2021.11.036 http://dx.doi.org/10.1016/j.bioactmat.2021.11.036
Yu P. ; Li Y. Y. ; Sun H. ; Zhang H. B. ; Kang H. ; Wang P. ; Xin Q. W. ; Ding C. M. ; Xie J. ; Li J. S. Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis . Adv. Mater. , 2023 , 35 ( 44 ), 2303299 . doi: 10.1002/adma.202303299 http://dx.doi.org/10.1002/adma.202303299
Bai S. ; Lan Y. L. ; Fu S. Y. ; Cheng H. W. ; Lu Z. X. ; Liu G. Connecting calcium-based nanomaterials and cancer: from diagnosis to therapy . Nanomicro Lett. , 2022 , 14 ( 1 ), 145 . doi: 10.1007/s40820-022-00894-6 http://dx.doi.org/10.1007/s40820-022-00894-6
Zheng P. ; Ding B. B. ; Shi R. ; Jiang Z. Y. ; Xu W. G. ; Li G. ; Ding J. X. ; Chen X. S. A multichannel Ca 2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy . Adv. Mater. , 2021 , 33 ( 15 ), 2007426 . doi: 10.1002/adma.202007426 http://dx.doi.org/10.1002/adma.202007426
Li Y. M. ; Wang D. Q. ; Sun J. ; Hao Z. K. ; Tang L. T. ; Sun W. R. ; Zhang X. H. ; Wang P. Y. ; Ruiz-Alonso S. ; Pedraz J. L. ; Kim H. W. ; Ramalingam M. ; Xie S. Y. ; Wang R. R. Calcium carbonate/polydopamine composite nanoplatform based on TGF- β blockade for comfortable cancer immunotherapy . ACS Appl. Mater. Interfaces , 2024 , 16 ( 3 ), 3187 - 3201 . doi: 10.1021/acsami.3c16571 http://dx.doi.org/10.1021/acsami.3c16571
Zhou X. F. ; Cheng X. ; Xing D. L. ; Ge Q. ; Li Y. ; Luan X. H. ; Gu N. ; Qian Y. Z. Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation . Mater. Des. , 2021 , 198 , 109300 . doi: 10.1016/j.matdes.2020.109300 http://dx.doi.org/10.1016/j.matdes.2020.109300
Cheng D. W. ; Ding R. Y. ; Jin X. ; Lu Y. F. ; Bao W. M. ; Zhao Y. ; Chen S. ; Shen C. L. ; Yang Q. ; Wang Y. Y. Strontium ion-functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration . ACS Appl. Mater. Interfaces , 2023 , 15 ( 16 ), 19951 - 19965 . doi: 10.1021/acsami.3c00655 http://dx.doi.org/10.1021/acsami.3c00655
Yang X. ; Chen Y. ; Guo J. D. ; Li J. X. ; Zhang P. ; Yang H. ; Rong K. W. ; Zhou T. J. ; Fu J. K. ; Zhao J. Polydopamine nanoparticles targeting ferroptosis mitigate intervertebral disc degeneration via reactive oxygen species depletion, iron ions chelation, and GPX4 ubiquitination suppression . Adv. Sci. , 2023 , 10 ( 13 ), 2207216 . doi: 10.1002/advs.202207216 http://dx.doi.org/10.1002/advs.202207216
Xu N. ; Hu A. ; Pu X. M. ; Li J. F. ; Wang X. M. ; Wang J. ; Huang Z. B. ; Liao X. M. ; Yin G. F. Fe(III)-chelated polydopamine nanoparticles for synergistic tumor therapies of enhanced photothermal ablation and antitumor immune activation . ACS Appl. Mater. Interfaces , 2022 , 14 ( 14 ), 15894 - 15910 . doi: 10.1021/acsami.1c24066 http://dx.doi.org/10.1021/acsami.1c24066
Hong L. ; Simon J. D. Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin . J. Phys. Chem. B , 2007 , 111 ( 28 ), 7938 - 7947 . doi: 10.1021/jp071439h http://dx.doi.org/10.1021/jp071439h
