上海交通大学化学化工学院流变学研究所 上海 200240
E-mail: weiyou13@sjtu.edu.cn
wyu@sjtu.edu.cn
收稿:2025-07-31,
录用:2025-09-17,
网络出版:2025-11-04,
移动端阅览
孙铭鹤, 崔文志, 尤伟, 俞炜. 纳米粒子形状对高分子纳米复合材料界面链受限和缠结的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25179
Sun, M. H.; Cui, W. Z.; You, W.; Yu, W. Shape effect of nanoparticles on the interfacial chain confinement and entanglement in polymer nanocomposites. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25179
孙铭鹤, 崔文志, 尤伟, 俞炜. 纳米粒子形状对高分子纳米复合材料界面链受限和缠结的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25179 DOI: CSTR: 32057.14.GFZXB.2025.7467.
Sun, M. H.; Cui, W. Z.; You, W.; Yu, W. Shape effect of nanoparticles on the interfacial chain confinement and entanglement in polymer nanocomposites. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25179 DOI: CSTR: 32057.14.GFZXB.2025.7467.
探讨了纳米粒子形状对高分子纳米复合材料(PNCs)界面链受限和缠结的影响,以球形二氧化硅、短棒状二氧化硅和多壁碳纳米管(MWCNTs)分散在聚甲基丙烯酸甲酯(PMMA)基体的纳米复合材料为研究对象,发现玻璃化转变温度和玻璃化转变中损耗角正切的最大值依赖于比表面积、表面曲率和表面相互作用强度等多种因素,更大的长径比和更小的直径是强化界面受限的关键. 在更大尺度上,所研究的纳米复合材料中的链缠结行为均满足管子模型,而纳米粒子的比表面积和表面曲率是决定界面缠结密度大小的主导因素,较低曲率的表面可显著增强界面拓扑约束的程度.
This study investigates how the shape of nanoparticles affects interfacial chain confinement and entanglement in polymer nanocomposites (PNCs). Specifically
different types of PNCs were fabricated by incorporating spherical silica
short-rod-shaped silica
and multi-walled carbon nanotubes (MWCNTs) into a poly(methyl methacrylate) (PMMA) matrix. The results revealed that the glass transition temperature and the maximum loss tangent during the glass transition depended on multiple factors
including the specific surface area
the surface curvature
and the interfacial interaction strength. On a larger length scale
the chain entanglements in all nanocomposites still follow the tube model
while the specific area and surface curvature are the key factors controlling the interfacial entanglement density
with lower surface curvature significantly enhancing the topological constraints in the interfacial area.
Chatterjee T. ; Krishnamoorti R. Rheology of polymer carbon nanotubes composites . Soft Matter , 2013 , 9 ( 40 ), 9515 - 9529 . doi: 10.1039/c3sm51444g http://dx.doi.org/10.1039/c3sm51444g
Rueda M. M. ; Auscher M. C. ; Fulchiron R. ; Périé T. ; Martin G. ; Sonntag P. ; Cassagnau P. Rheology and applications of highly filled polymers: a review of current understanding . Prog. Polym. Sci. , 2017 , 66 , 22 - 53 . doi: 10.1016/j.progpolymsci.2016.12.007 http://dx.doi.org/10.1016/j.progpolymsci.2016.12.007
尤伟 , 俞炜 . 高分子纳米复合材料的受限动力学与流变学 . 高分子通报 , 2025 ( 2 ), 169 - 182 .
