浏览全部资源
扫码关注微信
1.纺织新材料与先进加工技术国家重点实验室 武汉纺织大学材料科学与工程学院 武汉 430073
2.高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
[ "殷先泽,男,1983年生,武汉纺织大学材料科学与工程学院教授,阳光学者特聘教授,湖北省纺织产业发展研究会理事,湖北省教育厅创新团队负责人(2022年). 获湖北省杰出青年基金资助(2022年). 长期从事高分子复合材料流变学、生物基纤维材料加工与应用、有机-无机杂化流体合成及应用等研究. 近年来承担国家自然科学基金面上和青年项目、湖北省自然科学基金重点项目、四川省重点研发计划等项目10余项. 发表论文100余篇,其中SCI/EI收录90篇,引用2700余次,ESI高倍引3篇,授权发明专利20项,出版学术专著1部,获得中纺联纺织之光教师奖,中国化纤协会恒逸基金优秀学术论文,阳光青年拔尖人才,获湖北省科技进步二等奖1项,中国纺织工业协会科技进步二等奖1项." ]
[ "宋义虎,男,1971年生,浙江大学高分子系教授、博士生导师. 获教育部“新世纪优秀人才支持计划”(2010年)、浙江省“151人才工程”(2010年)及浙江省杰出青年基金(2014年)等人才项目支持;发表SCI/EI学术论文250余篇,其中以第一/通讯作者发表SCI/EI论文160余篇,SCI他引3000余次;获中国发明专利授权30项;获全国性学会奖1项(2013年),以主要完成人获省部级一等奖3项(2012、2013、2014年)、二等奖2项(2009、2022年);并获国际先进材料学会科学家奖(IAAM Scientist Award). 先后承担完成多项国家和省部级研究课题. 长期从事高分子纳米复合材料加工、流变与构-效关系研究,主要涉及粒子-高分子界面调控、黏弹性与微结构演化等. 近年来主要在高分子纳米复合材料线性、非线性动态流变行为方面开展研究工作." ]
纸质出版日期:2024-12-20,
网络出版日期:2024-10-23,
收稿日期:2024-06-13,
录用日期:2024-06-19
移动端阅览
殷先泽, 杨诗文, 宋义虎, 郑强. 无溶剂纳米流体的流变行为与应用研究进展. 高分子学报, ,2024, 55(12), 1648-1667
Yin, X. Z.; Yang, S. W.; Song, Y. H.; Zheng, Q. Advancements in the rheological behavior and practical applications of solvent-free nanofluids. ,Acta Polymerica Sinica, ,2024, 55(12), 1648-1667
殷先泽, 杨诗文, 宋义虎, 郑强. 无溶剂纳米流体的流变行为与应用研究进展. 高分子学报, ,2024, 55(12), 1648-1667 DOI: 10.11777/j.issn1000-3304.2024.24167. CSTR: 32057.14.GFZXB.2024.7279.
Yin, X. Z.; Yang, S. W.; Song, Y. H.; Zheng, Q. Advancements in the rheological behavior and practical applications of solvent-free nanofluids. ,Acta Polymerica Sinica, ,2024, 55(12), 1648-1667 DOI: 10.11777/j.issn1000-3304.2024.24167. CSTR: 32057.14.GFZXB.2024.7279.
无溶剂纳米流体是由无机或有机纳米粒子核及锚定在其表面冠状层组成的具有类液行为的纳米材料,是一种宏观均匀体系,具有无挥发性、纳米核分散稳定性、流变可控性和结构可调性等特点. 然而,无溶剂纳米流体结构和流变调控原理关系尚不明确. 本文综述了无溶剂纳米流体的设计原则和制备策略,从非均质动力学和冠状层分子构象及其转变等方面分析了冠状层受限动力学、应变局域化行为对无溶剂纳米流体类液-类固转变及类液体剪切变稀、类固体剪切屈服行为的影响机制,总结了纳米核、冠状层分子、冠状层链长、核-冠相互作用、温度及合成方式等因素对无溶剂纳米流体流变行为的影响,介绍了无溶剂纳米流体在导热、润滑、能源、气体分离、油水分离、生物医用等方面的研究进展. 最后,总结了无溶剂纳米流体应用性能和使役稳定性研究所面临的挑战,提出了需要解决的关键科学问题.
Solvent-free nanofluids are nanomaterials with liquid-like behavior consisting of inorganic or organic nanoparticle cores and a coronal layer anchored on their surface. It is a macroscopically homogeneous system characterized by non-volatility
nanocore dispersion stability
rheological controllability and structural tunability. However
the relationship between the structure of solvent-free nanofluids and the rheology regulation principle is still unclear. In this paper
we reviewed the design principles and preparation strategies of solvent-free nanofluids
analyzed the mechanisms of the restricted dynamics of the coronal layer
strain localization behavior on the liquid-like-solid-like transition and liquid-like shear thinning and solid-like shear yielding behaviors of solvent-free nanofluids in terms of non-homogeneous dynamics and coronal layer molecules conformation and their transformations
and summarized the effects of factors such as the coronal layer molecules
nanonuclei
nucleus-coronal interactions
and the length of coronal layer chains on the rheological behavior of solvent-free nanofluids. The research progress of solvent-free nanofluids in thermal conductivity
lubrication
energy
gas separation
oil-water separation
and biomedicine was introduced. Finally
we discussed the challenges on the application performance and service stability of solvent-free nanofluids
and puts forward the key scientific issues that need to be solved.
