浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
[ "宋万通,男,1986年生. 中国科学院长春应用化学研究所研究员,博士生导师. 2008年本科毕业于南京大学,2013年博士毕业于中国科学院长春应用化学研究所,之后留所工作,历任助理研究员,副研究员和研究员. 2016~2018年在国家公派留学基金的资助下赴美国北卡罗来纳大学教堂山分校进行博士后研究. 曾获得2018年度美中抗癌协会&亚洲癌症研究基金会青年学者奖,2019年度中美纳米医学与纳米技术学会未来之星奖. 2020年入选中国科学院青年创新促进会,2022年获得国家自然科学基金优秀青年科学基金资助. 主要从事以高分子材料为基础的抗肿瘤药物及疫苗的体内递送研究. E-mail: wtsong@ciac.ac.cn" ]
纸质出版日期:2023-06-20,
网络出版日期:2023-02-02,
收稿日期:2022-11-22,
录用日期:2022-12-30
扫 描 看 全 文
司星辉,宋万通,陈学思.免疫治疗药物传输材料[J].高分子学报,2023,54(06):837-852.
Si Xing-hui,Song Wan-tong,Chen Xue-si.Polymeric Drug Delivery Materials for Cancer Immunotherapy[J].ACTA POLYMERICA SINICA,2023,54(06):837-852.
司星辉,宋万通,陈学思.免疫治疗药物传输材料[J].高分子学报,2023,54(06):837-852. DOI: doi:10.11777/j.issn1000-3304.2022.22401.
Si Xing-hui,Song Wan-tong,Chen Xue-si.Polymeric Drug Delivery Materials for Cancer Immunotherapy[J].ACTA POLYMERICA SINICA,2023,54(06):837-852. DOI: doi:10.11777/j.issn1000-3304.2022.22401.
免疫治疗是当前肿瘤治疗领域最具前景的治疗方法. 尽管如此,免疫治疗依旧面临着许多问题,如免疫响应率低、免疫相关副作用等. 利用药物传输材料靶向可控传输免疫药物,是解决免疫药物当前问题,进一步提升免疫药物治疗指数的重要手段. 相比于化疗药物,免疫药物的作用靶点、作用机制以及作用方式都有所不同,这对传输材料的设计提出了新的挑战. 本文将总结免疫药物体内传输过程中所面临的挑战,并以本课题组的工作为基础,从肿瘤和淋巴结两个方面,介绍用于肿瘤免疫治疗的高分子药物传输材料的设计思路及代表性结果,最后展望了未来免疫药物传输中需要解决的问题及发展方向.
In recent years
immunotherapy
as a new therapeutic method
received extensive attention in the field of tumor therapy due to the exciting therapeutic effects on many types of malignant tumors. Though the development of immunotherapy is in full swing
immunotherapy still faces many challenges
such as low immune response rate
immune related adverse events. Using drug delivery materials for targeted delivery immune agents is an effective means to solve the current problems of immunodrugs and further improve the therapeutic index. Compared to chemotherapeutic agents
the target
mechanism and mode of action of immune agents are different
which poses a new challenge to the design of drug delivery materials. In this paper
we summarized the challenges in the process of immunodrugs delivery
and introduced the design ideas and representative results of polymeric materials for immune drug delivery to the tumor and lymph nodes. For the delivery of immune drug to tumor
we firstly showed 3 types of nanoparticles——polypeptide-dexamethasone conjugate
aspirin polymeric prodrug and nano-assembly of bile acid receptor modulators for releasing the immunosuppression in the tumor site. Then we introduced the poly(lactic acid) block polyethyleneimine CpG loaded nanoparticles combination with oxaliplatin for inducing the immunogenic death and further enhancing the
in situ
antitumor immunity. Finally
we present the strategy of hierarchical delivery of immune agents to tumors and lymph nodes using supramolecular assembled programmable nanomedicine. Furthermore
the influence of drug release mode on the immune stimulation effect was explored by the implants crosslinked by poly(ethylene glycol) and polysaccharide. For the delivery of immune drug to lymph node
pathogen-mimicking polymeric nanoparticles were used for realizing the efficient reflux of antigen and adjuvant to lymph nodes
and polyethyleneimine derivatives with stimulator of interferon genes (STING) adjuvant function were synthesized for achieving the spatiotemporal synergy between activating antigen presenting cells and promoting antigen cross presentation. Finally
we forwarded the problems that need to be solved and the future research direction in the field of immunodrug delivery.
