浏览全部资源
扫码关注微信
1.河南大学化学与分子科学学院 开封 475001
2.中国科学院深圳先进技术研究院 深圳 518055
3.深圳理工大学材料科学与能源工程学院 深圳 518000
E-mail: z.long@siat.ac.cn
ke.xu@siat.ac.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-10-24,
收稿日期:2024-06-21,
录用日期:2024-07-19
移动端阅览
黄梓俊, 龙志, 陈策能, 徐珂, 钱彬彬, 任艳蓉, 丁涛, 房晓敏. 超强酸催化Friedel-Crafts反应制备无醚磺化聚芳基质子交换膜. 高分子学报, 2024, 55(12), 1730-1741
Huang, Z. J.; Long, Z.; Chen, C. N.; Xu, K.; Qian, B. B.; Ren, Y. R.; Ding, T.; Fang, X. M. Ether-free sulfonated polyarylene-based proton exchange membranes by superacid-catalyzed friedel-crafts reaction. Acta Polymerica Sinica, 2024, 55(12), 1730-1741
黄梓俊, 龙志, 陈策能, 徐珂, 钱彬彬, 任艳蓉, 丁涛, 房晓敏. 超强酸催化Friedel-Crafts反应制备无醚磺化聚芳基质子交换膜. 高分子学报, 2024, 55(12), 1730-1741 DOI: 10.11777/j.issn1000-3304.2024.24175. CSTR: 32057.14.GFZXB.2024.7283.
Huang, Z. J.; Long, Z.; Chen, C. N.; Xu, K.; Qian, B. B.; Ren, Y. R.; Ding, T.; Fang, X. M. Ether-free sulfonated polyarylene-based proton exchange membranes by superacid-catalyzed friedel-crafts reaction. Acta Polymerica Sinica, 2024, 55(12), 1730-1741 DOI: 10.11777/j.issn1000-3304.2024.24175. CSTR: 32057.14.GFZXB.2024.7283.
通过三氟甲磺酸催化Friedel-Crafts反应,合成了含有三氟异亚丙基的无醚聚芳前驱体聚合物. 考察了不同芳基单体、电子云密度和空间位阻等因素对前驱体聚合物分子量的影响,并优化反应条件,实现了前驱体的合成. 特别是,以联苄和三氟丙酮为原料合成的前驱体聚合物PAAF,展现出了高分子量(
M
w
=201 kDa,
M
n
=63 kDa)特性;随后,经氯磺酸三甲基硅烷基酯后磺化制备了sPAAF,其不仅保持了高分子量(
M
w
=201 kDa,
M
n
=63 kDa),还具备了高离子交换容量(2.40 mmol/g). 在80 ℃完全水合状态下,质子电导率最高可达102 mS/cm,热分解温度为258 ℃,化学稳定性良好,在芬顿测试后质量衰减率仅为11%,表明该系列材料具有良好的化学稳定性. 本研究旨在通过引入不同的亚苯基结构和功能基团,深入探讨聚合物结构与膜性能之间的构效关系,为开发低成本、高性能的无醚聚苯基质子交换膜材料奠定基础.
Proton exchange membrane (PEM) is one of the key components of PEM fuel cells. Sulfonated poly(arylenen ether)-based PEMs have gained much more attention due to easy synthesis and excellent mechanical and thermal properties. However
these PEMs containing ether bonds
which are vulnerable to free radical
show poor oxidative stability. Ether-free polyarylene-based polymer has become the most promising one
giving that no heteroatom is contained on the backbone. Up to now
it has been synthesized only by metal-catalyzed polymerization
Diels-Alder polymerization and superacid-catalyzed polymerization. Superacid-catalyzed polymerization is an easy approach to providing the polymer with pendent alkyl sulfonic acid rather than aryl sulfonic acid. Herein
ether-free polyarylene-based precursors containing trifluoroisopropylidene were successfully synthesized
via
the trifluoromethanesulfonic acid-catalyzed Friedel-Crafts reaction and then post-sulfonated to obtain ether-free polyarylene-based PEM containing arylene sulfonic acid and trifluoroisopropylidene on the backbone. The effects of the substituents
electron cloud density
and steric hindrance on the molecular weight of the precursor polymers were investigated. The arylene-based monomer with high electron cloud density provided high reaction activity and molecular weight (
M
w
200 kDa)
such as fluorene and 9
9-diphenylfluorene
but those after post sulfonation cannot provide flexible membranes due to the rigidity of mainchain. Considering to the balance between electron cloud density and rigidity
a precursor polymer consisting of trifluoroisopropylidene and bibenzyl (PAAF) demonstrated a high molecular weight of 201 kDa and provided flexible membrane after post-sulfonation. Giving that PAAF was not dissolved in concentrated sulfonic acid and easily precipitated from dichloromethane after dropping chlorosulfonic acid
those common post-sulfonation was useless. Chlorosulfonic a
cid trimethylsilyl ester was used to obtain sulfonated poly(arylene alkylene)-based polymers (sPAAF). sPAAF with various ion exchange capabilities of 1.24-2.40 mmol/g was prepared
via
control concentration of sulfonated solvent. At 80 ℃ and in a fully hydrated state
its proton conductivity reached up to 102 mS/cm
with a high thermal decomposition temperature of 256 ℃ and good chemical stability
showing a degradation rate between 10% and 20% after Fenton's test. This study aims to lay a theoretical foundation for the development of low-cost
high-performance ether-free sulfonated polyarylene-based PEMs by exploring the relationship between the structure and bulk properties.