无溶剂纳米流体微观结构流变机理分子构象
Solvent-free nanofluidsMicrostructureRheological mechanismMolecular conformation
Bourlinos A. B.; Herrera R.; Chalkias N.; Jiang D. D.; Zhang Q.; Archer L. A.; Giannelis E. P.Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater., 2005, 17(2), 234-237. doi:10.1002/adma.200401060http://dx.doi.org/10.1002/adma.200401060
Bourlinos A. B.; Chowdhury S. R.; Jiang D. D.; Zhang Q.Weakly solvated PEG-functionalized silica nanoparticles with liquid-like behavior. J. Mater. Sci., 2005, 40(18), 5095-5097. doi:10.1007/s10853-005-1301-8http://dx.doi.org/10.1007/s10853-005-1301-8
Bourlinos A. B.; Ray Chowdhury S.; Herrera R.; Jiang D. D.; Zhang Q.; Archer L. A.; Giannelis E. P.Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv. Funct. Mater., 2005, 15(8), 1285-1290. doi:10.1002/adfm.200500076http://dx.doi.org/10.1002/adfm.200500076
Agarwal P.; Qi H. B.; Archer L. A.The ages in a self-suspended nanoparticle liquid. Nano Lett., 2010, 10(1), 111-115. doi:10.1021/nl9029847http://dx.doi.org/10.1021/nl9029847
Agrawal A.; Yu H. Y.; Sagar A.; Choudhury S.; Archer L. A.Molecular origins of temperature-induced jamming in self-suspended hairy nanoparticles. Macromolecules, 2016, 49(22), 8738-8747. doi:10.1021/acs.macromol.6b01280http://dx.doi.org/10.1021/acs.macromol.6b01280
Hamilton S. T.; Feric T. G.; Bhattacharyya S.; Cantillo N. M.; Greenbaum S. G.; Zawodzinski T. A.; Park A.H A. Nanoscale hybrid electrolytes with viscosity controlled using ionic stimulus for electrochemical energy conversion and storage. JACS Au, 2022, 2(3), 590-600. doi:10.1021/jacsau.1c00410http://dx.doi.org/10.1021/jacsau.1c00410
Mapesa E. U.; Cantillo N. M.; Hamilton S. T.; Harris M. A.; Zawodzinski T. A.Jr, Alissa Park, A. H.; Sangoro, J. Localized and collective dynamics in liquid-like polyethylenimine-based nanoparticle organic hybrid materials. Macromolecules, 2021, 54(5), 2296-2305. doi:10.1021/acs.macromol.0c02370http://dx.doi.org/10.1021/acs.macromol.0c02370
Yu H. Y.; Koch D. L.Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir, 2010, 26(22), 16801-16811. doi:10.1021/la102815rhttp://dx.doi.org/10.1021/la102815r
Yin X. Z.; Li Y.; Weng P. X.; Yu Q.; Han L.; Xu J.; Zhou Y. S.; Tan Y. Q.; Wang L. X.; Wang H.Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly(lactic acid) fibers fabricated via electrospinning approach. Compos. Sci. Technol., 2018, 167, 190-198. doi:10.1016/j.compscitech.2018.08.003http://dx.doi.org/10.1016/j.compscitech.2018.08.003
Sang Z.; Zhang W. Q.; Zhou Z. Y.; Fu H. K.; Tan Y. Q.; Sui K. Y.; Xia Y. Z.Functionalized alginate with liquid-like behaviors and its application in wet-spinning. Carbohydr. Polym., 2017, 174, 933-940. doi:10.1016/j.carbpol.2017.07.027http://dx.doi.org/10.1016/j.carbpol.2017.07.027
Yu Q.; Li Y.; Han L.; Yin X. Z.; Xu J.; Zhou Y. S.; Chen D. Z.; Du Z. L.; Wang L. X.; Tan Y. Q.Self-suspended starch fluids for simultaneously optimized toughness, electrical conductivity, and thermal conductivity of polylactic acid composite. Compos. Sci. Technol., 2019, 169, 76-85. doi:10.1016/j.compscitech.2018.11.015http://dx.doi.org/10.1016/j.compscitech.2018.11.015
Lv Y. K.; Sun X.; Yan S.; Xiong S. W.; Wang L. X.; Wang H.; Yang S. W.; Yin X. Z.Solvent-free halloysite nanotubes nanofluids based polyacrylonitrile fibrous membranes for protective and breathable textiles. Compos. Commun., 2022, 33, 101211. doi:10.1016/j.coco.2022.101211http://dx.doi.org/10.1016/j.coco.2022.101211
Karatrantos A. V.; Mugemana C.; Bouhala L.; Clarke N.; Kröger M.From ionic nanoparticle organic hybrids to ionic nanocomposites: structure, dynamics, and properties: a review. Nanomaterials, 2022, 13(1), 2. doi:10.3390/nano13010002http://dx.doi.org/10.3390/nano13010002
Fernandes N. J.; Wallin T. J.; Vaia R. A.; Koerner H.; Giannelis E. P.Nanoscale ionic materials. Chem. Mater., 2014, 26(1), 84-96. doi:10.1021/cm402372qhttp://dx.doi.org/10.1021/cm402372q
Bourlinos A.; Stassinopoulos A.; Anglos D.; Herrera R.; Anastasiadis S.; Petridis D.; Giannelis E.Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small, 2006, 2(4), 513-516. doi:10.1002/smll.200500411http://dx.doi.org/10.1002/smll.200500411
Lei Y. A.; Xiong C. X.; Dong L. J.; Guo H.; Su X. H.; Yao J. L.; You Y. J.; Tian D. M.; Shang X. M.Ionic liquid of ultralong carbon nanotubes. Small, 2007, 3(11), 1889-1893. doi:10.1002/smll.200700250http://dx.doi.org/10.1002/smll.200700250
Ju J. P.; Hao L. Y.; Yang S. W.; Wang D. D.; Zhang Y. Z.; Yuan H.; Yin X. Z.; Tan Y. Q.Designing robust, breathable, and antibacterial multifunctional porous membranes by a nanofluids templated strategy. Adv. Funct. Mater., 2020, 30(46), 2006544. doi:10.1002/adfm.202006544http://dx.doi.org/10.1002/adfm.202006544