Hung Y. C. ; Sava V. M. ; Juang C. L. ; Yeh T. C. ; Shen W. C. ; Huang G. S. Gastrointestinal enhancement of MRI with melanin derived from tea leaves ( Thea sinensis Linn.) . J. Ethnopharmacol. , 2002 , 79 ( 1 ), 75 - 79 . doi: 10.1016/s0378-8741(01)00358-0 http://dx.doi.org/10.1016/s0378-8741(01)00358-0
Zou Q. ; Chen X. ; Li B. J. ; Zhang R. J. ; Pan J. B. ; Zhang X. J. ; Zhang X. N. ; Sun S. K. Bioinspired BSA@polydopamine@Fe nanoprobe with self-purification capacity for targeted magnetic resonance imaging of acute kidney injury . ACS Nano , 2024 , 18 ( 6 ), 4783 - 4795 . doi: 10.1021/acsnano.3c09193 http://dx.doi.org/10.1021/acsnano.3c09193
Tang Z. M. ; Zhao P. R. ; Wang H. ; Liu Y. Y. ; Bu W. B. Biomedicine meets Fenton chemistry . Chem. Rev. , 2021 , 121 ( 4 ), 1981 - 2019 . doi: 10.1021/acs.chemrev.0c00977 http://dx.doi.org/10.1021/acs.chemrev.0c00977
Wang Y. M. ; Qiu S. W. ; Wang L. P. ; Ji P. H. ; Guo Y. D. ; Yao H. L. ; Wei C. Y. ; Huo M. F. ; Shi J. L. Catechol-isolated atomically dispersed nanocatalysts for self-motivated cocatalytic tumor therapy . Angew. Chem. Int. Ed. , 2024 , 63 ( 6 ), e 202316858 . doi: 10.1002/anie.202316858 http://dx.doi.org/10.1002/anie.202316858
Dixon S. J. ; Lemberg K. M. ; Lamprecht M. R. ; Skouta R. ; Zaitsev E. M. ; Gleason C. E. ; Patel D. N. ; Bauer A. J. ; Cantley A. M. ; Yang W. S. ; Morrison B. ; Stockwell B. R. Ferroptosis: An iron-dependent form of nonapoptotic cell death . Cell , 2012 , 149 ( 5 ), 1060 - 1072 . doi: 10.1016/j.cell.2012.03.042 http://dx.doi.org/10.1016/j.cell.2012.03.042
Huang P. ; Yang Y. ; Wang W. Y. ; Li Z. M. ; Gao N. S. ; Chen H. Z. ; Zeng X. W. Self-driven nanoprodrug platform with enhanced ferroptosis for synergistic photothermal-IDO immunotherapy . Biomaterials , 2023 , 299 , 122157 . doi: 10.1016/j.biomaterials.2023.122157 http://dx.doi.org/10.1016/j.biomaterials.2023.122157
Xue C. C. ; Li M. H. ; Liu C. H. ; Li Y. N. ; Fei Y. ; Hu Y. ; Cai K. Y. ; Zhao Y. L. ; Luo Z. NIR-actuated remote activation of ferroptosis in target tumor cells through a photothermally responsive iron-chelated biopolymer nanoplatform . Angew. Chem. Int. Ed. , 2021 , 60 ( 16 ), 8938 - 8947 . doi: 10.1002/anie.202016872 http://dx.doi.org/10.1002/anie.202016872
Zhang Y. B. ; Ren X. Y. ; Wang Y. ; Chen D. X. ; Jiang L. ; Li X. ; Li T. ; Huo M. F. ; Li Q. Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury . ACS Appl. Mater. Interfaces , 2021 , 13 ( 45 ), 53671 - 53682 . doi: 10.1021/acsami.1c18061 http://dx.doi.org/10.1021/acsami.1c18061
Shi T. B. ; Chen Y. ; Zhou L. Q. ; Wu D. W. ; Chen Z. ; Wang Z. Y. ; Sun L. ; Lin J. X. ; Liu W. G. Carboxymethyl cellulose/quaternized chitosan hydrogel loaded with polydopamine nanoparticles promotes spinal cord injury recovery by anti-ferroptosis and M1/M2 polarization modulation . Int. J. Biol. Macromol. , 2024 , 275 , 133484 . doi: 10.1016/j.ijbiomac.2024.133484 http://dx.doi.org/10.1016/j.ijbiomac.2024.133484
