浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中科院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: xcbian@ciac.ac.cn
sunhai@ciac.ac.cn
xschen@ciac.ac.cn
纸质出版日期:2025-01-20,
网络出版日期:2024-09-27,
收稿日期:2024-06-13,
录用日期:2024-07-12
移动端阅览
胡锦博, 王文博, 杜晔奇, 张昊, 刘焱龙, 边新超, 孙海, 陈学思. 聚乳酸衍生物的高效合成及其性能研究. 高分子学报, 2025, 56(1), 26-35
Hu, J. B.; Wang, W. B.; Du, Y. Q; Zhang, H.; Liu, Y. L.; Bian, X. C.; Sun, H.; Chen, X. S. Efficient synthesis and performance investigation of poly(lactide) derivatives. Acta Polymerica Sinica, 2025, 56(1), 26-35
胡锦博, 王文博, 杜晔奇, 张昊, 刘焱龙, 边新超, 孙海, 陈学思. 聚乳酸衍生物的高效合成及其性能研究. 高分子学报, 2025, 56(1), 26-35 DOI: 10.11777/j.issn1000-3304.2024.24164. CSTR: 32057.14.GFZXB.2024.7277.
Hu, J. B.; Wang, W. B.; Du, Y. Q; Zhang, H.; Liu, Y. L.; Bian, X. C.; Sun, H.; Chen, X. S. Efficient synthesis and performance investigation of poly(lactide) derivatives. Acta Polymerica Sinica, 2025, 56(1), 26-35 DOI: 10.11777/j.issn1000-3304.2024.24164. CSTR: 32057.14.GFZXB.2024.7277.
发展可再生、可降解的脂肪族聚酯材料有望部分替代目前广泛使用的聚烯烃类材料,对于解决塑料污染问题具有重要意义. 本文工作以商业化
α
-氨基酸作为初始原料,设计合成了一类结构上类似于丙交酯(LA)的取代乙交酯单体(substituted-glycolide,sGA),研究了单体的开环聚合(ROP)反应过程以及侧链结构对聚合物热性能、力学性能以及回收性能的影响. 结果表明,使用辛酸亚锡(Sn(Oct)
2
)/苯甲醇(BnOH)催化体系可以实现sGAs单体的高效可控ROP,并且所得聚合物保持高的立构规整度. 通过对聚合反应条件的控制,所有的单体都可以聚合得到高分子量聚合物. 此外,含有较长碳链的聚合物具有最低的玻璃化转变温度(
T
g
),同时,这些聚合物热稳定性与聚乳酸(PLA)相似. 力学性能方面,侧链为乙基的聚合物链可以通过折叠排列形成规整的晶体结构,表现出兼具柔韧性与强度的特性. 最后,这些聚合物都可以在Sn(Oct)
2
催化下解聚回收为单体而不影响再次聚合.
The development of renewable and biodegradable aliphatic polyester materials was promising for partially replacing the widely used polyolefin materials
which was of significant importance for addressing plastic pollution issues. This study employed commercial
α
-amino acids as starting materials to design and synthesize a class of substituted glycolide monomers (sGAs) structurally resembling lactide (LA). The ring-opening polymerization (ROP) process of the monomers and the influence of side chain structure on the thermal
mechanical
and recyclable properties of the polymers. The results demonstrated that efficient and controlled ROP of sGAs could be achieved using a catalytic system comprising tin octoate (Sn(Oct)
2
) and benzyl alcohol (BnOH)
yielding polymers with high stereo-regularity. By controlling the polymerization conditions
all monomers could be polymerized into high molecular weight polymers. Furthermore
polymers with longer carbon chains exhibited the lowest glass transition temperatures (
T
g
)
and their thermal stability was comparable to that of poly(lactide) (PLA). Regarding mechanical properties
polymers with ethyl side chains could form regular crystalline structures through folding arrangements
exhibiting characteristics of both flexibility and strength. Lastly
these polymers could be depolymerized and recycled back to monomers under Sn(Oct)
2
catalysis without affecting subsequent polymerization.