Huang J.; Li Q.; Li D. N.; Wang Y.; Dong L. J.; Xie H. A.; Wang J.; Xiong C. X.Fluxible nanoclusters of Fe3O4 nanocrystal-embedded polyaniline by macromolecule-induced self-assembly. Langmuir, 2013, 29(32), 10223-10228. doi:10.1021/la402367chttp://dx.doi.org/10.1021/la402367c
Yu Q.; Qin Y.; Han M. Y.; Pan F.; Han L.; Yin X. Z.; Chen Z. M.; Wang L. X.; Wang H.Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane. Int. J. Biol. Macromol., 2020, 161, 122-131. doi:10.1016/j.ijbiomac.2020.06.027http://dx.doi.org/10.1016/j.ijbiomac.2020.06.027
Yao D. D.; Peng N. K.; Zheng Y. P.Enhanced mechanical and thermal performances of epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid. Compos. Sci. Technol., 2018, 167, 234-242. doi:10.1016/j.compscitech.2018.07.036http://dx.doi.org/10.1016/j.compscitech.2018.07.036
Bourlinos A.; Georgakilas V.; Tzitzios V.; Boukos N.; Herrera R.; Giannelis E.Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small, 2006, 2(10), 1188-1191. doi:10.1002/smll.200600221http://dx.doi.org/10.1002/smll.200600221
Lei Y. A.; Xiong C. X.; Guo H.; Yao J. L.; Dong L. J.; Su X. H.Controlled viscoelastic carbon nanotube fluids. J. Am. Chem. Soc., 2008, 130(11), 3256-3257. doi:10.1021/ja710014qhttp://dx.doi.org/10.1021/ja710014q
Li Q.; Dong L. J.; Fang J. F.; Xiong C. X.Property-structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes. ACS Nano, 2010, 4(10), 5797-5806. doi:10.1021/nn101542vhttp://dx.doi.org/10.1021/nn101542v
Zheng Y. P.; Yang R. L.; Wu F.; Li D. W.; Wang N.; Zhang A. B.A functional liquid-like multiwalled carbon nanotube derivative in the absence of solvent and its application in nanocomposites. RSC Adv., 2014, 4(57), 30004-30012. doi:10.1039/c4ra03403ahttp://dx.doi.org/10.1039/c4ra03403a
Li P. P.; Zheng Y. P.; Li M. Z.; Fan W. D.; Shi T.; Wang Y. D.; Zhang A. B.; Wang J. S.Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A Appl. Sci. Manuf., 2016, 81, 172-181. doi:10.1016/j.compositesa.2015.11.013http://dx.doi.org/10.1016/j.compositesa.2015.11.013
Warren S. C.; Banholzer M. J.; Slaughter L. S.; Giannelis E. P.; DiSalvo F. J.; Wiesner U. B.Generalized route to metal nanoparticles with liquid behavior. J. Am. Chem. Soc., 2006, 128(37), 12074-12075. doi:10.1021/ja064469rhttp://dx.doi.org/10.1021/ja064469r
Zhang J. X.; Zheng Y. P.; Lan L.; Mo S.; Yu P. Y.; Shi W.; Wang R. M.Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano, 2009, 3(8), 2185-2190. doi:10.1021/nn900557yhttp://dx.doi.org/10.1021/nn900557y
Tan Y. M.; Zheng Y. P.; Wang N.; Zhang A. B.Controlling the properties of solvent-free Fe3O4 nanofluids by corona structure. Nano Micro Lett., 2012, 4(4), 208-214. doi:10.1007/bf03353716http://dx.doi.org/10.1007/bf03353716
Yu Q.; Weng P. X.; Han L.; Yin X. Z.; Chen Z. M.; Hu X. H.; Wang L. X.; Wang H.Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 2019, 26(12), 7523-7535. doi:10.1007/s10570-019-02592-whttp://dx.doi.org/10.1007/s10570-019-02592-w
Wang F.; Xie Z.; Zhang B.; Liu Y.; Yang W. D.; Liu C. Y.Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication. Nanoscale, 2014, 6(7), 3818-3823. doi:10.1039/c3nr05869ghttp://dx.doi.org/10.1039/c3nr05869g
Li P. P.; Zheng Y. P.; Wu Y. W.; Qu P.; Yang R. L.; Zhang A. B.Nanoscale ionic graphene material with liquid-like behavior in the absence of solvent. Appl. Surf. Sci., 2014, 314, 983-990. doi:10.1016/j.apsusc.2014.06.131http://dx.doi.org/10.1016/j.apsusc.2014.06.131
Li Q.; Dong L. J.; Liu Y.; Xie H. A.; Xiong C. X.A carbon black derivative with liquid behavior. Carbon, 2011, 49(3), 1047-1051. doi:10.1016/j.carbon.2010.11.027http://dx.doi.org/10.1016/j.carbon.2010.11.027
Hong B. B.; Chremos A.; Panagiotopoulos A. Z.Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discuss., 2012, 154, 29-40. doi:10.1039/c1fd00076dhttp://dx.doi.org/10.1039/c1fd00076d
Li P. P.; Zheng Y. P.; Wu Y. W.; Qu P.; Yang R. L.; Wang N.; Li M. Z.A nanoscale liquid-like graphene@Fe3O4 hybrid with excellent amphiphilicity and electronic conductivity. New J. Chem., 2014, 38(10), 5043-5051. doi:10.1039/c4nj00970chttp://dx.doi.org/10.1039/c4nj00970c
Yang S. W.; Tan Y. Q.; Yin X. Z.; Chen S. H.; Chen D. Z.; Wang L. X.; Zhou Y. S.; Xiong C. X.Preparation and characterization of monodisperse solvent-free silica nanofluids. J. Dispers. Sci. Technol., 2017, 38(3), 425-431. doi:10.1080/01932691.2016.1172970http://dx.doi.org/10.1080/01932691.2016.1172970
Wang D. C.; Xin Y. Y.; Wang Y. D.; Li X. Q.; Wu H.; Zhang W. R.; Yao D. D.; Wang H. N.; Zheng Y. P.; He Z. J.; Yang Z. Y.; Lei X. F.A general way to transform Ti3C2Tx MXene into solvent-free fluids for filler phase applications. Chem. Eng. J., 2021, 409, 128082. doi:10.1016/j.cej.2020.128082http://dx.doi.org/10.1016/j.cej.2020.128082