聚合物合成质子交换膜无醚聚苯磺酸功能化
Polymer synthesisProton exchange membraneEther-free polyaryleneSulfonic acid functionalization
Sayed E. T.; Shehata N.; Ali Abdelkareem M.; Ali Atieh M.Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment. Sci. Total Environ., 2020, 748, 141046. doi:10.1016/j.scitotenv.2020.141046http://dx.doi.org/10.1016/j.scitotenv.2020.141046
Ahmad S.; Nawaz T.; Ali A.; Orhan M. F.; Samreen A.; Kannan A. M.An overview of proton exchange membranes for fuel cells: materials and manufacturing. Int. J. Hydrog. Energy, 2022, 47(44), 19086-19131. doi:10.1016/j.ijhydene.2022.04.099http://dx.doi.org/10.1016/j.ijhydene.2022.04.099
Wang Y.; Ruiz Diaz D. F.; Chen K. S.; Wang Z.; Adroher X. C.Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater. Today, 2020, 32, 178-203. doi:10.1016/j.mattod.2019.06.005http://dx.doi.org/10.1016/j.mattod.2019.06.005
Ureña N.; Pérez-Prior M. T.; del Río C.; Várez A.; Sanchez J. Y.; Iojoiu C.; Levenfeld B.Multiblock copolymers of sulfonated PSU/PPSU poly(ether sulfone)s as solid electrolytes for proton exchange membrane fuel cells. Electrochim. Acta, 2019, 302, 428-440. doi:10.1016/j.electacta.2019.01.112http://dx.doi.org/10.1016/j.electacta.2019.01.112
Xu S. Y.; Adamski M.; Killer M.; Schibli E. M.; Frisken B. J.; Holdcroft S.Sulfo-phenylated polyphenylenes containing sterically hindered pyridines. Macromolecules, 2019, 52(6), 2548-2559. doi:10.1021/acs.macromol.8b02289http://dx.doi.org/10.1021/acs.macromol.8b02289
Khomein P.; Ketelaars W.; Lap T.; Liu G.Sulfonated aromatic polymer as a future proton exchange membrane: a review of sulfonation and crosslinking methods. Renew. Sustain. Energy Rev., 2021, 137, 110471. doi:10.1016/j.rser.2020.110471http://dx.doi.org/10.1016/j.rser.2020.110471
Nguyen H.; Lombeck F.; Schwarz C.; Heizmann P. A.; Adamski M.; Lee H. F.; Britton B.; Holdcroft S.; Vierrath S.; Breitwieser M.Hydrocarbon-based PemionTM proton exchange membrane fuel cells with state-of-the-art performance. Sustain. Energy Fuels, 2021, 5(14), 3687-3699. doi:10.1039/d1se00556ahttp://dx.doi.org/10.1039/d1se00556a
Apostolou D.; Xydis G.A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renew. Sustain. Energy Rev., 2019, 113, 109292. doi:10.1016/j.rser.2019.109292http://dx.doi.org/10.1016/j.rser.2019.109292
Wang Z. B.; Tang H. L.; Mu P.Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J. Membr. Sci., 2011, 369(1-2), 250-257. doi:10.1016/j.memsci.2010.11.070http://dx.doi.org/10.1016/j.memsci.2010.11.070
Adamski M.; Peressin N.; Holdcroft S.On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells. Mater. Adv., 2021, 2(15), 4966-5005. doi:10.1039/d1ma00511ahttp://dx.doi.org/10.1039/d1ma00511a
Nederstedt H.; Jannasch P.Poly(p-terphenyl alkylene)s grafted with highly acidic sulfonated polypentafluorostyrene side chains for proton exchange membranes. J. Membr. Sci., 2022, 647, 120270. doi:10.1016/j.memsci.2022.120270http://dx.doi.org/10.1016/j.memsci.2022.120270
Olvera L. I.; Guzmán-Gutiérrez M. T.; Zolotukhin M. G.; Fomine S.; Cárdenas J.; Ruiz-Trevino F. A.; Villers D.; Ezquerra T. A.; Prokhorov E.Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations. Macromolecules, 2013, 46(18), 7245-7256. doi:10.1021/ma401306shttp://dx.doi.org/10.1021/ma401306s