取代乙交酯开环聚合聚乳酸衍生物解聚回收
Substituted glycolideRing opening polymerizationPoly(lactide) derivativesDepolymerization recycling
Zhang Q. N.; Song M. Z.; Xu Y. Y.; Wang W. C.; Wang Z.; Zhang L. Q.Bio-based polyesters: recent progress and future prospects. Prog. Polym. Sci., 2021, 120, 101430. doi:10.1016/j.progpolymsci.2021.101430http://dx.doi.org/10.1016/j.progpolymsci.2021.101430
Vilela C.; Sousa A. F.; Fonseca A. C.; Serra A. C.; Coelho J. F. J.; Freire C. S. R.; Silvestre A. J. D.The quest for sustainable polyesters—insights into the future. Polym. Chem., 2014, 5(9), 3119-3141. doi:10.1039/c3py01213ahttp://dx.doi.org/10.1039/c3py01213a
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10), 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Farah S.; Anderson D. G.; Langer R.Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv. Drug Deliv. Rev., 2016, 107, 367-392. doi:10.1016/j.addr.2016.06.012http://dx.doi.org/10.1016/j.addr.2016.06.012
Huang Y. Z.; Hu C. Y.; Zhou Y. C.; Duan R. L.; Sun Z. Q.; Wan P. Q.; Xiao C. S.; Pang X.; Chen X. S.Monomer controlled switchable copolymerization: a feasible route for the functionalization of poly(lactide). Angew. Chem. Int. Ed, 2021, 60(17), 9274-9278. doi:10.1002/anie.202017088http://dx.doi.org/10.1002/anie.202017088
王丽颖, 沈勇, 李志波. 生物基δ-己内酯与L-丙交酯顺序开环共聚制备热塑性弹性体及其性质研究. 高分子学报, 2024, 55(5), 582-593.
Jia Z. W.; Zhang X. F.; Xian J.; He C. X.; Fu H. J.; Cao L. Y.; Pan X. B.; Wu J. C.Efficient access to sequence-controlled poly(α-hydroxy acids) with Ax(BC)yDz-type and Ax(BC)yAz-type triblock structures via self-switchable ring-opening polymerization of monomer mixtures. ACS Macro Lett., 2023, 12(6), 710-718. doi:10.1021/acsmacrolett.3c00211http://dx.doi.org/10.1021/acsmacrolett.3c00211
Basu A.; Kunduru K. R.; Doppalapudi S.; Domb A. J.; Khan W.Poly(lactic acid) based hydrogels. Adv. Drug Deliv. Rev., 2016, 107, 192-205. doi:10.1016/j.addr.2016.07.004http://dx.doi.org/10.1016/j.addr.2016.07.004
Zhou D. D.; Shao J.; Li G.; Sun J. R.; Bian X. C.; Chen X. S.Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer, 2015, 62, 70-76. doi:10.1016/j.polymer.2015.02.019http://dx.doi.org/10.1016/j.polymer.2015.02.019
Huang W. J.; Zhang X. Z.; Zheng X.; Zhang Z.; Ding B. N.; Zhang Y.; Wang X. H.Synergistic enhancement of modified sericite on rheological and foaming properties of poly(lactic acid). Int. J. Biol. Macromol., 2023, 253, 127235. doi:10.1016/j.ijbiomac.2023.127235http://dx.doi.org/10.1016/j.ijbiomac.2023.127235
Shi Z. Z.; Fan Z. Y.; Ma L.; Gong P. J.; Bao R. Y.; Yang M. B.; Yang W.Simultaneously enhanced stereo complexation and melt strength by dynamic polylactide toward heat-resistant green foams. Macromolecules, 2023, 56(21), 8735-8746. doi:10.1021/acs.macromol.3c01595http://dx.doi.org/10.1021/acs.macromol.3c01595
Rasal R. M.; Janorkar A. V.; Hirt D. E.Poly(lactic acid) modifications. Prog. Polym. Sci., 2010, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003http://dx.doi.org/10.1016/j.progpolymsci.2009.12.003
Basu A.; Kunduru K. R.; Katzhendler J.; Domb A. J.Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Adv. Drug Deliv. Rev., 2016, 107, 82-96. doi:10.1016/j.addr.2016.08.003http://dx.doi.org/10.1016/j.addr.2016.08.003
Baker G.; Vogel E.; Smith M.III. Glass transitions in polylactides. Polymer Revs., 2008, 48(1), 64-84. doi:10.1080/15583720701834208http://dx.doi.org/10.1080/15583720701834208
Yu Y.; Zou J.; Cheng C.Synthesis and biomedical applications of functional poly(α-hydroxyl acid)s. Polym. Chem., 2014, 5(20), 5854-5872. doi:10.1039/c4py00667dhttp://dx.doi.org/10.1039/c4py00667d
Ghanbari A.; Prud'homme R. E.Lamellar and spherulitic crystallization of poly(s-2-hydroxybutanoic acid) and its stereo complexes. Polymer, 2017, 112, 377-384. doi:10.1016/j.polymer.2017.02.018http://dx.doi.org/10.1016/j.polymer.2017.02.018