Bourlinos A. B.; Georgakilas V.; Boukos N.; Dallas P.; Trapalis C.; Giannelis E. P.Silicone-functionalized carbon nanotubes for the production of new carbon-based fluids. Carbon, 2007, 45(7), 1583-1585. doi:10.1016/j.carbon.2007.03.040http://dx.doi.org/10.1016/j.carbon.2007.03.040
Michinobu T.; Nakanishi T.; Hill J. P.; Funahashi M.; Ariga K.Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. J. Am. Chem. Soc., 2006, 128(32), 10384-10385. doi:10.1021/ja063866zhttp://dx.doi.org/10.1021/ja063866z
Zhang J. X.; Zheng Y. P.; Yu P. Y.; Mo S.; Wang R. M.Modified carbon nanotubes with liquid-like behavior at45 ℃. Carbon, 2009, 47(12), 2776-2781. doi:10.1016/j.carbon.2009.05.036http://dx.doi.org/10.1016/j.carbon.2009.05.036
Nanavati H.; Desai P.; Abhiraman A. S.Elastic and photoelastic relationships for crosslinked polymer networks: a statistical segment approach. Comput. Theor. Polym. Sci., 1999, 9(2), 165-181. doi:10.1016/s1089-3156(99)00011-2http://dx.doi.org/10.1016/s1089-3156(99)00011-2
Zhang J. X.; Zheng Y. P.; Yu P. Y.; Mo S.; Wang R. M.The synthesis of functionalized carbon nanotubes by hyperbranched poly(amine-ester) with liquid-like behavior at room temperature. Polymer, 2009, 50(13), 2953-2957. doi:10.1016/j.polymer.2009.04.042http://dx.doi.org/10.1016/j.polymer.2009.04.042
Li P. P.; Qu D. Y.; Zhang L.; Su C.; Ma J.; Wang Q.; Liu C.; Wang Y. K.; Feng H. R.; Li C.; Wu W. W.A carbon nanosphere nanofluid for improving the toughness and thermal properties of epoxy composites. Nanotechnology, 2022, 33(37), 375704. doi:10.1088/1361-6528/ac764fhttp://dx.doi.org/10.1088/1361-6528/ac764f
Tang Z. H.; Zhang L. Q.; Zeng C. F.; Lin T. F.; Guo B. C.General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter, 2012, 8(35), 9214-9220. doi:10.1039/c2sm26307fhttp://dx.doi.org/10.1039/c2sm26307f
Bourlinos A. B.; Giannelis E. P.; Zhang Q.; Archer L. A.; Floudas G.; Fytas G.Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur. Phys. J. E Soft Matter, 2006, 20(1), 109-117. doi:10.1140/epje/i2006-10007-3http://dx.doi.org/10.1140/epje/i2006-10007-3
Rodriguez R.; Herrera R.; Archer L. A.; Giannelis E. P.Nanoscale ionic materials. Adv. Mater., 2008, 20(22), 4353-4358. doi:10.1002/adma.200801975http://dx.doi.org/10.1002/adma.200801975
Choudhury S.; Agrawal A.; Kim S. A.; Archer L. A.Self-suspended suspensions of covalently grafted hairy nanoparticles. Langmuir, 2015, 31(10), 3222-3231. doi:10.1021/la5048326http://dx.doi.org/10.1021/la5048326
Xu P. X.; Lin J. P.; Zhang L. S.Distinct viscoelasticity of nanoparticle-tethering polymers revealed by nonequilibrium molecular dynamics simulations. J. Phys. Chem. C, 2017, 121(50), 28194-28203. doi:10.1021/acs.jpcc.7b10455http://dx.doi.org/10.1021/acs.jpcc.7b10455
Mark C.; Holderer O.; Allgaier J.; Hübner E.; Pyckhout-Hintzen W.; Zamponi M.; Radulescu A.; Feoktystov A.; Monkenbusch M.; Jalarvo N.; Richter D.Polymer chain conformation and dynamical confinement in a model one-component nanocomposite. Phys. Rev. Lett., 2017, 119(4), 047801. doi:10.1103/physrevlett.119.047801http://dx.doi.org/10.1103/physrevlett.119.047801
Alexander S.Adsorption of chain molecules with a polar head a scaling description. J. Phys. France, 1977, 38(8), 983-987. doi:10.1051/jphys:01977003808098300http://dx.doi.org/10.1051/jphys:01977003808098300
de Gennes P. G.Conformations of polymers attached to an interface. Macromolecules, 1980, 13(5), 1069-1075. doi:10.1021/ma60077a009http://dx.doi.org/10.1021/ma60077a009
Zhulina E. B.; Borisov O. V.; Priamitsyn V. A.Theory of steric stabilization of colloid dispersions by grafted polymers. J. Colloid Interface Sci., 1990, 137(2), 495-511. doi:10.1016/0021-9797(90)90423-lhttp://dx.doi.org/10.1016/0021-9797(90)90423-l
Milner S. T.Polymer brushes. Science, 1991, 251(4996), 905-914. doi:10.1126/science.251.4996.905http://dx.doi.org/10.1126/science.251.4996.905
Semenov A. N.; Anastasiadis S. H.Collective dynamics of polymer brushes. Macromolecules, 2000, 33(2), 613-623. doi:10.1021/ma9909051http://dx.doi.org/10.1021/ma9909051
Feric T. G.; Hamilton S. T.; Haque M. A.; Jeddi J.; Sangoro J.; Dadmun M. D.; Park A. H. A.Impacts of bond type and grafting density on the thermal, structural, and transport behaviors of nanoparticle organic hybrid materials-based electrolytes. Adv. Funct. Mater., 2022, 32(36), 2203947. doi:10.1002/adfm.202203947http://dx.doi.org/10.1002/adfm.202203947
Klushin L. I.; Skvortsov A. M.Critical dynamics of a polymer chain in a grafted monolayer. Macromolecules, 1991, 24(7), 1549-1553. doi:10.1021/ma00007a016http://dx.doi.org/10.1021/ma00007a016
Lang M.; Werner M.; Dockhorn R.; Kreer T.Arm retraction dynamics in dense polymer brushes. Macromolecules, 2016, 49(14), 5190-5201. doi:10.1021/acs.macromol.6b00761http://dx.doi.org/10.1021/acs.macromol.6b00761