生物医用高分子药物载体肿瘤治疗免疫治疗
Biomedical polymersDrug deliveryTumor therapyImmunotherapy
Arvanitis C. D.; Ferraro G. B.; Jain R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer, 2020, 20(1), 26-41. doi:10.1038/s41568-019-0205-xhttp://dx.doi.org/10.1038/s41568-019-0205-x
Carneiro B. A.; El-Deiry W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi:10.1038/s41571-020-0341-yhttp://dx.doi.org/10.1038/s41571-020-0341-y
Hegde P. S.; Chen D. S. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1), 17-35. doi:10.1016/j.immuni.2019.12.011http://dx.doi.org/10.1016/j.immuni.2019.12.011
Topalian S. L.; Brahmer J. R.; Gettinger S. N.; Smith D. C.; McDermott D. F.; Powderly J. D.; Carvajal R. D.; Sosman J. A.; Atkins M. B.; Leming P. D.; Spigel D. R.; Antonia S. J.; Horn L.; Drake C. G.; Pardoll D. M.; Chen L. P.; Sharfman W. H.; Anders R. A.; Taube J. M.; McMiller T. L.; Xu H. Y.; Korman A. J.; Jure-Kunkel M.; Agrawal S.; McDonald D.; Kollia G. D.; Gupta A.; Wigginton J. M.; Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454. doi:10.1056/nejmoa1200690http://dx.doi.org/10.1056/nejmoa1200690
Sahai E.; Astsaturov I.; Cukierman E.; DeNardo D. G.; Egeblad M.; Evans R. M.; Fearon D.; Greten F. R.; Hingorani S. R.; Hunter T.; Hynes R. O.; Jain R. K.; Janowitz T.; Jorgensen C.; Kimmelman A. C.; Kolonin M. G.; Maki R. G.; Puré E.; Ramirez D. C.; Scherz-Shouval R.; Sherman M. H.; Stewart S.; Tlsty T. D.; Tuveson D. A.; Watt F. M.; Weaver V.; Weeraratna A. T.; Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186. doi:10.1038/s41568-019-0238-1http://dx.doi.org/10.1038/s41568-019-0238-1
Vaddepally R. K.; Kharel P.; Pandey R.; Garje R.; Chandra A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers, 2020, 12(3), 738. doi:10.3390/cancers12030738http://dx.doi.org/10.3390/cancers12030738
Waldman A. D.; Fritz J. M.; Lenardo M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi:10.1038/s41577-020-0306-5http://dx.doi.org/10.1038/s41577-020-0306-5
叶佳依, 高晶, 王当歌, 于海军. 基于纳米递药系统的肿瘤免疫检查点联合治疗研究进展. 中国科学: 生命科学, 2021, 51(7), 782-792.
Jiang J. P.; Mei J.; Yi S. Q.; Feng C. J.; Ma Y. F.; Liu Y.; Liu Y.; Chen C. Y. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv. Drug Deliv. Rev., 2022, 180, 114046. doi:10.1016/j.addr.2021.114046http://dx.doi.org/10.1016/j.addr.2021.114046
高晶, 王伟奇, 于海军. 酸敏感高分子纳米药物载体在肿瘤治疗中的应用研究. 高分子学报, 2019, 50(11), 1156-1166. doi:10.11777/j.issn1000-3304.2019.19133http://dx.doi.org/10.11777/j.issn1000-3304.2019.19133
A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12. Mol. Cancer, 2010, 9, 242. doi:10.1186/1476-4598-9-242http://dx.doi.org/10.1186/1476-4598-9-242
Maggi E.; Vultaggio A.; Matucci A. T-cell responses during allergen-specific immunotherapy. Curr. Opin. Allergy Clin. Immunol., 2012, 12(1), 1-6. doi:10.1097/aci.0b013e32834ecc9ahttp://dx.doi.org/10.1097/aci.0b013e32834ecc9a
Lei X.; Lei Y.; Li J. K.; Du W. X.; Li R. G.; Yang J.; Li J.; Li F.; Tan H. B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133. doi:10.1016/j.canlet.2019.11.009http://dx.doi.org/10.1016/j.canlet.2019.11.009
Martin J. D.; Cabral H.; Stylianopoulos T.; Jain R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266. doi:10.1038/s41571-019-0308-zhttp://dx.doi.org/10.1038/s41571-019-0308-z
De Vlieghere E.; Verset L.; Demetter P.; Bracke M.; De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch., 2015, 467(4), 367-382. doi:10.1007/s00428-015-1818-4http://dx.doi.org/10.1007/s00428-015-1818-4
候博, 王当歌, 高晶, 王晖, 李亚平, 于海军. 微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展. 药学学报, 2019, 54(10), 1802-1809. doi:10.16438/j.0513-4870.2019-0560http://dx.doi.org/10.16438/j.0513-4870.2019-0560
Balkwill F.; Mantovani A. Inflammation and cancer: back to virchow? Lancet, 2001, 357(9255), 539-545. doi:10.1016/s0140-6736(00)04046-0http://dx.doi.org/10.1016/s0140-6736(00)04046-0