Zeng W. N. ; Wang D. ; Yu Q. P. ; Yu Z. P. ; Wang H. Y. ; Wu C. Y. ; Du S. W. ; Chen X. Y. ; Li J. F. ; Zhou Z. K. ; Zeng Y. ; Zhang Y. Near-infrared light-controllable multifunction mesoporous polydopamine nanocomposites for promoting infected wound healing . ACS Appl. Mater. Interfaces , 2022 , 14 ( 2 ), 2534 - 2550 . doi: 10.1021/acsami.1c19209 http://dx.doi.org/10.1021/acsami.1c19209
Wang Q. H. ; Li X. L. ; Mao J. Y. ; Qin X. ; Yang S. B. ; Hao J. N. ; Guan M. J. ; Cao Y. Y. ; Li Y. S. Biomimic binding affinity gradients triggered GSH-response of core-shell nanoparticles for cascade chemo/chemodynamic therapy . Adv. Healthc. Mater. , 2022 , 11 ( 2 ), 2101634 . doi: 10.1002/adhm.202101634 http://dx.doi.org/10.1002/adhm.202101634
Wang Q. H. ; Jia X. L. ; Li X. L. ; He M. ; Hao J. N. ; Guan M. J. ; Mao Y. Q. ; Cao Y. Y. ; Dai B. ; Li Y. S. One-pot fabrication of a polydopamine-based nanoplatform for GSH triggered trimodal ROS-amplification for cancer therapy . Biomater. Sci. , 2022 , 10 ( 15 ), 4208 - 4217 . doi: 10.1039/d2bm00421f http://dx.doi.org/10.1039/d2bm00421f
Zhong T. Y. ; Wang Q. H. ; Jiang C. ; Hao J. N. ; Guan M. J. ; Dai B. ; Jiang Q. ; Zhang Y. ; Cao Y. Y. ; Li Y. S. Quadruple functionalized copper-polydopamine nanoparticles for tumor-specific multimodal enhancing photodynamic therapy with low skin phototoxicity . Appl. Mater. Today , 2023 , 35 , 101990 . doi: 10.1016/j.apmt.2023.101990 http://dx.doi.org/10.1016/j.apmt.2023.101990
Tsvetkov P. ; Coy S. ; Petrova B. ; Dreishpoon M. ; Verma A. ; Abdusamad M. ; Rossen J. ; Joesch-Cohen L. ; Humeidi R. ; Spangler R. D. ; Eaton J. K. ; Frenkel E. ; Kocak M. ; Corsello S. M. ; Lutsenko S. ; Kanarek N. ; Santagata S. ; Golub T. R. Copper induces cell death by targeting lipoylated TCA cycle proteins . Science , 2022 , 375 ( 6586 ), 1254 - 1261 . doi: 10.1126/science.abf0529 http://dx.doi.org/10.1126/science.abf0529
Chang J. ; Yin W. M. ; Zhi H. ; Chen S. Y. ; Sun J. Y. ; Zhao Y. G. ; Huang L. ; Xue L. Y. ; Zhang X. Y. ; Zhang T. T. ; Dong H. Q. ; Li Y. Y. Copper deposition in polydopamine nanostructure to promote cuproptosis by catalytically inhibiting copper exporters of tumor cells for cancer immunotherapy . Small , 2024 , 20 ( 27 ), 2308565 . doi: 10.1002/smll.202308565 http://dx.doi.org/10.1002/smll.202308565
Liu Z. ; Ling J. H. ; Wang N. ; Ouyang X. K. Redox homeostasis disruptors enhanced cuproptosis effect for synergistic photothermal/chemodynamic therapy . J. Colloid Interface Sci. , 2025 , 678 , 1060 - 1074 . doi: 10.1016/j.jcis.2024.08.234 http://dx.doi.org/10.1016/j.jcis.2024.08.234
