浏览全部资源
扫码关注微信
1.中石化(北京)化工研究院有限公司 北京 100013
2.中国科学院化学研究所 北京 100190
3.北京化工大学 化工资源有效利用国家重点实验室 北京 100029
E-mail: zhangchb.bjhy@sinopec.com;
E-mail: wuyx@mail.buct.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-09-27,
收稿日期:2024-05-09,
录用日期:2024-06-17
移动端阅览
张春波, 杨博, 任敏巧, 贾雪飞, 王珅, 李娟, 张龙贵, 吴一弦. 聚异丁烯性能的分子量依赖性[J]. 高分子学报, 2025,56(2):342-349.
CHUN-BO ZHANG, BO YANG, MIN-QIAO REN, XUE-FEI JIA, SHEN WANG, JUAN LI, LONG-GUI ZHANG, YI-XIAN WU. Molecular Weight Dependence of Properties of Polyisobutylenes. [J]. Acta polymerica sinica, 2025, 56(2): 342-349.
张春波, 杨博, 任敏巧, 贾雪飞, 王珅, 李娟, 张龙贵, 吴一弦. 聚异丁烯性能的分子量依赖性[J]. 高分子学报, 2025,56(2):342-349. DOI: 10.11777/j.issn1000-3304.2024.24132. CSTR: 32057.14.GFZXB.2024.7271.
CHUN-BO ZHANG, BO YANG, MIN-QIAO REN, XUE-FEI JIA, SHEN WANG, JUAN LI, LONG-GUI ZHANG, YI-XIAN WU. Molecular Weight Dependence of Properties of Polyisobutylenes. [J]. Acta polymerica sinica, 2025, 56(2): 342-349. DOI: 10.11777/j.issn1000-3304.2024.24132. CSTR: 32057.14.GFZXB.2024.7271.
对不同分子量聚异丁烯(PIB)的流变性能和拉伸行为进行研究,并利用广角X射线衍射(WAXD)技术追踪了超高分子量PIB (UHMW-PIB)在单向连续拉伸和循环拉伸过程中的结构演化. 明确了PIB的分子量与其黏度、黏弹性及弹性的对应关系. 室温时,以弹性为主的UHMW-PIB在单向拉伸过程中表现出优异的延展性;WAXD结果表明,UHMW-PIB在拉伸至大倍率时发生拉伸诱导结晶;当拉伸倍率为11倍时,重均分子量为3.28×10
6
g/mol的样品的结晶度约为10.7%. 将UHMW-PIB的循环拉伸行为与文献中热塑性聚氨酯相比,在拉伸倍率相同的情况下,UHMW-PIB的残余倍率更低,循环拉伸回复性能更优异. 在应力卸载过程中,UHMW-PIB中所形成的晶体逐渐熔化,逐渐恢复到非晶态. PIB的拉伸行为与其分子量、缠结结构及拉伸诱导结晶密切相关. 研究结果有望为PIB的工业应用提供参考.
The rheological and tensile behaviors of polyisobutylenes (PIBs) with different molecular weights were studied. The structural evolution of ultrahigh molecular weight PIB (UHMW-PIB) during uniaxial and cyclic deformation was traced by wide-angle X-ray diffraction (WAXD). The molecular weight of PIB in relati
on to its viscosity
viscoelasticity and elasticity was determined. The UHMW-PIB
which is mainly elastic
exhibits excellent ductility during uniaxial tensile process. The results of WAXD indicate that the stretch-induced crystallization takes place in the UHMW-PIB when stretched to large ratio. As the stretching ratio is 11
the crystallinity of UHMW-PIB with weight-average molecular weight of 3.28×10
6
g/mol is as high as 10.7%. The UHMW-PIB shows good strain recovery performance after cyclic stretching. Compared to the thermoplastic polyurethane in the literature
the residual ratio of UHMW-PIB is much lower when the stretching ratio is the same. In the unloading process
the formed crystallites will gradually melt and return to the amorphous state. The tensile behavior of PIB is closely related to its molecular weight
entanglement structure and stretch-induced crystallization. This work would provide reference for the industrial application of PIB.
聚异丁烯分子量流变循环拉伸拉伸诱导结晶
PolyisobutyleneMolecular weightRheologyCyclic deformationStretch-induced crystallization
李慧芳, 贾军纪, 黄安平, 朱博超. 聚异丁烯的性能及应用. 广东化工, 2014, 41(8), 84, 90. doi:10.3969/j.issn.1007-1865.2014.08.042http://dx.doi.org/10.3969/j.issn.1007-1865.2014.08.042
魏绪玲, 徐典宏, 龚光碧, 张华强, 梁滔, 李晶, 徐小妹, 朱晶. 国内外聚异丁烯生产现状. 合成橡胶工业, 2020, 43(6), 521-526.