Lo Verso F.; Yelash L.; Binder K.Dynamics of macromolecules grafted in spherical brushes under good solvent conditions. Macromolecules, 2013, 46(11), 4716-4722. doi:10.1021/ma400446rhttp://dx.doi.org/10.1021/ma400446r
Lan T.; Torkelson J. M.Substantial spatial heterogeneity and tunability of glass transition temperature observed with dense polymer brushes prepared by ARGET ATRP. Polymer, 2015, 64, 183-192. doi:10.1016/j.polymer.2015.03.047http://dx.doi.org/10.1016/j.polymer.2015.03.047
Brittain W. J.; Minko S.A structural definition of polymer brushes. J. Polym. Sci. Part A Polym. Chem., 2007, 45(16), 3505-3512. doi:10.1002/pola.22180http://dx.doi.org/10.1002/pola.22180
Daoud M.; Cotton J. P.Star shaped polymers: a model for the conformation and its concentration dependence. J. Phys. France, 1982, 43(3), 531-538. doi:10.1051/jphys:01982004303053100http://dx.doi.org/10.1051/jphys:01982004303053100
Ohno K.; Morinaga T.; Takeno S.; Tsujii Y.; Fukuda T.Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules, 2007, 40(25), 9143-9150. doi:10.1021/ma071770zhttp://dx.doi.org/10.1021/ma071770z
Midya J.; Rubinstein M.; Kumar S. K.; Nikoubashman A.Structure of polymer-grafted nanoparticle melts. ACS Nano, 2020, 14(11), 15505-15516. doi:10.1021/acsnano.0c06134http://dx.doi.org/10.1021/acsnano.0c06134
Wijmans C. M.; Zhulina E. B.Polymer brushes at curved surfaces. Macromolecules, 1993, 26(26), 7214-7224. doi:10.1021/ma00078a016http://dx.doi.org/10.1021/ma00078a016
Wei Y.; Xu Y. F.; Faraone A.; Hore M. J. A.Local structure and relaxation dynamics in the brush of polymer-grafted silica nanoparticles. ACS Macro Lett., 2018, 7(6), 699-704. doi:10.1021/acsmacrolett.8b00223http://dx.doi.org/10.1021/acsmacrolett.8b00223
Miller C. A.; Hore M. J. A.Simulation of the coronal dynamics of polymer-grafted nanoparticles. ACS Polym. Au, 2022, 2(3), 157-168. doi:10.1021/acspolymersau.1c00031http://dx.doi.org/10.1021/acspolymersau.1c00031
Wei Y.; Chen Q. H.; Zhao H. H.; Duan P. W.; Zhang L. Q.; Liu J.Conformation and dynamics along the chain contours of polymer-grafted nanoparticles. Langmuir, 2023, 39(31), 11003-11015. doi:10.1021/acs.langmuir.3c01238http://dx.doi.org/10.1021/acs.langmuir.3c01238
Kim S. A.; Mangal R.; Archer L. A.Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules, 2015, 48(17), 6280-6293. doi:10.1021/acs.macromol.5b00791http://dx.doi.org/10.1021/acs.macromol.5b00791
Savin D. A.; Pyun J.; Patterson G. D.; Kowalewski T.; Matyjaszewski K.Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J. Polym. Sci. Part B Polym. Phys., 2002, 40(23), 2667-2676. doi:10.1002/polb.10329http://dx.doi.org/10.1002/polb.10329
Dang A. L.; Hui C. M.; Ferebee R.; Kubiak J.; Li T. H.; Matyjaszewski K.; Bockstaller M. R.Thermal properties of particle brush materials: effect of polymer graft architecture on the glass transition temperature in polymer-grafted colloidal systems. Macromol. Symp., 2013, 331-332(1), 9-16. doi:10.1002/masy.201300062http://dx.doi.org/10.1002/masy.201300062
Askar S.; Li L. Q.; Torkelson J. M.Polystyrene-grafted silica nanoparticles: investigating the molecular weight dependence of glass transition and fragility behavior. Macromolecules, 2017, 50(4), 1589-1598. doi:10.1021/acs.macromol.7b00079http://dx.doi.org/10.1021/acs.macromol.7b00079
Dukes D.; Li Y.; Lewis S.; Benicewicz B.; Schadler L.; Kumar S. K.Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules, 2010, 43(3), 1564-1570. doi:10.1021/ma901228thttp://dx.doi.org/10.1021/ma901228t
Hore M. J. A.; Ford J.; Ohno K.; Composto R. J.; Hammouda B.Direct measurements of polymer brush conformation using small-angle neutron scattering (SANS) from highly grafted iron oxide nanoparticles in homopolymer melts. Macromolecules, 2013, 46(23), 9341-9348. doi:10.1021/ma401975ahttp://dx.doi.org/10.1021/ma401975a
Li T. H.; Yadav V.; Conrad J. C.; Robertson M. L.Effect of dispersity on the conformation of spherical polymer brushes. ACS Macro Lett., 2021, 10(5), 518-524. doi:10.1021/acsmacrolett.0c00898http://dx.doi.org/10.1021/acsmacrolett.0c00898
Fernandes N. J.; Koerner H.; Giannelis E. P.; Vaia R. A.Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Commun., 2013, 3(1), 13-29. doi:10.1557/mrc.2013.9http://dx.doi.org/10.1557/mrc.2013.9
Choi J.; Dong H. C.; Matyjaszewski K.; Bockstaller M. R.Flexible particle array structures by controlling polymer graft architecture. J. Am. Chem. Soc., 2010, 132(36), 12537-12539. doi:10.1021/ja105189shttp://dx.doi.org/10.1021/ja105189s
Choi J.; Hui C. M.; Pietrasik J.; Dong H. C.; Matyjaszewski K.; Bockstaller M. R.Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter, 2012, 8(15), 4072-4082. doi:10.1039/c2sm06915fhttp://dx.doi.org/10.1039/c2sm06915f