Huang Y. L. ; Wan X. F. ; Su Q. ; Zhao C. L. ; Cao J. ; Yue Y. ; Li S. Y. ; Chen X. T. ; Yin J. ; Deng Y. ; Zhang X. Z. ; Wu T. M. ; Zhou Z. K. ; Wang D. Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections . Nat. Commun. , 2024 , 15 ( 1 ), 1643 . doi: 10.1038/s41467-024-45619-y http://dx.doi.org/10.1038/s41467-024-45619-y
Li L. Y. ; Yang Z. ; Pan X. X. ; Feng B. X. ; Yue R. ; Yu B. ; Zheng Y. F. ; Tan J. Y. ; Yuan G. Y. ; Pei J. Incorporating copper to biodegradable magnesium alloy vascular stents via a Cu(II)-eluting coating for synergistic enhancement in prolonged durability and rapid re-endothelialization . Adv. Funct. Mater. , 2022 , 32 ( 47 ), 2205634 . doi: 10.1002/adfm.202270269 http://dx.doi.org/10.1002/adfm.202270269
Wang C. G. ; Guan Y. K. ; Lv M. Z. ; Zhang R. ; Guo Z. Y. ; Wei X. M. ; Du X. X. ; Yang J. ; Li T. ; Wan Y. ; Su X. D. ; Huang X. J. ; Jiang Z. F. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses . Immunity , 2018 , 48 ( 4 ), 675 - 687 .e 7 . doi: 10.1016/j.immuni.2018.03.017 http://dx.doi.org/10.1016/j.immuni.2018.03.017
Zeng W. F. ; Li Z. M. ; Huang Q. L. ; Ding C. D. ; Yang L. ; Wang W. Y. ; Shi Z. Q. ; Yang Y. ; Chen H. Z. ; Mei L. ; Zeng X. W. Multifunctional mesoporous polydopamine-based systematic delivery of STING agonist for enhanced synergistic photothermal-immunotherapy . Adv. Funct. Mater. , 2024 , 34 ( 1 ), 2307241 . doi: 10.1002/adfm.202307241 http://dx.doi.org/10.1002/adfm.202307241
Liu S. T. ; Zhang C. ; Zhou Y. Y. ; Zhang F. ; Duan X. H. ; Liu Y. ; Zhao X. B. ; Liu J. ; Shuai X. T. ; Wang J. L. ; Cao Z. MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy . Biomaterials , 2023 , 295 , 122030 . doi: 10.1016/j.biomaterials.2023.122030 http://dx.doi.org/10.1016/j.biomaterials.2023.122030
Shen Y. ; Li X. ; Huang H. T. ; Lan Y. ; Gan L. ; Huang J. Embedding Mn 2+ in polymer coating on rod-like cellulose nanocrystal to integrate MRI and photothermal function . Carbohydr. Polym. , 2022 , 297 , 120061 . doi: 10.1016/j.carbpol.2022.120061 http://dx.doi.org/10.1016/j.carbpol.2022.120061
Ye J. ; Lv W. B. ; Li C. S. ; Liu S. ; Yang X. ; Zhang J. W. ; Wang C. ; Xu J. T. ; Jin G. Q. ; Li B. ; Fu Y. J. ; Liang X. Q. Tumor response and NIR-II photonic thermal co-enhanced catalytic therapy based on single-atom manganese nanozyme . Adv. Funct. Mater. , 2022 , 32 ( 47 ), 2206157 . doi: 10.1002/adfm.202206157 http://dx.doi.org/10.1002/adfm.202206157
Lu M. Z. ; Li S. S. ; Xiong X. L. ; Huang Z. J. ; Xu B. L. ; Liu Y. H. ; Wu Q. Y. ; Wu N. E. ; Liu H. Y. ; Zhou D. S. A photo-responsive hollow manganese/carbon hybrid nanosphere for wound disinfection and healing . Adv. Funct. Mater. , 2022 , 32 ( 51 ), 2208061 . doi: 10.1002/adfm.202208061 http://dx.doi.org/10.1002/adfm.202208061
Yao C. M. ; Liang S. J. ; Yu M. Y. ; Wu H. L. ; Ahmed M. H. ; Liu Y. H. ; Yu J. ; Zhao Y. ; Van der Bruggen B. ; Huang C. ; Van Meerbeek B. High-performance bioinspired microspheres for boosting dental adhesion . Small , 2024 , 20 ( 29 ), 2310251 . doi: 10.1002/smll.202310251 http://dx.doi.org/10.1002/smll.202310251