Roy D.; Roland C. M.Reentanglement kinetics in polyisobutylene. Macromolecules, 2013, 46(23), 9403-9408. doi:10.1021/ma402074bhttp://dx.doi.org/10.1021/ma402074b
Ransom T. C.; Roy D.; Puskas J. E.; Kaszas G.; Roland C. M.Molecular weight dependence of the viscosity of highly entangled polyisobutylene. Macromolecules, 2019, 52(14), 5177-5182. doi:10.1021/acs.macromol.9b00993http://dx.doi.org/10.1021/acs.macromol.9b00993
Plazek D. J.; Zheng X. D.; Ngai K. L.Viscoelastic properties of amorphous polymers. Ⅰ. Different temperature dependences of segmental relaxation and terminal dispersion. Macromolecules, 1992, 25(19), 4920-4924. doi:10.1021/ma00045a016http://dx.doi.org/10.1021/ma00045a016
Drucker, D. C. In: Harrison, V. G. W. ed. Proceedings of the Second International Congress on Rheology. London: Butterscotch, 1954. 156-163. doi:10.1126/science.120.3119.563.bhttp://dx.doi.org/10.1126/science.120.3119.563.b
Plazek D. J.; Chay I. C.; Ngai K. L.; Roland C. M.Viscoelastic properties of polymers. 4. Thermorheological complexity of the softening dispersion in polyisobutylene. Macromolecules, 1995, 28(19), 6432-6436. doi:10.1021/ma00123a007http://dx.doi.org/10.1021/ma00123a007
Santangelo P. G.; Roland C. M.; Puskas J. E.Rheology of star-branched polyisobutylene. Macromolecules, 1999, 32(6), 1972-1977. doi:10.1021/ma9815556http://dx.doi.org/10.1021/ma9815556
卢新亚, 姜炳政. 高聚物玻璃化转变温度和分子参数的关系Ⅱ. 分子量对玻璃化转变温度的影响. 高分子学报, 1990, (5), 532-537. doi:10.1007/BF02006102http://dx.doi.org/10.1007/BF02006102
Treloar L. R. G.The Physics of Rubber Elasticity. Oxford: Oxford UK, 1975. 2-3.
Tosaka M.; Murakami S.; Poompradub S.; Kohjiya S.; Ikeda Y.; Toki S.; Sics I.; Hsiao B. S.Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules, 2004, 37(9), 3299-3309. doi:10.1021/MA0355608http://dx.doi.org/10.1021/MA0355608
Toki S.; Sics I.; Ran S. F.; Liu L. Z.; Hsiao B. S.; Murakami S.; Tosaka M.; Kohjiya S.; Poompradub S.; Ikeda Y.; Tsou A. H.Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study. Rubber Chem. Technol., 2004, 77(2), 317-335. doi:10.5254/1.3547826http://dx.doi.org/10.5254/1.3547826
Zhu P.; Dong X.; Wang D. J.Strain-induced crystallization of segmented copolymers: deviation from the classic deformation mechanism. Macromolecules, 2017, 50(10), 3911-3921. doi:10.1021/acs.macromol.6b02747http://dx.doi.org/10.1021/acs.macromol.6b02747
Fuller C. S.; Frosch C. J.; Pape N. R.X-ray examination of polyisobutylene. J. Am. Chem. Soc., 1940, 62(8), 1905-1913. doi:10.1021/ja01865a003http://dx.doi.org/10.1021/ja01865a003
Koch M. J. H.; Bordas J.; Schöla E.; Broecker H. C.Kinetic study of the crystallization of stretched polyisobutylene using synchrotron radiation. Polym. Bull., 1979, 1(10), 709-714. doi:10.1007/bf00255446http://dx.doi.org/10.1007/bf00255446
Zhao B. J.; Li X. Y.; Huang Y. J.; Cong Y. H.; Ma Z.; Shao C. G.; An H. N.; Yan T.; Li L. B.Inducing crystallization of polymer through stretched network. Macromolecules, 2009, 42(5), 1428-1432. doi:10.1021/ma802679hhttp://dx.doi.org/10.1021/ma802679h
Candau N.; Laghmach R.; Chazeau L.; Chenal J. M.; Gauthier C.; Biben T.; Munch E.Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules, 2014, 47(16), 5815-5824. doi:10.1021/ma5006843http://dx.doi.org/10.1021/ma5006843
Flory P. J.Thermodynamics of crystallization in high polymers. Ⅰ. Crystallization induced by stretching. J. Chem. Phys., 1947, 15(6), 397-408. doi:10.1063/1.1746537http://dx.doi.org/10.1063/1.1746537
Zhang C. B.; Liu C.; Wang L.; Zhao Y.; Liu G. M.; Wang D. J.Verification of thermodynamic theories of strain-induced polymer crystallization. Chem. Commun., 2022, 58, 286-289. doi:10.1039/d1cc04134ghttp://dx.doi.org/10.1039/d1cc04134g
Scetta G.; Ju J. Z.; Selles N.; Heuillet P.; Ciccotti M.; Creton C.Strain induced strengthening of soft thermoplastic polyurethanes under cyclic deformation. J. Polym. Sci., 2021, 59(8), 685-696. doi:10.1002/pol.20210060http://dx.doi.org/10.1002/pol.20210060
0
浏览量
209
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构