Jia P. P. ; An L. L. ; Yu L. ; Pan Y. K. ; Fan H. Q. ; Qin L. C. Strategies for optimizing interfacial thermal resistance of thermally conductive hexagonal boron nitride/polymer composites: a review . Polym. Compos. , 2024 , 45 ( 12 ), 10587 - 10618 . doi: 10.1002/pc.28521 http://dx.doi.org/10.1002/pc.28521
Wu X. H. ; Zhang X. Y. ; Yan X. X. ; Zhang C. ; Zhang Y. Q. ; Li P. Y. ; Li N. ; Liu H. L. ; Wang Z. W. A review: from the whole process of making thermal conductive polymer, the effective method of improving thermal conductivity . J. Polym. Sci. , 2024 , 62 ( 11 ), 2410 - 2442 . doi: 10.1002/pol.20230858 http://dx.doi.org/10.1002/pol.20230858
George J. ; Ishida H. A review on the very high nanofiller-content nanocomposites: their preparation methods and properties with high aspect ratio fillers . Prog. Polym. Sci. , 2018 , 86 , 1 - 39 . doi: 10.1016/j.progpolymsci.2018.07.006 http://dx.doi.org/10.1016/j.progpolymsci.2018.07.006
Lou G. H. ; Zhao Z. Y. ; Wang Y. G. Research progress on highly conductive polymer composites based on carbon-based nanofillers . Polym. Compos. , 2025 , 46 ( 11 ), 9742 - 9775 . doi: 10.1002/pc.29640 http://dx.doi.org/10.1002/pc.29640
Peretz Damari S. ; Cullari L. ; Nadiv R. ; Nir Y. ; Laredo D. ; Grunlan J. ; Regev O. Graphene-induced enhancement of water vapor barrier in polymer nanocomposites . Compos. Part B Eng. , 2018 , 134 , 218 - 224 . doi: 10.1016/j.compositesb.2017.09.056 http://dx.doi.org/10.1016/j.compositesb.2017.09.056
Ashkar R. ; Abdul Baki M. ; Tyagi M. ; Faraone A. ; Butler P. ; Krishnamoorti R. Kinetic polymer arrest in percolated SWNT networks . ACS Macro Lett. , 2014 , 3 ( 12 ), 1262 - 1265 . doi: 10.1021/mz500636s http://dx.doi.org/10.1021/mz500636s
Choi J. ; Clarke N. ; Winey K. I. ; Composto R. J. Fast polymer diffusion through nanocomposites with anisotropic particles . ACS Macro Lett. , 2014 , 3 ( 9 ), 886 - 891 . doi: 10.1021/mz500344h http://dx.doi.org/10.1021/mz500344h
Lin C. C. ; Cargnello M. ; Murray C. B. ; Clarke N. ; Winey K. I. ; Riggleman R. A. ; Composto R. J. Nanorod mobility influences polymer diffusion in polymer nanocomposites . ACS Macro Lett. , 2017 , 6 ( 8 ), 869 - 874 . doi: 10.1021/acsmacrolett.7b00533 http://dx.doi.org/10.1021/acsmacrolett.7b00533
Vega D. A. ; Milchev A. ; Schmid F. ; Febbo M. Anomalous slowdown of polymer detachment dynamics on carbon nanotubes . Phys. Rev. Lett. , 2019 , 122 ( 21 ), 218003 . doi: 10.1103/physrevlett.122.218003 http://dx.doi.org/10.1103/physrevlett.122.218003
Ge T. Scaling perspective on dynamics of nanoparticles in polymers: length- and time-scale dependent nanoparticle-polymer coupling . Macromolecules , 2023 , 56 ( 11 ), 3809 - 3837 . doi: 10.1021/acs.macromol.3c00260 http://dx.doi.org/10.1021/acs.macromol.3c00260
Zhang J. ; Yang L. J. ; Wang H. X. ; Wang J. L. ; Dong R. Y. Cross-sectional effects on nanorod diffusion in polymer melts . Macromolecules , 2025 , 58 ( 10 ), 4959 - 4970 . doi: 10.1021/acs.macromol.5c00629 http://dx.doi.org/10.1021/acs.macromol.5c00629
