浏览全部资源
扫码关注微信
1.宁波大学材料科学与化学工程学院 宁波 315211
2.中国科学院宁波材料技术与工程研究所 宁波 315201
E-mail: yuzhen@nimte.ac.cn
liuyanlin@nimte.ac.cn
收稿日期:2025-07-11,
录用日期:2025-08-22,
网络出版日期:2025-09-13,
移动端阅览
胡宏运, 于震, 倪金平, 汤兆宾, 刘艳林. 高温抗蠕变生物基缩醛胺/亚胺杂化动态共价交联聚合物. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25168
Hu, H. Y.; Yu, Z.; Ni, J. P.; Tang, Z. B.; Liu, Y. L. Elevated-temperature creep-resistant bio-based aminal/imine hybrid dynamic covalent cross-linked polymers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25168
胡宏运, 于震, 倪金平, 汤兆宾, 刘艳林. 高温抗蠕变生物基缩醛胺/亚胺杂化动态共价交联聚合物. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25168 DOI: CSTR: 32057.14.GFZXB.2025.7459.
Hu, H. Y.; Yu, Z.; Ni, J. P.; Tang, Z. B.; Liu, Y. L. Elevated-temperature creep-resistant bio-based aminal/imine hybrid dynamic covalent cross-linked polymers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25168 DOI: 10.11777/j.issn1000-3304.2025.25168. CSTR: 32057.14.GFZXB.2025.7459.
动态共价聚合物网络(dynamic covalent polymer networks,DCPNs)为解决热固性树脂的回收难题开辟了有效途径,然而,由于动态键可逆反应,该类材料普遍高温抗蠕变性能较差,热学和力学性能、尺寸稳定性不足的缺陷将限制其实际应用. 因此,本工作以生物来源的香草醛和
L
-赖氨酸二异氰酸酯为原料、二乙烯三胺和4
4'-二氨基二苯胺为交联剂,制备了一类高性能生物基动态共价交联聚合物(PBVs). 结构分析结果表明,通过醛胺缩合反应成功构建了缩醛胺/亚胺杂化的DCPNs. 该材料展现出优异高温抗蠕变性,在拉伸强度约为70 MPa,
T
g
超过120 ℃的前提下,树脂的初始蠕变温度高达120 ℃. 同时,该材料在酸性条件下可以完全降解,并能通过热压工艺实现再加工. 本工作为发展兼具高温抗蠕变和可回收性的生物基热固性树脂提供了新思路,在可持续材料领域具有应用潜力.
Dynamic covalent polymer networks (DCPNs) offer a promising solution to the recyclability challenges of thermosets. However
due to the reversible nature of the dynamic bonds
these materials typically exhibit poor elevated-temperature creep resistance. Deficiencies in thermal and mechanical properties
as well as dimensional stability
limit their practical applications. Herein
we report the synthesis of high-performance biobased dynamic covalent cross-linked polymers (PBVs) using vanillin and
L
-lysine diisocyanate as monomers
with diethylenetriamine and 4
4'-diaminodiphenylamine as crosslinkers. Structural analysis confirmed that the aldehyde-amine condensation reaction successfully formed a hybrid aminal/imine DCPN. The material demonstrated excellent elevated-temperature creep resistance
with a tensile strength of approximately 70 MPa and a
T
g
exceeding 120 ℃. Notably
the resin's initial creep temperature reached up to 120 ℃. Furthermore
the PBVs undergo complete degradation under acidic conditions and can be reprocessed
via
hot-pressing. This work presents a new strategy for developing biobased thermosets that simultaneously possess elevated-temperature creep resistance and recyclability
demonstrating significant potential for sustainable materials.