Marubayashi H.; Mizukami R.; Hamada Y.; Nojima S.Crystallizability of substituted poly(lactic acid)s: effects of alkyl side-chain structure. Polym. Degrad. Stabil., 2018, 153, 318-324. doi:10.1016/j.polymdegradstab.2018.04.033http://dx.doi.org/10.1016/j.polymdegradstab.2018.04.033
Cohen-Arazi N.; Domb A. J.; Katzhendler J.Poly(alpha-hydroxy alkanoic acid)s derived from alpha-amino acids. Macromol. Biosci., 2013, 13(12), 1689-1699. doi:10.1002/mabi.201300266http://dx.doi.org/10.1002/mabi.201300266
Lu Y. B.; Yin L. C.; Zhang Y. F.; Zhang Z. H.; Xu Y. X.; Tong R.; Cheng J. J.Synthesis of water-soluble poly(α-hydroxy acids) from living ring-opening polymerization of O-benzyl-l-serine carboxyanhydrides. ACS Macro Lett., 2012, 1(4), 441-444. doi:10.1021/mz200165chttp://dx.doi.org/10.1021/mz200165c
Yin M.; Baker G. L.Preparation and characterization of substituted polylactides. Macromolecules, 1999, 32(23), 7711-7718. doi:10.1021/ma9907183http://dx.doi.org/10.1021/ma9907183
Simmons, T. L.; Baker, G. L. Poly(phenyllactide): synthesis, characterization, and hydrolytic degradation. Biomacromolecules, 2001, 2(3), 658-663. doi:10.1021/bm005639+http://dx.doi.org/10.1021/bm005639+
Liu T. Q.; Simmons T. L.; Bohnsack D. A.; MacKay M. E.; Smith M. R.; Baker G. L.Synthesis of polymandelide: a degradable polylactide derivative with polystyrene-like properties. Macromolecules, 2007, 40(17), 6040-6047. doi:10.1021/ma061839nhttp://dx.doi.org/10.1021/ma061839n
Onur Arıcan M.; Mert O.Symmetrical substituted glycolides: methodology and polymerization. Polym. Chem., 2020, 11(27), 4477-4491. doi:10.1039/d0py00611dhttp://dx.doi.org/10.1039/d0py00611d
朱忆诺, 陶友华. 基于氨基酸基交硫酯单体的闭环回收高分子. 高分子学报, 2022, 53(9), 1023-1031. doi:10.11777/j.issn1000-3304.2022.22102http://dx.doi.org/10.11777/j.issn1000-3304.2022.22102
McGuire T. M.; Buchard A.; Williams C.Chemical recycling of commercial poly(l-lactic acid) to l-lactide using a high-performance Sn(II)/alcohol catalyst system. J. Am. Chem. Soc., 2023, 145(36), 19840-19848. doi:10.1021/jacs.3c05863http://dx.doi.org/10.1021/jacs.3c05863
Feng L. D.; Bian X. C.; Li G.; Chen X. S.Effect of exogenous carboxyl and hydroxyl groups on pyrolysis reaction of high molecular weight poly(L-lactide) under the catalysis of tin. Chinese J. Polym. Sci., 2021, 39(8), 966-974. doi:10.1007/s10118-021-2557-4http://dx.doi.org/10.1007/s10118-021-2557-4
Cederholm L.; Wohlert D. J.; Olsén D. P.; Hakkarainen P. M.; Odelius D. K."Like recycles like": selective ring-closing depolymerization of poly(L-lactic acid) to L-lactide. Angew. Chem. Int. Ed., 2022, 61(33), e202204531. doi:10.1002/anie.202204531http://dx.doi.org/10.1002/anie.202204531
Guo X. H.; Xu G. Q.; Yang R. L.; Wang Q. G.Specific discrimination polymerization for highly isotactic polyesters synthesis. J. Am. Chem. Soc., 2024, 146(13), 9084-9095. doi:10.1021/jacs.3c14091http://dx.doi.org/10.1021/jacs.3c14091
Li G. J.; Xu G. Q.; Guo X. H.; Yang R. L.; Sun H. G.; Wang Q. G.Polymer tacticity control for stereoselective ring-opening polymerization of racemic n-propylglycolide. ACS Catal., 2024, 14(2), 1173-1182. doi:10.1021/acscatal.3c04798http://dx.doi.org/10.1021/acscatal.3c04798
Bauer T.; Gajewiak J.α-Hydroxy carboxylic acids as ligands for enantioselective diethylzinc additions to aromatic and aliphatic aldehydes. Tetrahedron, 2004, 60(41), 9163-9170. doi:10.1016/j.tet.2004.07.060http://dx.doi.org/10.1016/j.tet.2004.07.060
Dusselier M.; van Wouwe P.; Dewaele A.; Jacobs P. A.; Sels B. F.Shape-selective zeolite catalysis for bioplastics production. Science, 2015, 349(6243), 78-80. doi:10.1126/science.aaa7169http://dx.doi.org/10.1126/science.aaa7169
0
浏览量
200
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构