Choi J.; Hui C. M.; Schmitt M.; Pietrasik J.; Margel S.; Matyjazsewski K.; Bockstaller M. R.Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir, 2013, 29(21), 6452-6459. doi:10.1021/la4004406http://dx.doi.org/10.1021/la4004406
Hui C. M.; Pietrasik J.; Schmitt M.; Mahoney C.; Choi J.; Bockstaller M. R.; Matyjaszewski K.Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials. Chem. Mater., 2014, 26(1), 745-762. doi:10.1021/cm4023634http://dx.doi.org/10.1021/cm4023634
Schmitt M.; Choi J.; Hui C. M.; Chen B. B.; Korkmaz E.; Yan J. J.; Margel S.; Ozdoganlar O. B.; Matyjaszewski K.; Bockstaller M. R.Processing fragile matter: effect of polymer graft modification on the mechanical properties and processibility of (nano-) particulate solids. Soft Matter, 2016, 12(15), 3527-3537. doi:10.1039/c6sm00095ahttp://dx.doi.org/10.1039/c6sm00095a
Midya J.; Cang Y.; Egorov S. A.; Matyjaszewski K.; Bockstaller M. R.; Nikoubashman A.; Fytas G.Disentangling the role of chain conformation on the mechanics of polymer tethered particle materials. Nano Lett., 2019, 19(4), 2715-2722. doi:10.1021/acs.nanolett.9b00817http://dx.doi.org/10.1021/acs.nanolett.9b00817
Agarwal P.; Srivastava S.; Archer L. A.Thermal jamming of a colloidal glass. Phys. Rev. Lett., 2011, 107(26), 268302. doi:10.1103/physrevlett.107.268302http://dx.doi.org/10.1103/physrevlett.107.268302
Jiao Y.; Tibbits A.; Gillman A.; Hsiao M. S.; Buskohl P.; Drummy L. F.; Vaia R. A.Deformation behavior of polystyrene-grafted nanoparticle assemblies with low grafting density. Macromolecules, 2018, 51(18), 7257-7265. doi:10.1021/acs.macromol.8b01524http://dx.doi.org/10.1021/acs.macromol.8b01524
Bentz K. C.; Savin D. A.Chain dispersity effects on brush properties of surface-grafted polycaprolactone-modified silica nanoparticles: unique scaling behavior in the concentrated polymer brush regime. Macromolecules, 2017, 50(14), 5565-5573. doi:10.1021/acs.macromol.7b00608http://dx.doi.org/10.1021/acs.macromol.7b00608
Hansoge N.; Keten S.Effect of polymer chemistry on chain conformations in hairy nanoparticle assemblies. ACS Macro Lett., 2019, 8(10), 1209-1215. doi:10.1021/acsmacrolett.9b00526http://dx.doi.org/10.1021/acsmacrolett.9b00526
Chan S. Y.; Jhalaria M.; Huang Y. C.; Li R. P.; Benicewicz B. C.; Durning C. J.; Vo T.; Kumar S. K.Local structure of polymer-grafted nanoparticle melts. ACS Nano, 2022, 16(7), 10404-10411. doi:10.1021/acsnano.2c00643http://dx.doi.org/10.1021/acsnano.2c00643
Ethier J.; Hall L. M.Structure and entanglement network of model polymer-grafted nanoparticle monolayers. Macromolecules, 2018, 51(23), 9878-9889. doi:10.1021/acs.macromol.8b01373http://dx.doi.org/10.1021/acs.macromol.8b01373
Jespersen M. L.; Mirau P. A.; von Meerwall E.; Vaia R. A.; Rodriguez R.; Fernandes N. J.; Giannelis E. P.NMR characterization of canopy dynamics in nanoscale ionic materials. ACS Symposium Series. Washington, DC: American Chemical Society, 2011. 149-160. doi:10.1021/bk-2011-1077.ch009http://dx.doi.org/10.1021/bk-2011-1077.ch009
Jespersen M. L.; Mirau P. A.; von Meerwall E. D.; Koerner H.; Vaia R. A.; Fernandes N. J.; Giannelis E. P.Hierarchical canopy dynamics of electrolyte-doped nanoscale ionic materials. Macromolecules, 2013, 46(24), 9669-9675. doi:10.1021/ma402002ahttp://dx.doi.org/10.1021/ma402002a
Jespersen M. L.; Mirau P. A.; von Meerwall E.; Vaia R. A.; Rodriguez R.; Giannelis E. P.Canopy dynamics in nanoscale ionic materials. ACS Nano, 2010, 4(7), 3735-3742. doi:10.1021/nn100112hhttp://dx.doi.org/10.1021/nn100112h
Hong B. B.; Panagiotopoulos, A. Z. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles. Soft Matter, 2013, 9(26), 6091-6102. doi:10.1039/c3sm50832chttp://dx.doi.org/10.1039/c3sm50832c
Fernandes N. J.; Akbarzadeh J.; Peterlik H.; Giannelis E. P.Synthesis and properties of highly dispersed ionic silica—poly(ethylene oxide) nanohybrids. ACS Nano, 2013, 7(2), 1265-1271. doi:10.1021/nn304735rhttp://dx.doi.org/10.1021/nn304735r
He H. G.; Yan Y. R.; Qiu Z. M.; Tan X.A novel antistatic polyurethane hybrid based on nanoscale ionic material. Prog. Org. Coat., 2017, 113, 110-116. doi:10.1016/j.porgcoat.2017.09.004http://dx.doi.org/10.1016/j.porgcoat.2017.09.004
Xu Y. T.; Zheng Q.; Song Y. H.Comparison studies of rheological and thermal behaviors of ionic liquids and nanoparticle ionic liquids. Phys. Chem. Chem. Phys., 2015, 17(30), 19815-19819. doi:10.1039/c5cp02463chttp://dx.doi.org/10.1039/c5cp02463c
Sharma A.; Kruteva M.; Ehlert S.; Dulle M.; Förster S.; Richter D.Assembly of polymer-grafted nanoparticles dictates the topological constraints on grafted chains. Macromolecules, 2023, 56(13), 4952-4965. doi:10.1021/acs.macromol.3c00224http://dx.doi.org/10.1021/acs.macromol.3c00224