Cipiriano B. H. ; Kashiwagi T. ; Raghavan S. R. ; Yang Y. ; Grulke E. A. ; Yamamoto K. ; Shields J. R. ; Douglas J. F. Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites . Polymer , 2007 , 48 ( 20 ), 6086 - 6096 . doi: 10.1016/j.polymer.2007.07.070 http://dx.doi.org/10.1016/j.polymer.2007.07.070
Li Y. ; Kröger M. ; Liu W. K. Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites . Macromolecules , 2012 , 45 ( 4 ), 2099 - 2112 . doi: 10.1021/ma202289a http://dx.doi.org/10.1021/ma202289a
You W. ; Yu W. Control of the dispersed-to-continuous transition in polymer blends by viscoelastic asymmetry . Polymer , 2018 , 134 , 254 - 262 . doi: 10.1016/j.polymer.2017.11.074 http://dx.doi.org/10.1016/j.polymer.2017.11.074
Karatrantos A. ; Clarke N. ; Composto R. J. ; Winey K. I. Topological entanglement length in polymer melts and nanocomposites by a DPD polymer model . Soft Matter , 2013 , 9 ( 14 ), 3877 - 3884 . doi: 10.1039/c3sm27651a http://dx.doi.org/10.1039/c3sm27651a
Wang Y. M. ; Sun M. H. ; Zhang H. ; Lu Y. D. ; You W. ; Bian F. G. ; Yu W. Quantitative correlation between hierarchical nanofiller structure and rheology of polymer/fumed silica nanocomposites . Macromolecules , 2023 , 56 ( 3 ), 934 - 946 . doi: 10.1021/acs.macromol.2c02080 http://dx.doi.org/10.1021/acs.macromol.2c02080
Cui W. Z. ; You W. ; Yu W. Interplay of grafted and adsorbed chains at the polymer-particle interface in tuning the mechanical reinforcement in polymer nanocomposites . ACS Appl. Polym. Mater. , 2024 , 6 ( 3 ), 1843 - 1852 . doi: 10.1021/acsapm.3c02700 http://dx.doi.org/10.1021/acsapm.3c02700
Cui W. Z. ; You W. ; Sun Z. Y. ; Yu W. Decoupled polymer dynamics in weakly attractive poly(methyl methacrylate)/silica nanocomposites . Macromolecules , 2021 , 54 ( 12 ), 5484 - 5497 . doi: 10.1021/acs.macromol.1c00264 http://dx.doi.org/10.1021/acs.macromol.1c00264
Cui W. Z. ; You W. ; Yu W. Mechanism of mechanical reinforcement for weakly attractive nanocomposites in glassy and rubbery states . Macromolecules , 2021 , 54 ( 2 ), 824 - 834 . doi: 10.1021/acs.macromol.0c02156 http://dx.doi.org/10.1021/acs.macromol.0c02156
E, M . J. Physical properties of polymers handbook second edition . Woodbury, N.Y. : AIP Press , 2007 , 450 . doi: 10.1007/978-0-387-69002-5_57 http://dx.doi.org/10.1007/978-0-387-69002-5_57
Blum F. D. ; Lin W. Y. ; Porter C. E. Dynamics of adsorbed poly(methyl acrylate) and poly(methyl methacrylate) on silica . Colloid Polym. Sci. , 2003 , 281 ( 3 ), 197 - 202 . doi: 10.1007/s00396-002-0795-8 http://dx.doi.org/10.1007/s00396-002-0795-8
Kulkeratiyut S. ; Kulkeratiyut S. ; Blum F. D. Bound carbonyls in PMMA adsorbed on silica using transmission FTIR . J. Polym. Sci. Part B Polym. Phys. , 2006 , 44 ( 15 ), 2071 - 2078 . doi: 10.1002/polb.20871 http://dx.doi.org/10.1002/polb.20871