Coussens L. M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867. doi:10.1038/nature01322http://dx.doi.org/10.1038/nature01322
Grivennikov S. I.; Greten F. R.; Karin M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi:10.1016/j.cell.2010.01.025http://dx.doi.org/10.1016/j.cell.2010.01.025
Mantovani A.; Allavena P.; Sica A.; Balkwill F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444. doi:10.1038/nature07205http://dx.doi.org/10.1038/nature07205
Prima V.; Kaliberova L. N.; Kaliberov S.; Curiel D. T.; Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl. Acad. Sci. U. S. A, 2017, 114(5), 1117-1122. doi:10.1073/pnas.1612920114http://dx.doi.org/10.1073/pnas.1612920114
Sharma S.; Stolina M.; Yang S. C.; Baratelli F.; Lin J. F.; Atianzar K.; Luo J.; Zhu L.; Lin Y.; Huang M.; Dohadwala M.; Batra R. K.; Dubinett S. M. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin. Cancer Res., 2003, 9(3), 961-968.
Murakami M.; Naraba H.; Tanioka T.; Semmyo N.; Nakatani Y.; Kojima F.; Ikeda T.; Fueki M.; Ueno A.; Oh-ishi S.; Kudo I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem., 2000, 275(42), 32783-32792. doi:10.1074/jbc.m003505200http://dx.doi.org/10.1074/jbc.m003505200
Swildens K. X.; Sillevis Smitt P. A. E.; van den Bent M. J.; French P. J.; Geurts M. The effect of dexamethasone on the microenvironment and efficacy of checkpoint inhibitors in glioblastoma: a systematic review. Neurooncol Adv., 2022, 4(1), vdac087. doi:10.1093/noajnl/vdac087http://dx.doi.org/10.1093/noajnl/vdac087
Tanabe T.; Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat., 2002, 68-69, 95-114.
Ma S.; Song W. T.; Xu Y. D.; Si X. H.; Zhang D. W.; Lv S. X.; Yang C. G.; Ma L. L.; Tang Z. H.; Chen X. S. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 2020, 232, 119676. doi:10.1016/j.biomaterials.2019.119676http://dx.doi.org/10.1016/j.biomaterials.2019.119676
Serhan C. N.; Hong S.; Gronert K.; Colgan S. P.; Devchand P. R.; Mirick G.; Moussignac R. L. Resolvins. J. Exp. Med., 2002, 196(8), 1025-1037. doi:10.1084/jem.20020760http://dx.doi.org/10.1084/jem.20020760
Silverstein F. E.; Faich G.; Goldstein J. L.; Simon L. S.; Pincus T.; Whelton A.; Makuch R.; Eisen G.; Agrawal N. M.; Stenson W. F.; Burr A. M.; Zhao W. W.; Kent J. D.; Lefkowith J. B.; Verburg K. M.; Geis G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA, 2000, 284(10), 1247-1255. doi:10.1001/jama.284.10.1247http://dx.doi.org/10.1001/jama.284.10.1247
Simmons D. L.; Botting R. M.; Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev., 2004, 56(3), 387-437. doi:10.1124/pr.56.3.3http://dx.doi.org/10.1124/pr.56.3.3
Tsujii M.; Kawano S.; DuBois R. N.. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. U. S. A., 1997, 94(7), 3336-3340. doi:10.1073/pnas.94.7.3336http://dx.doi.org/10.1073/pnas.94.7.3336
Ma S.; Song W. T.; Xu Y. D.; Si X. H.; Zhang Y.; Tang Z. H.; Chen X. S. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy. CCS Chem., 2020, 2(6), 390-400. doi:10.31635/ccschem.020.202000140http://dx.doi.org/10.31635/ccschem.020.202000140
Dapito D. H.; Mencin A.; Gwak G. Y.; Pradere J. P.; Jang M. K.; Mederacke I.; Caviglia J. M.; Khiabanian H.; Adeyemi A.; Bataller R.; Lefkowitch J. H.; Bower M.; Friedman R.; Sartor R. B.; Rabadan R.; Schwabe R. F. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 2012, 21(4), 504-516. doi:10.1016/j.ccr.2012.02.007http://dx.doi.org/10.1016/j.ccr.2012.02.007
Parker B. J.; Wearsch P. A.; Veloo A. C. M.; Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol., 2020, 11, 906. doi:10.3389/fimmu.2020.00906http://dx.doi.org/10.3389/fimmu.2020.00906
Reddy B. S.; Rivenson A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4, 5-f]quinoline, mutagenafood. Cancer Res., 1993, 53(17), 3914-3918.