Xiang Y. M. ; Mao C. Y. ; Liu X. M. ; Cui Z. D. ; Jing D. D. ; Yang X. J. ; Liang Y. Q. ; Li Z. Y. ; Zhu S. L. ; Zheng Y. F. ; Yeung K. W. K. ; Zheng D. ; Wang X. B. ; Wu S. L. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability . Small , 2019 , 15 ( 22 ), 1900322 . doi: 10.1002/smll.201900322 http://dx.doi.org/10.1002/smll.201900322
Ghorai S. K. ; Dutta A. ; Roy T. ; Guha Ray P. ; Ganguly D. ; Ashokkumar M. ; Dhara S. ; Chattopadhyay S. Metal ion augmented mussel inspired polydopamine immobilized 3D printed osteoconductive scaffolds for accelerated bone tissue regeneration . ACS Appl. Mater. Interfaces , 2022 , 14 ( 25 ), 28455 - 28475 . doi: 10.1021/acsami.2c01657 http://dx.doi.org/10.1021/acsami.2c01657
Wang C. ; Jing Y. H. ; Yu W. T. ; Gu J. ; Wei Z. J. ; Chen A. N. ; Yen Y. T. ; He X. W. ; Cen L. Q. ; Chen A. X. ; Song X. R. ; Wu Y. R. ; Yu L. X. ; Tao G. J. ; Liu B. R. ; Wang S. F. ; Xue B. ; Li R. T. Bivalent gadolinium ions forming injectable hydrogels for simultaneous in situ vaccination therapy and imaging of soft tissue sarcoma . Adv. Healthc. Mater. , 2023 , 12 ( 26 ), 2300877 . doi: 10.1002/adhm.202300877 http://dx.doi.org/10.1002/adhm.202300877
Tang M. L. ; Ni J. T. ; Yue Z. Y. ; Sun T. D. ; Chen C. X. ; Ma X. ; Wang L. Polyoxometalate-nanozyme-integrated nanomotors (POMotors) for self-propulsion-promoted synergistic photothermal-catalytic tumor therapy . Angew. Chem. Int. Ed. , 2024 , 63 ( 6 ), e 202315031 . doi: 10.1002/anie.202315031 http://dx.doi.org/10.1002/anie.202315031
Abadeer N. S. ; Murphy C. J. Recent progress in cancer thermal therapy using gold nanoparticles . J. Phys. Chem. C , 2016 , 120 ( 9 ), 4691 - 4716 . doi: 10.1021/acs.jpcc.5b11232 http://dx.doi.org/10.1021/acs.jpcc.5b11232
Aguilar-Ferrer D. ; Vasileiadis T. ; Iatsunskyi I. ; Ziółek M. ; Żebrowska K. ; Ivashchenko O. ; Błaszkiewicz P. ; Grześkowiak B. ; Pazos R. ; Moya S. ; Bechelany M. ; Coy E. Understanding the photothermal and photocatalytic mechanism of polydopamine coated gold nanorods . Adv. Funct. Mater. , 2023 , 33 ( 43 ), 2304208 . doi: 10.1002/adfm.202370256 http://dx.doi.org/10.1002/adfm.202370256
Lu Q. L. ; Lu T. ; Xu M. ; Yang L. F. ; Song Y. L. ; Li N. SO 2 prodrug doped nanorattles with extra-high drug payload for "collusion inside and outside" photothermal/pH triggered-gas therapy . Biomaterials , 2020 , 257 , 120236 . doi: 10.1016/j.biomaterials.2020.120236 http://dx.doi.org/10.1016/j.biomaterials.2020.120236
Ding M. ; Zhang Y. ; Li X. Y. ; Li Q. ; Xiu W. J. ; He A. ; Dai Z. ; Dong H. ; Shan J. Y. ; Mou Y. B. Simultaneous biofilm disruption, bacterial killing, and inflammation elimination for wound treatment using silver embellished polydopamine nanoplatform . Small , 2024 , 20 ( 36 ), 2400927 .