Parisi D.; Buenning E.; Kalafatakis N.; Gury L.; Benicewicz B. C.; Gauthier M.; Cloitre M.; Rubinstein M.; Kumar S. K.; Vlassopoulos D.Universal polymeric-to-colloidal transition in melts of hairy nanoparticles. ACS Nano, 2021, 15(10), 16697-16708. doi:10.1021/acsnano.1c06672http://dx.doi.org/10.1021/acsnano.1c06672
Agarwal P.; Kim S. A.; Archer L. A.Crowded, confined, and frustrated: dynamics of molecules tethered to nanoparticles. Phys. Rev. Lett., 2012, 109(25), 258301. doi:10.1103/physrevlett.109.258301http://dx.doi.org/10.1103/physrevlett.109.258301
Srivastava S.; Choudhury S.; Agrawal A.; Archer L. A.Self-suspended polymer grafted nanoparticles. Curr. Opin. Chem. Eng., 2017, 16, 92-101. doi:10.1016/j.coche.2017.04.007http://dx.doi.org/10.1016/j.coche.2017.04.007
Bilchak C. R.; Buenning E.; Asai M.; Zhang K.; Durning C. J.; Kumar S. K.; Huang Y. C.; Benicewicz B. C.; Gidley D. W.; Cheng S. W.; Sokolov A. P.; Minelli M.; Doghieri F.Polymer-grafted nanoparticle membranes with controllable free volume. Macromolecules, 2017, 50(18), 7111-7120. doi:10.1021/acs.macromol.7b01428http://dx.doi.org/10.1021/acs.macromol.7b01428
Hayashida K.; Tanaka H.; Watanabe O.Viscoelastic behavior of poly(butyl methacrylate) densely grafted on silica nanoparticles. Polym. Int., 2011, 60(8), 1194-1200. doi:10.1002/pi.3062http://dx.doi.org/10.1002/pi.3062
Sakib N.; Koh Y. P.; Huang Y. C.; Mongcopa K. I. S.; Le A. N.; Benicewicz B. C.; Krishnamoorti R.; Simon S. L.Thermal and rheological analysis of polystyrene-grafted silica nanocomposites. Macromolecules, 2020, 53(6), 2123-2135. doi:10.1021/acs.macromol.9b02127http://dx.doi.org/10.1021/acs.macromol.9b02127
Tai C. H.; Pan G. T.; Yu H. Y.Entropic effects in solvent-free bidisperse polymer brushes investigated using density functional theories. Langmuir, 2019, 35(51), 16835-16849. doi:10.1021/acs.langmuir.9b02873http://dx.doi.org/10.1021/acs.langmuir.9b02873
Choi S.; Moon S.; Park Y.Spectroscopic investigation of entropic canopy–canopy interactions of nanoparticle organic hybrid materials. Langmuir, 2020, 36(32), 9626-9633. doi:10.1021/acs.langmuir.0c01784http://dx.doi.org/10.1021/acs.langmuir.0c01784
Zeng C. F.; Tang Z. H.; Guo B. C.; Zhang L. Q.Supramolecular ionic liquid based on graphene oxide. Phys. Chem. Chem. Phys., 2012, 14(28), 9838-9845. doi:10.1039/c2cp40517bhttp://dx.doi.org/10.1039/c2cp40517b
Liu X.; Abel B. A.; Zhao Q.; Li S. K.; Choudhury S.; Zheng J. X.; Archer L. A.Microscopic origins of caging and equilibration of self-suspended hairy nanoparticles. Macromolecules, 2019, 52(21), 8187-8196. doi:10.1021/acs.macromol.9b01473http://dx.doi.org/10.1021/acs.macromol.9b01473
Agrawal A.; Yu H. Y.; Srivastava S.; Choudhury S.; Narayanan S.; Archer L. A.Dynamics and yielding of binary self-suspended nanoparticle fluids. Soft Matter, 2015, 11(26), 5224-5234. doi:10.1039/c5sm00639bhttp://dx.doi.org/10.1039/c5sm00639b
Han B. H.; Winnik M. A.; Bourlinos A. B.; Giannelis E. P.Luminescence quenching of dyes by oxygen in core-shell soft-sphere ionic liquids. Chem. Mater., 2005, 17(15), 4001-4009. doi:10.1021/cm050553ehttp://dx.doi.org/10.1021/cm050553e
Wu L. S.; Zhang B. Q.; Lu H.; Liu C. Y.Nanoscale ionic materials based on hydroxyl-functionalized graphene. J. Mater. Chem. A, 2014, 2(5), 1409-1417. doi:10.1039/c3ta14424khttp://dx.doi.org/10.1039/c3ta14424k
Yin X. Z.; Weng P. X.; Yang S. W.; Han L.; Tan Y. Q.; Pan F.; Chen D. Z.; Wang L. X.; Qin J.; Wang H.Suspended carbon black fluids reinforcing and toughening of poly(vinyl alcohol) composites. Mater. Des., 2017, 130, 37-47. doi:10.1016/j.matdes.2017.05.049http://dx.doi.org/10.1016/j.matdes.2017.05.049
Yang S. W.; Liu J. C.; Pan F.; Yin X. Z.; Wang L. X.; Chen D. Z.; Zhou Y. S.; Xiong C. X.; Wang H.Fabrication of self-healing and hydrophilic coatings from liquid-like graphene@SiO2 hybrids. Compos. Sci. Technol., 2016, 136, 133-144. doi:10.1016/j.compscitech.2016.10.012http://dx.doi.org/10.1016/j.compscitech.2016.10.012
Shen H.; Li Y. S.; Yao W.; Yang S. W.; Yang L.; Pan F.; Chen Z. M.; Yin X. Z.Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane. Compos. Part B Eng., 2021, 222, 109042. doi:10.1016/j.compositesb.2021.109042http://dx.doi.org/10.1016/j.compositesb.2021.109042
Cheng Q. Y.; Chen P.; Ye D. D.; Wang J. M.; Song G. J.; Liu J. J.; Chen Z. Q.; Chen L. Y.; Zhou Q.; Chang C. Y.; Zhang L. N.The conversion of nanocellulose into solvent-free nanoscale liquid crystals by attaching long side-arms for multi-responsive optical materials. J. Mater. Chem. C, 2020, 8(32), 11022-11031. doi:10.1039/d0tc02059ahttp://dx.doi.org/10.1039/d0tc02059a
Gu S. Y.; Liu L. L.; Yan B. B.Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer. J. Polym. Res., 2014, 21(2), 356. doi:10.1007/s10965-014-0356-0http://dx.doi.org/10.1007/s10965-014-0356-0
张娇霞, 郑亚萍, 杨晓东, 王汝敏. 一种含碳纳米管的第二代纳米流体的制备. 高分子学报, 2008, (12), 1209-1213.