Ridlon J. M.; Kang D. J.; Hylemon P. B.; Bajaj J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol., 2014, 30(3), 332-338. doi:10.1097/mog.0000000000000057http://dx.doi.org/10.1097/mog.0000000000000057
Chaput N.; Lepage P.; Coutzac C.; Soularue E.; Le Roux K.; Monot C.; Boselli L.; Routier E.; Cassard L.; Collins M.; Vaysse T.; Marthey L.; Eggermont A.; Asvatourian V.; Lanoy E.; Mateus C.; Robert C.; Carbonnel F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol., 2017, 28(6), 1368-1379. doi:10.1093/annonc/mdx108http://dx.doi.org/10.1093/annonc/mdx108
Li Z. P.; Yang S. Q.; Lin H. Z.; Huang J. W.; Watkins P. A.; Moser A. B.; DeSimone C.; Song X. Y.; Diehl A. M. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology, 2003, 37(2), 343-350. doi:10.1053/jhep.2003.50048http://dx.doi.org/10.1053/jhep.2003.50048
Mazmanian S. K.; Round J. L.; Kasper D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453(7195), 620-625. doi:10.1038/nature07008http://dx.doi.org/10.1038/nature07008
Song W. T.; Shen L. M.; Wang Y.; Liu Q.; Goodwin T. J.; Li J. J.; Dorosheva O.; Liu T. Z.; Liu R. H.; Huang L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun., 2018, 9(1), 2237. doi:10.1038/s41467-018-04605-xhttp://dx.doi.org/10.1038/s41467-018-04605-x
Xie G. X.; Wang X. N.; Huang F. J.; Zhao A. H.; Chen W. L.; Yan J. Y.; Zhang Y. J.; Lei S.; Ge K.; Zheng X. J.; Liu J. J.; Su M. M.; Liu P.; Jia W. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int. J. Cancer, 2016, 139(8), 1764-1775. doi:10.1002/ijc.30219http://dx.doi.org/10.1002/ijc.30219
Watanabe M.; Houten S. M.; Mataki C.; Christoffolete M. A.; Kim B. W.; Sato H.; Messaddeq N.; Harney J. W.; Ezaki O.; Kodama T.; Schoonjans K.; Bianco A. C.; Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489. doi:10.1038/nature04330http://dx.doi.org/10.1038/nature04330
Campbell C.; McKenney P. T.; Konstantinovsky D.; Isaeva O. I.; Schizas M.; Verter J.; Mai C.; Jin W. B.; Guo C. J.; Violante S.; Ramos R. J.; Cross J. R.; Kadaveru K.; Hambor J.; Rudensky A. Y. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581(7809), 475-479. doi:10.1038/s41586-020-2193-0http://dx.doi.org/10.1038/s41586-020-2193-0
Joyce S. A.; Gahan C. G. M. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig. Dis., 2017, 35(3), 169-177. doi:10.1159/000450907http://dx.doi.org/10.1159/000450907
Ji G. F.; Ma L. S.; Yao H. C.; Ma S.; Si X. H.; Wang Y. L.; Bao X.; Ma L. L.; Chen F. F.; Ma C.; Huang L.; Fang X. D.; Song W. T. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm. Sin. B, 2020, 10(11), 2171-2182. doi:10.1016/j.apsb.2020.09.004http://dx.doi.org/10.1016/j.apsb.2020.09.004
Dong S.; Ma S.; Liu Z. L.; Ma L. L.; Zhang Y.; Tang Z. H.; Deng M. X.; Song W. T. Functional amphiphilic poly(2-oxazoline) block copolymers as drug carriers: the relationship between structure and drug loading capacity. Chinese J Polym Sci, 2021, 39(7), 865-873. doi:10.1007/s10118-021-2547-6http://dx.doi.org/10.1007/s10118-021-2547-6
Ji G. F.; Si X. H.; Dong S.; Xu Y. J.; Li M. Q.; Yang B.; Tang Z. H.; Fang X. D.; Huang L.; Song W. T.; Chen X. S. Manipulating liver bile acid signaling by nanodelivery of bile acid receptor modulators for liver cancer immunotherapy. Nano Lett., 2021, 21(16), 6781-6791. doi:10.1021/acs.nanolett.1c01360http://dx.doi.org/10.1021/acs.nanolett.1c01360
Hammerich L.; Bhardwaj N.; Kohrt H. E.; Brody J. D. In situ vaccination for the treatment of cancer. Immunotherapy, 2016, 8(3), 315-330. doi:10.2217/imt.15.120http://dx.doi.org/10.2217/imt.15.120
Han L.; Yuan Z.; Guo K.; He L. Recent advances of in situ vaccine-based combination therapies in the treatment of cancer. Chin. Pharm. J., 2021, 56(19), 1537-1545.