Fortman D. J. ; Brutman J. P. ; De Hoe G. X. ; Snyder R. L. ; Dichtel W. R. ; Hillmyer M. A. Approaches to sustainable and continually recyclable cross-linked polymers . ACS Sustainable Chem. Eng. , 2018 , 6 ( 9 ), 11145 - 11159 . doi: 10.1021/acssuschemeng.8b02355 http://dx.doi.org/10.1021/acssuschemeng.8b02355
Ma S. ; Webster D. C. Degradable thermosets based on labile bonds or linkages: a review . Prog. Polym. Sci. , 2018 , 76 , 65 - 110 . doi: 10.1016/j.progpolymsci.2017.07.008 http://dx.doi.org/10.1016/j.progpolymsci.2017.07.008
Chen G. Q. ; Patel M. K. Plastics derived from biological sources: present and future: a technical and environmental review . Chem. Rev. , 2012 , 112 ( 4 ), 2082 - 2099 . doi: 10.1021/cr200162d http://dx.doi.org/10.1021/cr200162d
Gregory M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions . Philos. T R Soc. B , 2009 , 364 ( 1526 ), 2013 - 2025 . doi: 10.1098/rstb.2008.0265 http://dx.doi.org/10.1098/rstb.2008.0265
Rahimi A. ; García J. M. Chemical recycling of waste plastics for new materials production . Nat. Rev. Chem. , 2017 , 1 ( 6 ), 0046 . doi: 10.1038/s41570-017-0046 http://dx.doi.org/10.1038/s41570-017-0046
Cunliffe A. M. ; Williams P. T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis . Fuel , 2003 , 82 ( 18 ), 2223 - 2230 . doi: 10.1016/s0016-2361(03)00129-7 http://dx.doi.org/10.1016/s0016-2361(03)00129-7
Åkesson D. ; Foltynowicz Z. ; Christéen J. ; Skrifvars M. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines . J. Reinf. Plast. Compos. , 2012 , 31 ( 17 ), 1136 - 1142 . doi: 10.1177/0731684412453512 http://dx.doi.org/10.1177/0731684412453512
Pickering S. J. Recycling technologies for thermoset composite materials—current status . Compos Part A-Appl S , 2006 , 37 ( 8 ), 1206 - 1215 . doi: 10.1016/j.compositesa.2005.05.030 http://dx.doi.org/10.1016/j.compositesa.2005.05.030
Bai J. ; Li H. ; Shi Z. ; Yin J. An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and diels-alder click chemistry . Macromolecules , 2015 , 48 ( 11 ), 3539 - 3546 . doi: 10.1021/acs.macromol.5b00389 http://dx.doi.org/10.1021/acs.macromol.5b00389
Min Y. ; Huang S. ; Wang Y. ; Zhang Z. ; Du B. ; Zhang X. ; Fan Z. Sonochemical transformation of epoxy-amine thermoset into soluble and reusable polymers . Macromolecules , 2015 , 48 ( 2 ), 316 - 322 . doi: 10.1021/ma501934p http://dx.doi.org/10.1021/ma501934p
Trovatti E. ; Lacerda T. M. ; Carvalho A. J. ; Gandini A. Recycling tires? Reversible crosslinking of poly(butadiene) . Adv. Mater. , 2015 , 27 ( 13 ), 2242 - 2245 . doi: 10.1002/adma.201405801 http://dx.doi.org/10.1002/adma.201405801
Yang S. ; Chen J. S. ; Körner H. ; Breiner T. ; Ober C. K. ; Poliks M. D. Reworkable epoxies: thermosets with thermally cleavable groups for controlled network breakdown . Chem. Mater. , 1998 , 10 ( 6 ), 1475 - 1482 . doi: 10.1021/cm970667t http://dx.doi.org/10.1021/cm970667t
