浏览全部资源
扫码关注微信
1.北京化工大学,北京市先进弹性体材料研究中心,北京 100029
2.北京化工大学,有机-无机复合材料国家重点实验室,北京 100029
E-mail: zhaoxy@mail.buct.edu.cn
skhu@mail.buct.edu.cn
纸质出版日期:2025-01-20,
网络出版日期:2024-11-06,
收稿日期:2024-06-24,
录用日期:2024-08-09
移动端阅览
吴耀文, 甘淼, 赵秀英, 胡仕凯, 张立群. 高强度、高透明的生物基水性聚氨酯的结构设计与性能. 高分子学报, 2025, 56(1), 36-46
Wu, Y. W.; Gan, M.; Zhao, X. Y.; Hu, S. K.; Zhang, L. Q. Structural design and property of high strength and high transparency bio-based waterborne polyurethane. Acta Polymerica Sinica, 2025, 56(1), 36-46
吴耀文, 甘淼, 赵秀英, 胡仕凯, 张立群. 高强度、高透明的生物基水性聚氨酯的结构设计与性能. 高分子学报, 2025, 56(1), 36-46 DOI: 10.11777/j.issn1000-3304.2024.24179. CSTR: 32057.14.GFZXB.2024.7284.
Wu, Y. W.; Gan, M.; Zhao, X. Y.; Hu, S. K.; Zhang, L. Q. Structural design and property of high strength and high transparency bio-based waterborne polyurethane. Acta Polymerica Sinica, 2025, 56(1), 36-46 DOI: 10.11777/j.issn1000-3304.2024.24179. CSTR: 32057.14.GFZXB.2024.7284.
聚氨酯涂料被广泛用作各种基材的保护层和装饰层. 然而,大量使用溶剂型涂料会造成环境污染. 水性聚氨酯涂料具有低毒性和低挥发性有机物排放的特点,是一种环保型涂料,但制造水性聚氨酯的主要原材料来自不可持续的石油资源. 本研究利用生物基聚三亚甲基醚二醇(PO3G)通过预聚体法合成了一系列生物基含量在60%左右的生物基水性聚氨酯(WPU),对WPU的结构和性能进行了系统表征. 结果表明,随着亲水扩链剂含量的提高,乳液的粒径和样品的断裂伸长率降低,乳液的Zeta电位绝对值和黏度,胶膜微相分离程度,拉伸强度和杨氏模量提高,其中WPU-7样品的拉伸强度和杨氏模量分别达到55.2和77.1 MPa,韧性为97.18 MJ·m
-3
,所有样品在可见光波长范围内透光率均超过89%,此材料有望应用于显微镜镜片等领域的保护和装饰. 这项研究为设计具有优异性能的生物基WPU提供了新思路,从而减少对石化资源的依赖.
Polyurethane coatings are widely used as a protective and decorative layer for various substrates. However
the extensive use of solvent-based coatings can cause environmental pollution. Waterborne polyurethane (WPU) coating possess the characteristics of low toxicity and VOC emission
which is an environmentally and friendly coating
but the main raw material for WPU comes from unsustainable petroleum resources. Herein
a series of WPU with biobased content of about 60% were synthesized by prepolymer method using biobased polytrimethylether diol (PO3G). The structures and properties of WPU were systematically characterized
and the effects of hydrophilic chain extender content on their properties were studied. The results showed that with the increase of the hydrophilic chain extender content
the particle size of the emulsion and elongation at break decreased
and the absolute value of Zeta potential
viscosity
degree of microphase separation
tensile strength and Young's modulus increased. The tensile strength
Young's modulus
toughness of WPU-7 sample reached 55.2 MPa
77.1 MPa
97.18 MJ·m
-3
respectively. The light transmittance of all the samples e
xceeds 89% in the visible wavelength range. The materials are expected to be used as protective and decorative layer in microscope lenses and other fields. This research provides new ideas for the design of biobased WPU with excellent performance and reducing the dependence on petrochemical resources.