Escorihuela J.; Olvera-Mancilla J.; Alexandrova L.; Del Castillo L. F.; Compañ V.Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers, 2020, 12(9), 1861. doi:10.3390/polym12091861http://dx.doi.org/10.3390/polym12091861
Kang N. R.; Pham T. H.; Jannasch P.Polyaromatic perfluorophenylsulfonic acids with high radical resistance and proton conductivity. ACS Macro Lett., 2019, 8(10), 1247-1251. doi:10.1021/acsmacrolett.9b00615http://dx.doi.org/10.1021/acsmacrolett.9b00615
Wang C.; Sun Y. J.; Yang Z. J.; Fan J. T.; Li H.; Xu S. Y.Low water swelling polyaromatic proton exchange membranes. J. Membr. Sci., 2023, 684, 121879. doi:10.1016/j.memsci.2023.121879http://dx.doi.org/10.1016/j.memsci.2023.121879
Xue B. X.; Zhu M. Z.; Fu S. Q.; Huang P. P.; Qian H. D.; Liu P. N.Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J. Membr. Sci., 2023, 673, 121263. doi:10.1016/j.memsci.2022.121263http://dx.doi.org/10.1016/j.memsci.2022.121263
Tang H. Y.; Geng K.; Wu L.; Liu J. J.; Chen Z. Q.; You W.; Yan F.; Guiver M. D.; Li N. W.Fuel cells with an operational range of -20 ℃ to 200 ℃ enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy, 2022, 7(2), 153-162. doi:10.1038/s41560-021-00956-whttp://dx.doi.org/10.1038/s41560-021-00956-w
Ghanti B.; Kamble R.; Roy S.; Banerjee S.Synthesis and characterization of sulfonated polytriazoles utilizing1,4-bis(4-azido-2-(trifluoromethyl)phenoxy)benzene for the proton exchange membrane applications. J. Polym. Sci., 2023, 61(16), 1792-1806.
Dong T. V.; Tinh V. D. C.; Kim D.Ether-free sulfonated poly(fluorene biphenyl indole) membranes and ionomer binders for proton exchange membrane fuel cells. J. Power Sources, 2023, 556, 232418. doi:10.1016/j.jpowsour.2022.232418http://dx.doi.org/10.1016/j.jpowsour.2022.232418
Zuo P. P.; Li Y. Y.; Wang A. Q.; Tan R.; Liu Y. H.; Liang X.; Sheng F. M.; Tang G. G.; Ge L.; Wu L.; Song Q. L.; McKeown N. B.; Yang Z. J.; Xu T. W.Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed., 2020, 59(24), 9564-9573. doi:10.1002/ange.202000012http://dx.doi.org/10.1002/ange.202000012
Ahn J.; Miyatake K.Sulfonated terpolymers containing alkylene and perfluoroalkylene groups: effect of aliphatic groups on membrane properties and interface with the catalyst layers. ACS Appl. Energy Mater., 2018, 1(8), 3965-3972. doi:10.1021/acsaem.8b00684http://dx.doi.org/10.1021/acsaem.8b00684
Havertz R.South Korea's hydrogen economy program as a case of weak ecological modernization. Asia Eur. J., 2021, 19(2), 209-226. doi:10.1007/s10308-021-00594-7http://dx.doi.org/10.1007/s10308-021-00594-7
Martos A. M.; Sanchez J. Y.; Várez A.; Levenfeld B.Electrochemical and structural characterization of sulfonated polysulfone. Polym. Test., 2015, 45, 185-193. doi:10.1016/j.polymertesting.2015.06.004http://dx.doi.org/10.1016/j.polymertesting.2015.06.004
Parnian M. J.; Rowshanzamir S.; Gashoul F.Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly(ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications. Energy, 2017, 125, 614-628. doi:10.1016/j.energy.2017.02.143http://dx.doi.org/10.1016/j.energy.2017.02.143
Adamski M.; Skalski T. J. G.; Britton B.; Peckham T. J.; Metzler L.; Holdcroft S.Highly stable, low gas crossover, proton-conducting phenylated polyphenylenes. Angew. Chem., 2017, 129(31), 9186-9189. doi:10.1002/ange.201703916http://dx.doi.org/10.1002/ange.201703916
0
浏览量
178
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构