Zhao Y. ; Peng X. ; Wang D. Q. ; Zhang H. B. ; Xin Q. W. ; Wu M. Z. ; Xu X. Y. ; Sun F. ; Xing Z. Y. ; Wang L. N. ; Yu P. ; Xie J. ; Li J. H. ; Tan H. ; Ding C. M. ; Li J. S. Chloroplast-inspired scaffold for infected bone defect therapy: Towards stable photothermal properties and self-defensive functionality . Adv. Sci. , 2022 , 9 ( 31 ), 2204535 . doi: 10.1002/advs.202204535 http://dx.doi.org/10.1002/advs.202204535
Wu S. D. ; Shuai Y. ; Qian G. W. ; Peng S. P. ; Liu Z. ; Shuai C. J. ; Yang S. A spatiotemporal drug release scaffold with antibiosis and bone regeneration for osteomyelitis . J. Adv. Res. , 2023 , 54 , 239 - 249 . doi: 10.1016/j.jare.2023.01.019 http://dx.doi.org/10.1016/j.jare.2023.01.019
Mo R. ; Dawulieti J. ; Chi N. ; Wu Z. P. ; Yun Z. Z. ; Du J. J. ; Li X. H. ; Liu J. F. ; Xie X. C. ; Xiao K. ; Chen F. M. ; Shao D. ; Ma K. W. Self-polymerized platinum (II)-Polydopamine nanomedicines for photo-chemotherapy of bladder Cancer favoring antitumor immune responses . J. Nanobiotechnol. , 2023 , 21 ( 1 ), 235 . doi: 10.1186/s12951-023-01993-1 http://dx.doi.org/10.1186/s12951-023-01993-1
Yu W. Q. ; Sun J. L. ; Wang X. Y. ; Yu S. Y. ; Yan M. Z. ; Wang F. A. ; Liu X. Q. Boosting cancer immunotherapy via the convenient A2AR inhibition using a tunable nanocatalyst with light-enhanced activity . Adv. Mater. , 2022 , 34 ( 8 ), 2106967 . doi: 10.1002/adma.202106967 http://dx.doi.org/10.1002/adma.202106967
Zhao X. H. ; Tang H. ; Jiang X. Y. Deploying gold nanomaterials in combating multi-drug-resistant bacteria . ACS Nano , 2022 , 16 ( 7 ), 10066 - 10087 . doi: 10.1021/acsnano.2c02269 http://dx.doi.org/10.1021/acsnano.2c02269
Gong X. Y. ; Jadhav N. D. ; Lonikar V. V. ; Kulkarni A. N. ; Zhang H. K. ; Sankapal B. R. ; Ren J. N. ; Ben B. X. ; Pathan H. M. ; Ma Y. ; Lin Z. P. ; Witherspoon E. ; Wang Z. ; Guo Z. H. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications . Adv. Colloid Interface Sci. , 2024 , 323 , 103053 . doi: 10.1016/j.cis.2023.103053 http://dx.doi.org/10.1016/j.cis.2023.103053
Deng T. ; Zhao H. ; Shi M. S. ; Qiu Y. ; Jiang S. T. ; Yang X. L. ; Zhao Y. B. ; Zhang Y. F. Photoactivated trifunctional platinum nanobiotics for precise synergism of multiple antibacterial modes . Small , 2019 , 15 ( 46 ), 1902647 . doi: 10.1002/smll.201902647 http://dx.doi.org/10.1002/smll.201902647
Wang Z. Y. ; Shi Y. H. ; Shi Y. ; Zhang J. H. ; Hao R. ; Zhang G. W. ; Zeng L. Y. Ultrasmall go ld-coated mesoporous polydopamine nanoprobe to enhance chemodynamic therapy by self-supplying H 2 O 2 and photothermal stimulation . ACS Appl. Mater. Interfaces , 2022 , 14 ( 49 ), 54478 - 54487 . doi: 10.1021/acsami.2c14031 http://dx.doi.org/10.1021/acsami.2c14031
Lin Y. L. ; He X. J. ; Huang T. ; Zhao J. ; Liu L. Y. ; He J. Q. ; Shen J. L. ; Ren Q. Z. High-Valent Silver-Porphyrin complex hybrid graphene oxide nanoplatform promotes MRSA-Infected wound healing . Chem. Eng. J. , 2024 , 483 , 149279 . doi: 10.1016/j.cej.2024.149279 http://dx.doi.org/10.1016/j.cej.2024.149279