生物基水性聚氨酯微相分离高强度高透明
Bio-basedWaterborne polyurethaneMicrophase separationHigh strengthHigh transparency
Zheng S. L.; Bellido-Aguilar D. A.; Huang Y. J.; Zeng X. T.; Zhang Q. C.; Chen Z.Mechanically robust hydrophobic bio-based epoxy coatings for anti-corrosion application. Surf. Coat. Technol., 2019, 363, 43-50. doi:10.1016/j.surfcoat.2019.02.020http://dx.doi.org/10.1016/j.surfcoat.2019.02.020
Kúdela J.; Sikora A.; Gondáš L.Wood surface finishing with transparent lacquers intended for indoor use, and the colour resistance of these surfaces during accelerated aging. Polymers, 2023, 15(3), 747. doi:10.3390/polym15030747http://dx.doi.org/10.3390/polym15030747
Meglaa B.; Tawfik M.; Morsy F.; Elsherbiny S.; Essawy H.Hyperbranched additive into a high solid acrylate coating for automotive application: impact on performance and emission of volatile organic content. Pigment. Resin Technol., 2022, 51(1), 13-23. doi:10.1108/prt-11-2020-0117http://dx.doi.org/10.1108/prt-11-2020-0117
Liang R. H.; Zhang H. T.; Wang Y. H.; Ye J.; Guo L. H.; He L. F.; Li X. Y.; Qiu T.; Tuo X. L.Dual dynamic network system constructed by waterborne polyurethane for improved and recoverable performances. Chem. Eng. J., 2022, 442, 136204. doi:10.1016/j.cej.2022.136204http://dx.doi.org/10.1016/j.cej.2022.136204
Yang J.; Joo H.; Kwon M.; Kim S.; Joo S. W.; Noh S. M.; Paik H. J.Waterborne polyurethane via encapsulated blocked isocyanate crosslinker for 1 K clearcoats. Prog. Org. Coat., 2023, 177, 107408. doi:10.1016/j.porgcoat.2023.107408http://dx.doi.org/10.1016/j.porgcoat.2023.107408
Wu C. H.; Wang J. X.; Yang F. R.; Wang Z.; Sun Z. Y.Full bio-based phenalkamine prepared by one-pot process used for preparing solvent-free protective coating. Prog. Org. Coat., 2024, 188, 108257. doi:10.1016/j.porgcoat.2024.108257http://dx.doi.org/10.1016/j.porgcoat.2024.108257
Nosrati R.; Kiani G.; Karimzad Ghavidel A.; Rashidi A.Improving environmental protection of waterborne polyurethane coating by adding TiO2/polyaniline/HNT/CNT nanocomposite. Environ. Sci. Pollut. Res. Int., 2020, 27(6), 6438-6448. doi:10.1007/s11356-019-07333-xhttp://dx.doi.org/10.1007/s11356-019-07333-x
Xu L.; Zhao Z. F.; Li X. R.; Yuan J.; Zhou Q. Y.; Xiao F. P.Cracking investigation on fog seal technology with waterborne acrylate and polyurethane as a clean modification approach. J. Clean. Prod., 2021, 329, 129751. doi:10.1016/j.jclepro.2021.129751http://dx.doi.org/10.1016/j.jclepro.2021.129751
赵静, 沈一丁, 赖小娟. 酮肼交联及硅烷偶联水性聚氨酯的成膜机理及其性能研究. 高分子学报, 2010, (9), 1122-1128. doi:10.3724/SP.J.1105.2010.09498http://dx.doi.org/10.3724/SP.J.1105.2010.09498
Sai F. T.; Zhang H. T.; Qu J. B.; Wang J. Y.; Zhu X. Z.; Ye P.; Zhang Z. L.Thermal-driven self-healing and green recyclable waterborne polyurethane films based on double reversible covalent bonds. Prog. Org. Coat., 2023, 178, 107460. doi:10.1016/j.porgcoat.2023.107460http://dx.doi.org/10.1016/j.porgcoat.2023.107460
Pérez Das Dores A.; Llorente O.; Martin L.; González A.; Irusta L.Polydimethylsiloxane containing waterborne hydrophobic polyurethane coatings with good adhesion to metals: synthesis and characterization. Prog. Org. Coat., 2022, 162, 106564. doi:10.1016/j.porgcoat.2021.106564http://dx.doi.org/10.1016/j.porgcoat.2021.106564
Liu C.; Yang H.; Shen L. G.; Shi L.; Yin Q.; Bao Y.; Ma J. Z.Mechanically robust waterborne polyurethane with excellent room temperature self-healing and shape memory performance. Eur. Polym. J., 2023, 196, 112288. doi:10.1016/j.eurpolymj.2023.112288http://dx.doi.org/10.1016/j.eurpolymj.2023.112288
Jiang L.; Wang L.; Yan Q.; Fan H. J.; Xiang J.A facile, general, and modular synthetic approach to biomass-based diols. Green Chem., 2023, 25(23), 9659-9664. doi:10.1039/d3gc03296ehttp://dx.doi.org/10.1039/d3gc03296e
盛松松, 蒋平平, 张萍波, 高学文, 唐敏艳, 俞晓琴, 包燕敏. 环氧大豆油多元醇改性磺酸型水性聚氨酯合成与性能研究. 高分子学报, 2016, (11), 1587-1593. doi:10.11777/j.issn1000-3304.2016.16076http://dx.doi.org/10.11777/j.issn1000-3304.2016.16076