Tomuta A. M. ; Ramis X. ; Fernández-Francos X. ; Ferrando F. ; Serra A. New chemically reworkable epoxy coatings obtained by the addition of polyesters with star topologies to diglycidyl ether of bisphenol a resins . Prog. Org. Coat. , 2013 , 76 ( 11 ), 1616 - 1624 . doi: 10.1016/j.porgcoat.2013.07.010 http://dx.doi.org/10.1016/j.porgcoat.2013.07.010
Cho S. ; Hwang S. Y. ; Oh D. X. ; Park J. Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: boronic/boronate esters, borax, and benzoxaborole . J. Mater. Chem. A , 2021 , 9 ( 26 ), 14630 - 14655 . doi: 10.1039/d1ta02308j http://dx.doi.org/10.1039/d1ta02308j
Zhang C. ; Lu H. ; Wang X. Transient polymer hydrogels based on dynamic covalent borate ester bonds . Chinese J. Chem. , 2022 , 40 ( 23 ), 2794 - 2800 . doi: 10.1002/cjoc.202200405 http://dx.doi.org/10.1002/cjoc.202200405
Ren S. ; Zhou W. ; Song K. ; Gao X. ; Zhang X. ; Fang H. ; Li X. ; Ding Y. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds . Prog. Org. Coat. , 2023 , 180 , 107571 . doi: 10.1016/j.porgcoat.2023.107571 http://dx.doi.org/10.1016/j.porgcoat.2023.107571
Li Y. ; Wang Y. ; Wang S. ; Ye Z. ; Bian C. ; Xing X. ; Hong T. ; Jing X. Highly tunable and robust dynamic polymer network s via conjugated-hindered urea bonds . Macromolecules , 2022 , 55 ( 20 ), 9091 - 9102 . doi: 10.1021/acs.macromol.2c00681 http://dx.doi.org/10.1021/acs.macromol.2c00681
Liu Y. ; Tang Z. ; Chen Y. ; Wu S. ; Guo B. Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer . Compos. Sci. Technol. , 2018 , 168 , 214 - 223 . doi: 10.1016/j.compscitech.2018.10.005 http://dx.doi.org/10.1016/j.compscitech.2018.10.005
Chao A. ; Zhang D. Investigation of secondary amine-derived aminal bond exchange toward the development of covalent adaptable networks . Macromolecules , 2019 , 52 ( 2 ), 495 - 503 . doi: 10.1021/acs.macromol.8b02654 http://dx.doi.org/10.1021/acs.macromol.8b02654
Tian J. ; You Y. ; Zhou H. ; Li H. ; Hu L. ; Tian Y. ; Xie H. ; Xie Y. ; Hu X. Biobased thermoset substrate for flexible and sustainable organic photovoltaics . Adv. Funct. Mater. , 2024 , 34 ( 29 ), 2400547 . doi: 10.1002/adfm.202400547 http://dx.doi.org/10.1002/adfm.202400547
Li Q. ; Ma S. ; Li P. ; Wang B. ; Feng H. ; Lu N. ; Wang S. ; Liu Y. ; Xu X. ; Zhu J. Biosourced acetal and diels-alder adduct concurrent polyurethane covalent adaptable network . Macromolecules , 2021 , 54 ( 4 ), 1742 - 1753 . doi: 10.1021/acs.macromol.0c02699 http://dx.doi.org/10.1021/acs.macromol.0c02699
Lei Z. Q. ; Xiang H. P. ; Yuan Y. J. ; Rong M. Z. ; Zhang M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds . Chem. Mater. , 2014 , 26 ( 6 ), 2038 - 2046 . doi: 10.1021/cm4040616 http://dx.doi.org/10.1021/cm4040616
Takahashi A. ; Ohishi T. ; Goseki R. ; Otsuka H. Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage . Polymer , 2016 , 82 , 319 - 326 . doi: 10.1016/j.polymer.2015.11.057 http://dx.doi.org/10.1016/j.polymer.2015.11.057
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Jurčı́k V. ; Wilhelm R. Preparation of aminals in water . Tetrahedron , 2004 , 60 ( 14 ), 3205 - 3210 . doi: 10.1016/j.tet.2004.02.021 http://dx.doi.org/10.1016/j.tet.2004.02.021