Lurje I.; Werner W.; Mohr R.; Roderburg C.; Tacke F.; Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front. Immunol., 2021, 12, 650486. doi:10.3389/fimmu.2021.650486http://dx.doi.org/10.3389/fimmu.2021.650486
Xu Y. D.; Ma S.; Si X. H.; Zhao J. Y.; Yu H. Y.; Ma L. L.; Song W. T.; Tang Z. H. Polyethyleneimine-CpG nano complex as an in situ vaccine for boosting anticancer immunity in melanoma. Macromol. Biosci., 2021, 21(2), e2000207. doi:10.1002/mabi.202000207http://dx.doi.org/10.1002/mabi.202000207
Xu Y. D.; Ma S.; Zhao J. Y.; Si X. H.; Huang Z. C.; Zhang Y.; Song W. T.; Tang Z. H.; Chen X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res., 2022, 15(2), 1183-1192. doi:10.1007/s12274-021-3622-6http://dx.doi.org/10.1007/s12274-021-3622-6
Zhang Y.; Ma S.; Liu X. M.; Xu Y. D.; Zhao J. Y.; Si X. H.; Li H. X.; Huang Z. C.; Wang Z. X.; Tang Z. H.; Song W. T.; Chen X. S. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv. Mater., 2021, 33(7), e2007293. doi:10.1002/adma.202007293http://dx.doi.org/10.1002/adma.202007293
Fakhri E.; Eslami H.; Maroufi P.; Pakdel F.; Taghizadeh S.; Ganbarov K.; Yousefi M.; Tanomand A.; Yousefi B.; Mahmoudi S.; Kafil H. S. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol., 2020, 162, 956-974. doi:10.1016/j.ijbiomac.2020.06.211http://dx.doi.org/10.1016/j.ijbiomac.2020.06.211
Pomeroy J. E.; Helfer A.; Bursac N. Biomaterializing the promise of cardiac tissue engineering. Biotechnol. Adv., 2020, 42, 107353. doi:10.1016/j.biotechadv.2019.02.009http://dx.doi.org/10.1016/j.biotechadv.2019.02.009
Yang F.; Shi K.; Jia Y. P.; Hao Y.; Peng J. R.; Qian Z. Y. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol. Sin., 2020, 41(7), 911-927. doi:10.1038/s41401-020-0372-zhttp://dx.doi.org/10.1038/s41401-020-0372-z
Phuengkham H.; Song C.; Lim Y. T.. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv. Mater., 2019, 31(42), e1903242. doi:10.1002/adma.201903242http://dx.doi.org/10.1002/adma.201903242
Ren L.; Lim Y. T. Degradation-regulatable architectured implantable macroporous scaffold for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv. Funct. Mater., 2018, 28(47), 1804490. doi:10.1002/adfm.201804490http://dx.doi.org/10.1002/adfm.201804490
Ji G. F.; Zhang Y.; Si X. H.; Yao H. C.; Ma S.; Xu Y. D.; Zhao J. Y.; Ma C.; He C. L.; Tang Z. H.; Fang X. D.; Song W. T.; Chen X. S. Biopolymer immune implants' sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv. Mater., 2021, 33(3), e2004559. doi:10.1002/adma.202004559http://dx.doi.org/10.1002/adma.202004559
Si X. H.; Ji G. F.; Ma S.; Xu Y. D.; Zhao J. Y.; Huang Z. C.; Zhang Y.; Song W. T.; Tang Z. H. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater. Sci. Eng., 2020, 6(9), 5281-5289. doi:10.1021/acsbiomaterials.0c00840http://dx.doi.org/10.1021/acsbiomaterials.0c00840
Si X. H.; Ji G. F.; Ma S.; Chen H. Y.; Shi Z. Y.; Zhang Y.; Tang Z. H.; Song W. T.; Chen X. S. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy. J. Control. Release, 2023, 353, 289-302. doi:10.1016/j.jconrel.2022.11.028http://dx.doi.org/10.1016/j.jconrel.2022.11.028