Senra E. M.; Silva A. L. N.; Pacheco E. B. A. V.A review of waterborne polyurethane coatings and adhesives with polyester polyol from poly(ethylene terephthalate) waste. J. Polym. Environ., 2023, 31(9), 3719-3739. doi:10.1007/s10924-023-02836-8http://dx.doi.org/10.1007/s10924-023-02836-8
游怀, 严硕, 宋学霖, 卓春伟, 刘顺杰, 王献红. 有机催化精准制备聚酯多元醇: 环氧化物原位缓释与捕捉策略. 高分子学报, 2023, 54(3), 327-335. doi:10.11777/j.issn1000-3304.2022.22315http://dx.doi.org/10.11777/j.issn1000-3304.2022.22315
Sardon H.; Mecerreyes D.; Basterretxea A.; Avérous L.; Jehanno C.From lab to market: current strategies for the production of biobased polyols. ACS Sustain. Chem. Eng., 2021, 9(32), 10664-10677. doi:10.1021/acssuschemeng.1c02361http://dx.doi.org/10.1021/acssuschemeng.1c02361
Harmer M. A.; Confer D. C.; Hoffman C. K.; Jackson S. C.; Liauw A. Y.; Minter A. R.; Murphy E. R.; Spence R. E.; Sunkara H. B.Renewably sourced polytrimethylene ether glycol by superacid catalyzed condensation of 1,3-propanediol. Green Chem., 2010, 12(8), 1410-1416. doi:10.1039/c002443khttp://dx.doi.org/10.1039/c002443k
Polo Fonseca L.; Bergamo Trinca R.; Isabel Felisberti M.Thermo-responsive polyurethane hydrogels based on poly-(ethylene glycol) and poly(caprolactone): physico-chemical and mechanical properties. J. Appl. Polym. Sci., 2016, 133(25), 43573. doi:10.1002/app.43573http://dx.doi.org/10.1002/app.43573
Peng F.; Yang X. W.; Zhu Y.; Wang G. Y.Effect of the symmetry of polyether glycols on structure-morphology-property behavior of polyurethane elastomers. Polymer, 2022, 239, 124429. doi:10.1016/j.polymer.2021.124429http://dx.doi.org/10.1016/j.polymer.2021.124429
Lin Z. X.; Sun Z.; Xu C. P.; Zhang A. Q.; Xiang J.; Fan H. J.A self-matting waterborne polyurethane coating with admirable abrasion-resistance. RSC Adv., 2021, 11(44), 27620-27626. doi:10.1039/d1ra03738bhttp://dx.doi.org/10.1039/d1ra03738b
刘凯, 姚明, 陈建君, 张均, 蒋国昌, 姜志国. 亲水扩链剂含量对HMDI型水性聚氨酯性能的影响. 塑料, 2021, 50(3), 152-155.
林祥福, 陈建福. 水性聚氨酯乳液的粒径影响研究. 染料与染色, 2010, 47(3), 47-49. doi:10.3969/j.issn.1672-1179.2010.03.014http://dx.doi.org/10.3969/j.issn.1672-1179.2010.03.014
杨智慧, 崔香. 环境友好型耐水解水性聚氨酯的制备与表征. 塑料工业, 2022, 50(6), 125-130.
Li M. Y.; Han X.; Fan Z. W.; Chen H.; Zhang Y.; Zhang L.; Guo D.; Xie G. X.A strong phase separation polyurethane for self-repairing large-scale damage. J. Mater. Chem. A, 2022, 10(25), 13368-13377. doi:10.1039/d2ta02469ahttp://dx.doi.org/10.1039/d2ta02469a
Eom Y.; Kim S. M.; Lee M.; Jeon H.; Park J.; Lee E. S.; Hwang S. Y.; Park J.; Oh D. X.Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun., 2021, 12(1), 621. doi:10.1038/s41467-021-20931-zhttp://dx.doi.org/10.1038/s41467-021-20931-z
Mattia J.; Painter P.A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules, 2007, 40(5), 1546-1554. doi:10.1021/ma0626362http://dx.doi.org/10.1021/ma0626362
Billa S.; Vislavath P.; Bahadur J.; Rath S. K.; Ratna D.; Manoj N. R.; Chakraborty B. C.Imparting reprocessability, quadruple shape memory, self-healing, and vibration damping characteristics to a thermosetting poly(urethane-urea). ACS Appl. Polym. Mater., 2023, 5(4), 3079-3095. doi:10.1021/acsapm.3c00225http://dx.doi.org/10.1021/acsapm.3c00225
Garrett J. T.; Lin J. S.; Runt J.Influence of preparation conditions on microdomain formation in poly(urethane urea) block copolymers. Macromolecules, 2002, 35(1), 161-168. doi:10.1021/ma010915dhttp://dx.doi.org/10.1021/ma010915d
Fuensanta M.; Jofre-Reche J. A.; Rodríguez-Llansola F.; Costa V.; Iglesias J. I.; Martín-Martínez J. M.Structural characterization of polyurethane ureas and waterborne polyurethane urea dispersions made with mixtures of polyester polyol and polycarbonate diol. Prog. Org. Coat., 2017, 112, 141-152. doi:10.1016/j.porgcoat.2017.07.009http://dx.doi.org/10.1016/j.porgcoat.2017.07.009
Yao Y.; Liu B.; Xu Z. Y.; Yang J. H.; Liu W. G.An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Mater. Horiz., 2021, 8(10), 2742-2749. doi:10.1039/d1mh01217ghttp://dx.doi.org/10.1039/d1mh01217g
0
浏览量
189
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构