Chen S. F. ; Wang H. X. ; Du J. Y. ; Ding Z. D. ; Wang T. N. ; Zhang L. N. ; Yang J. ; Guan Y. ; Chen C. J. ; Li M. Q. ; Hei Z. Q. ; Tao Y. ; Yao W. F. Near-infrared light-activatable, analgesic nanocomposite delivery system for comprehensive therapy of diabetic wounds in rats . Biomaterials , 2024 , 305 , 122467 . doi: 10.1016/j.biomaterials.2024.122467 http://dx.doi.org/10.1016/j.biomaterials.2024.122467
Liu H. Y. ; Qiao Z. ; Mao X. X. ; Zha J. C. ; Yin J. Phenylboronic acid-dopamine dynamic covalent bond involved dual-responsive polymeric complex: Construction and anticancer investigation . Langmuir , 2019 , 35 ( 36 ), 11850 - 11858 . doi: 10.1021/acs.langmuir.9b02194 http://dx.doi.org/10.1021/acs.langmuir.9b02194
Dai L. Q. ; Liu J. ; Zhao X. S. ; Li Y. H. ; Zhou S. M. ; Yuan L. P. ; Shu D. Y. ; Pan L. L. ; Liu Y. H. ; Qian Z. Y. BPA-containing polydopamine nanoparticles for boron neutron capture therapy in a U87 glioma orthotopic model . Adv. Funct. Mater. , 2023 , 33 ( 23 ), 2214145 . doi: 10.1002/adfm.202214145 http://dx.doi.org/10.1002/adfm.202214145
Dai L. Q. ; Wang T. ; Zhou S. M. ; Pan L. L. ; Lu Y. ; Yang T. Y. ; Wang W. T. ; Qian Z. Y. Boronophenylalanine-containing polydopamine nanoparticles for enhanced combined boron neutron capture therapy and photothermal therapy for melanoma treatment . Adv. Funct. Mater. , 2024 , 34 ( 38 ), 2402893 . doi: 10.1002/adfm.202402893 http://dx.doi.org/10.1002/adfm.202402893
An J. ; He X. Y. ; Ma H. Z. ; Li Y. L. ; Li Y. Y. ; Zhang X. Y. ; Shuai Q. Z. ; Wang Y. M. ; Liu W. ; Li W. H. ; Wang H. L. ; Wu Z. F. ; Li S. J. Radionuclide labeled nanocarrier for imaging guided combined radionuclide, sonodynamic, and photothermal therapy of pancreatic tumours . J. Colloid Interface Sci. , 2023 , 642 , 789 - 799 . doi: 10.1016/j.jcis.2023.03.111 http://dx.doi.org/10.1016/j.jcis.2023.03.111
Xiao L. ; Li Y. H. ; Geng R. M. ; Chen L. H. ; Yang P. ; Li M. Y. ; Luo X. ; Yang Y. C. ; Li L. ; Cai H. W. Polymer composite microspheres loading 177 Lu radi onuclide for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer . Biomater. Res. , 2023 , 27 ( 1 ), 110 . doi: 10.1186/s40824-023-00455-x http://dx.doi.org/10.1186/s40824-023-00455-x
Zhong X. Y. ; Yang K. ; Dong Z. L. ; Yi X. ; Wang Y. ; Ge C. C. ; Zhao Y. L. ; Liu Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer . Adv. Funct. Mater. , 2015 , 25 ( 47 ), 7327 - 7336 . doi: 10.1002/adfm.201503587 http://dx.doi.org/10.1002/adfm.201503587
Wang S. ; Lin J. ; Wang Z. T. ; Zhou Z. J. ; Bai R. L. ; Lu N. ; Liu Y. J. ; Fu X. ; Jacobson O. ; Fan W. P. ; Qu J. L. ; Chen S. P. ; Wang T. F. ; Huang P. ; Chen X. Y. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy . Adv. Mater. , 2017 , 29 ( 35 ), 1701013 . doi: 10.1002/adma.201701013 http://dx.doi.org/10.1002/adma.201701013
Mrówczyński R. ; Bunge A. ; Liebscher J. Polydopamine: an organocatalyst rather than an innocent polymer . Chem. Eur. J. , 2014 , 20 ( 28 ), 8647 - 8653 . doi: 10.1002/chem.201402532 http://dx.doi.org/10.1002/chem.201402532
0
浏览量
127
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构