Huang W. ; Li H. ; Zhao F. ; Cheng H. Synthesis of re-processable polyurea thermosets from Co 2 -based oligourea and formaldehyde . ACS Sustainable Resour. Manage. , 2024 , 1 ( 11 ), 2502 - 2510 . doi: 10.1021/acssusresmgt.4c00370 http://dx.doi.org/10.1021/acssusresmgt.4c00370
Shen Y. ; Xu N. ; Adraro Y. A. ; Wang B. ; Liu Y. ; Yuan W. ; Xu X. ; Huang Y. ; Hu Z. Imine or secondary amine-derived degradable polyaminal: low-cost matrix resin with high performance . ACS Sustainable Chem. Eng. , 2020 , 8 ( 4 ), 1943 - 1953 . doi: 10.1021/acssuschemeng.9b06343 http://dx.doi.org/10.1021/acssuschemeng.9b06343
Su H. ; Du G. ; Yang H. ; Wu Y. ; Liu S. ; Ni K. ; Ran X. ; Li J. ; Gao W. ; Yang L. Novel ultrastrong wood bonding interface through chemical covalent crosslinking of aldehyde-amine . Ind. Crop. Prod. , 2022 , 189 , 115800 . doi: 10.1016/j.indcrop.2022.115800 http://dx.doi.org/10.1016/j.indcrop.2022.115800
Ying H. ; Cheng J. Hydrolyzable polyureas bearing hindered urea bonds . J. Am. Chem. Soc. , 2014 , 136 ( 49 ), 16974 - 16977 . doi: 10.1021/ja5093437 http://dx.doi.org/10.1021/ja5093437
Li X. ; Wu S. ; Yu S. ; Xiao C. ; Tang Z. ; Guo B. A facile one-pot route to elastomeric vitrimers with tunable mechanical performance and superior creep resistance . Polymer , 2022 , 238 , 124379 . doi: 10.1016/j.polymer.2021.124379 http://dx.doi.org/10.1016/j.polymer.2021.124379
Liu Y. ; Tang Z. ; Wang D. ; Wu S. ; Guo B. Biomimetic design of elastomeric vitrimers with unparalleled mechanical properties, improved creep resistance and retained malleability by metal-ligand coordination . J. Mater. Chem. A , 2019 , 7 ( 47 ), 26867 - 26876 . doi: 10.1039/c9ta10909a http://dx.doi.org/10.1039/c9ta10909a
Zhang J. ; Jiang C. ; Deng G. ; Luo M. ; Ye B. ; Zhang H. ; Miao M. ; Li T. ; Zhang D. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure . Nat. Commun. , 2024 , 15 ( 1 ), 4869 . doi: 10.1038/s41467-024-49272-3 http://dx.doi.org/10.1038/s41467-024-49272-3
Feng H. ; Wang S. ; Lim J. Y. C. ; Li B. ; Rusli W. ; Liu F. ; Hadjichristidis N. ; Li Z. ; Zhu J. Catalyst-free α -acetyl cinnamate/acetoacetate exchange to enable high creep-resistant vitrimers . Angew. Chem. Int. Ed. , 2024 , 63 ( 20 ), e 202400955 . doi: 10.1002/anie.202400955 http://dx.doi.org/10.1002/anie.202400955
Xing Z. ; Jia X. ; Li X. ; Yang J. ; Wang S. ; Li Y. ; Shao D. ; Feng L. ; Song H. Novel green reversible humidity-responsive hemiaminal dynamic covalent network for smart window . ACS Sustainable Resour. Manage. , 2023 , 15 ( 8 ), 11053 - 11061 . doi: 10.1021/acsami.2c21717 http://dx.doi.org/10.1021/acsami.2c21717
Liu X. ; Zhang E. ; Liu J. ; Qin J. ; Wu M. ; Yang C. ; Liang L. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites . Chem. Eng. J. , 2023 , 454 , 139992 . doi: 10.1016/j.cej.2022.139992 http://dx.doi.org/10.1016/j.cej.2022.139992
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构