Marcos M. A.; Podolsky N. E.; Cabaleiro D.; Lugo L.; Zakharov A. O.; Postnov V. N.; Charykov N. A.; Ageev S. V.; Semenov K. N.MWCNT in PEG-400 nanofluids for thermal applications: a chemical, physical and thermal approach. J. Mol. Liq., 2019, 294, 111616. doi:10.1016/j.molliq.2019.111616http://dx.doi.org/10.1016/j.molliq.2019.111616
Cheng C. X.; Zhang M. J.; Wang S. Y.; Li Y. S.; Feng H. Y.; Bu D. L.; Xu Z. C.; Liu Y.; Jin L.; Xiao L. H.; Ao Y. H.Improving interfacial properties and thermal conductivity of carbon fiber/epoxy composites via the solvent-free GO@Fe3O4 nanofluid modified water-based sizing agent. Compos. Sci. Technol., 2021, 209, 108788. doi:10.1016/j.compscitech.2021.108788http://dx.doi.org/10.1016/j.compscitech.2021.108788
Zhang S.; Li W.; Ma X. L.; Fan X. Q.; Zhu M. H.Solvent-free carbon sphere nanofluids towards intelligent lubrication regulation. Friction, 2024, 12(1), 95-109. doi:10.1007/s40544-023-0737-7http://dx.doi.org/10.1007/s40544-023-0737-7
Guo Y. X.; Zhang L. G.; Zhao F. Y.; Li G. T.; Zhang G.Tribological behaviors of novel epoxy nanocomposites filled with solvent-free ionic SiO2 nanofluids. Compos. Part B Eng., 2021, 215, 108751. doi:10.1016/j.compositesb.2021.108751http://dx.doi.org/10.1016/j.compositesb.2021.108751
Guo Y. X.; Liu G. Q.; Li G. T.; Zhao F. Y.; Zhang L. G.; Guo F.; Zhang G.Solvent-free ionic silica nanofluids: smart lubrication materials exhibiting remarkable responsiveness to weak electrical stimuli. Chem. Eng. J., 2020, 383, 123202. doi:10.1016/j.cej.2019.123202http://dx.doi.org/10.1016/j.cej.2019.123202
Liu S. W.; Gao Q. L.; Hou K. M.; Li Z. P.; Wang J. Q.; Yang S. R.Solvent-free covalent MXene nanofluid: a new lubricant combining the characteristics of solid and liquid lubricants. Chem. Eng. J., 2023, 462, 142238. doi:10.1016/j.cej.2023.142238http://dx.doi.org/10.1016/j.cej.2023.142238
Borówka A.Effects of twin methyl groups insertion on the structure of templated mesoporous silica materials. Ceram. Int., 2019, 45(4), 4631-4636. doi:10.1016/j.ceramint.2018.11.152http://dx.doi.org/10.1016/j.ceramint.2018.11.152
Guo Y. X.; Zhang L. G.; Zhang G.; Wang D. A.; Wang T. M.; Wang Q. H.High lubricity and electrical responsiveness of solvent-free ionic SiO2 nanofluids. J. Mater. Chem. A, 2018, 6(6), 2817-2827. doi:10.1039/c7ta09649fhttp://dx.doi.org/10.1039/c7ta09649f
Wang J.; Gong C. L.; Wen S.; Liu H.; Qin C. Q.; Xiong C. X.; Dong L. J.Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. Carbohydr. Polym., 2018, 186, 200-207. doi:10.1016/j.carbpol.2018.01.032http://dx.doi.org/10.1016/j.carbpol.2018.01.032
Lu Y. Y.; Moganty S. S.; Schaefer J. L.; Archer L. A.Ionic liquid-nanoparticle hybrid electrolytes. J. Mater. Chem., 2012, 22(9), 4066-4072. doi:10.1039/c2jm15345ahttp://dx.doi.org/10.1039/c2jm15345a
Schaefer J. L.; Moganty S. S.; Archer L. A.Nanoscale organic hybrid electrolytes. Adv. Mater., 2010, 22(33), 3677-3680. doi:10.1002/adma.201000898http://dx.doi.org/10.1002/adma.201000898
Gao Z.; Yang J. W.; Huang J.; Xiong C. X.; Yang Q. L.A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors. Nanoscale, 2017, 9(45), 17710-17716. doi:10.1039/c7nr06847fhttp://dx.doi.org/10.1039/c7nr06847f
Zhou L.; Wang J. Y.; Liu Z. K.; Yang J. W.; Chen M. T.; Zheng Y. H.; Wu W. W.; Gao Z.; Xiong C. X.Facile self-assembling of three-dimensional graphene/solvent free carbon nanotubes fluid framework for high performance supercapacitors. J. Alloys Compd., 2020, 820, 153157. doi:10.1016/j.jallcom.2019.153157http://dx.doi.org/10.1016/j.jallcom.2019.153157
Shi W. L.; Chen J. P.; Yang Q. L.; Wang S.; Xiong C. X.Novel three-dimensional carbon nanotube-graphene architecture with abundant chambers and its application in lithium-silicon batteries. J. Phys. Chem. C, 2016, 120(25), 13807-13814. doi:10.1021/acs.jpcc.6b03864http://dx.doi.org/10.1021/acs.jpcc.6b03864
Li P. P.; Yang R. L.; Zheng Y. P.; Qu P.; Chen L. X.Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes. Carbon, 2015, 95, 408-418. doi:10.1016/j.carbon.2015.08.060http://dx.doi.org/10.1016/j.carbon.2015.08.060
Li X. Q.; Yao D. D.; Wang D. C.; He Z. J.; Tian X. L.; Xin Y. Y.; Su F. F.; Wang H. N.; Zhang J.; Li X. Y.; Li M. T.; Zheng Y. P.Amino-functionalized ZIFs-based porous liquids with low viscosity for efficient low-pressure CO2 captureCO2/N2 separation. Chem. Eng. J., 2022, 429, 132296. doi:10.1016/j.cej.2021.132296http://dx.doi.org/10.1016/j.cej.2021.132296
Li Y. S.; Yan S.; Li Z. W.; Xiong S. W.; Yang S. W.; Wang L. X.; Wang H.; Wen X. J.; Song P. G.; Yin X. Z.Liquid-like nanofluid mediated modification of solar-assisted sponges for highly efficient cleanup and recycling of viscous crude oil spills. J. Mater. Chem. A, 2022, 10(30), 16224-16235. doi:10.1039/d2ta04566dhttp://dx.doi.org/10.1039/d2ta04566d
Cheng B. B.; Yan S.; Li Y. S.; Zheng L.; Wen X. J.; Tan Y. Q.; Yin X. Z.In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep. Purif. Technol., 2023, 315, 123728. doi:10.1016/j.seppur.2023.123728http://dx.doi.org/10.1016/j.seppur.2023.123728
Weng P. X.; Liu K.; Yuan M.; Huang G. Q.; Wu K.; Yang X. F.; Dai H. L.; Lu W. G.; Li D.Development of a ZIF-91-porous-liquid-based composite hydrogel dressing system for diabetic wound healing. Small, 2023, 19(25), 2301012. doi:10.1002/smll.202301012http://dx.doi.org/10.1002/smll.202301012
Srivastava S.; Agarwal P.; Mangal R.; Koch D. L.; Narayanan S.; Archer L. A.Hyperdiffusive dynamics in Newtonian nanoparticle fluids. ACS Macro Lett., 2015, 4(10), 1149-1153. doi:10.1021/acsmacrolett.5b00319http://dx.doi.org/10.1021/acsmacrolett.5b00319
0
浏览量
300
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构