Jouault N. ; Zhao D. ; Kumar S. K. Role of casting solvent on nanoparticle dispersion in polymer nanocomposites . Macromolecules , 2014 , 47 ( 15 ), 5246 - 5255 . doi: 10.1021/ma500619g http://dx.doi.org/10.1021/ma500619g
Starr F. W. ; Douglas J. F. ; Meng D. ; Kumar S. K. Bound layers "cloak" nanoparticles in strongly interacting polymer nanocomposites . ACS Nano , 2016 , 10 ( 12 ), 10960 - 10965 . doi: 10.1021/acsnano.6b05683 http://dx.doi.org/10.1021/acsnano.6b05683
Voylov D. N. ; Holt A. P. ; Doughty B. ; Bocharova V. ; Meyer H. M. III, Cheng, S. W.; Martin, H.; Dadmun, M.; Kisliuk, A.; Sokolov, A. P. Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites . ACS Macro Lett. , 2017 , 6 ( 2 ), 68 - 72 . doi: 10.1021/acsmacrolett.6b00915 http://dx.doi.org/10.1021/acsmacrolett.6b00915
Gong S. S. ; Chen Q. ; Moll J. F. ; Kumar S. K. ; Colby R. H. Segmental dynamics of polymer melts with spherical nanoparticles . ACS Macro Lett. , 2014 , 3 ( 8 ), 773 - 777 . doi: 10.1021/mz500252f http://dx.doi.org/10.1021/mz500252f
Harton S. E. ; Kumar S. K. ; Yang H. ; Koga T. ; Hicks K. ; Lee H. ; Mijovic J. ; Liu M. ; Vallery R. S. ; Gidley D. W. Immobilized polymer layers on spherical nanoparticles . Macromolecules , 2010 , 43 ( 7 ), 3415 - 3421 . doi: 10.1021/ma902484d http://dx.doi.org/10.1021/ma902484d
Cheng S. W. ; Holt A. P. ; Wang H. Q. ; Fan F. ; Bocharova V. ; Martin H. ; Etampawala T. ; White B. T. ; Saito T. ; Kang N. G. ; Dadmun M. D. ; Mays J. W. ; Sokolov A. P. Unexpected molecular weight effect in polymer nanocomposites . Phys. Rev. Lett. , 2016 , 116 ( 3 ), 038302 . doi: 10.1103/physrevlett.116.038302 http://dx.doi.org/10.1103/physrevlett.116.038302
Holt A. P. ; Bocharova V. ; Cheng S. W. ; Kisliuk A. M. ; White B. T. ; Saito T. ; Uhrig D. ; Mahalik J. P. ; Kumar R. ; Imel A. E. ; Etampawala T. ; Martin H. ; Sikes N. ; Sumpter B. G. ; Dadmun M. D. ; Sokolov A. P. Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites . ACS Nano , 2016 , 10 ( 7 ), 6843 - 6852 . doi: 10.1021/acsnano.6b02501 http://dx.doi.org/10.1021/acsnano.6b02501
Wei T. ; Torkelson J. M. Molecular weight dependence of the glass transition temperature ( T g )-confinement effect in well-dispersed poly (2-vinyl pyridine)-silica nanocomposites: comparison of interfacial layer Tg and matrix Tg. Macromolecules , 2020 , 53 ( 19 ), 8725 - 8736 . doi: 10.1021/acs.macromol.0c01577 http://dx.doi.org/10.1021/acs.macromol.0c01577
Cheng S. W. ; Carroll B. ; Bocharova V. ; Carrillo J. M. ; Sumpter B. G. ; Sokolov A. P. Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions . J. Chem. Phys. , 2017 , 146 ( 20 ), 203201 . doi: 10.1063/1.4978504 http://dx.doi.org/10.1063/1.4978504
Cui W. Z. ; Liu J. ; You W. ; Yu W. Mechanical reinforcement by bridging chains in polymer nanocomposites . Polymer , 2024 , 306 , 127208 . doi: 10.1016/j.polymer.2024.127208 http://dx.doi.org/10.1016/j.polymer.2024.127208
0
浏览量
100
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构

京公网安备11010802024621