Ke X. Y.; Howard G. P.; Tang H. Y.; Cheng B.; Saung M. T.; Santos J. L.; Mao H. Q. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Deliv. Rev., 2019, 151, 72-93. doi:10.1016/j.addr.2019.09.005http://dx.doi.org/10.1016/j.addr.2019.09.005
Liu H. P.; Moynihan K. D.; Zheng Y. R.; Szeto G. L.; Li A. V.; Huang B.; van Egeren D. S.; Park C.; Irvine D. J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507(7493), 519-522. doi:10.1038/nature12978http://dx.doi.org/10.1038/nature12978
Xu Y. D.; Ma S.; Zhao J. Y.; Chen H. Y.; Si X. H.; Huang Z. C.; Yu Z. T.; Song W. T.; Tang Z. H.; Chen X. S. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials, 2022, 284, 121489. doi:10.1016/j.biomaterials.2022.121489http://dx.doi.org/10.1016/j.biomaterials.2022.121489
Zhao J. Y.; Ma S.; Xu Y. D.; Si X. H.; Yao H. C.; Huang Z. C.; Zhang Y.; Yu H. Y.; Tang Z. H.; Song W. T.; Chen X. S. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021, 268, 120542. doi:10.1016/j.biomaterials.2020.120542http://dx.doi.org/10.1016/j.biomaterials.2020.120542
Ishikawa H.; Ma Z.; Barber G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265), 788-792. doi:10.1038/nature08476http://dx.doi.org/10.1038/nature08476
West A. P.; Khoury-Hanold W.; Staron M.; Tal M. C.; Pineda C. M.; Lang S. M.; Bestwick M.; Duguay B. A.; Raimundo N.; MacDuff D. A.; Kaech S. M.; Smiley J. R.; Means R. E.; Iwasaki A.; Shadel G. S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520(7548), 553-557. doi:10.1038/nature14156http://dx.doi.org/10.1038/nature14156
Zhao J. Y.; Xu Y. D.; Ma S.; Wang Y. B.; Huang Z. C.; Qu H. Y.; Yao H. C.; Zhang Y.; Wu G. L.; Huang L.; Song W. T.; Tang Z. H.; Chen X. S. A minimalist binary vaccine carrier for personalized postoperative cancer vaccine therapy. Adv. Mater., 2022, 34(10), e2109254. doi:10.1002/adma.202109254http://dx.doi.org/10.1002/adma.202109254
Zhao J. Y.; Song W. T.; Tang Z. H.; Chen X. S. Macromolecular effects in medicinal chemistry. Acta Chim. Sin., 2022, 80(4), 563. doi:10.6023/a21120602http://dx.doi.org/10.6023/a21120602
Lavine J. S.; Rohani P. Resolving pertussis immunity and vaccine effectiveness using incidence time series. Expert Rev. Vaccines, 2012, 11(11), 1319-1329. doi:10.1586/erv.12.109http://dx.doi.org/10.1586/erv.12.109
Sarmadi M.; Ta C.; van Lonkhuyzen A. M.; De Fiesta D. C.; Kanelli M.; Sadeghi I.; Behrens A. M.; Ingalls B.; Menon N.; Daristotle J. L.; Yu J. L.; Langer R.; Jaklenec A. Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. Sci. Adv., 2022, 8(28), eabn5315. doi:10.1126/sciadv.abn5315http://dx.doi.org/10.1126/sciadv.abn5315
Shih T. Y.; Najibi A. J.; Bartlett A. L.; Li A. W.; Mooney D. J. Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine. Biomaterials, 2021, 279, 121240. doi:10.1016/j.biomaterials.2021.121240http://dx.doi.org/10.1016/j.biomaterials.2021.121240
Han L.; Peng K.; Qiu L. Y.; Li M.; Ruan J. H.; He L. L.; Yuan Z. X. Hitchhiking on controlled-release drug delivery systems: opportunities and challenges for cancer vaccines. Front. Pharmacol., 2021, 12, 679602. doi:10.3389/fphar.2021.679602http://dx.doi.org/10.3389/fphar.2021.679602
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构