浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: sjliu@ciac.ac.cn
xhwang@ciac.ac.cn
纸质出版日期:2025-01-20,
网络出版日期:2024-11-14,
收稿日期:2024-06-25,
录用日期:2024-07-19
移动端阅览
范培鑫, 刘顺杰, 张若禹, 杨列航, 高凤翔, 陈学思, 王献红. 柔性桥联双核卟啉铝催化二氧化碳/环氧化物交替共聚反应. 高分子学报, 2025, 56(1), 47-57
Fan, P. X.; Liu, S. J.; Zhang, R. Y.; Yang, L. H.; Gao, F. X.; Chen, X. S.; Wang, X. H. Flexible tethered binuclear porphyrin aluminum for the copolymerization of CO2 and epoxide. Acta Polymerica Sinica, 2025, 56(1), 47-57
范培鑫, 刘顺杰, 张若禹, 杨列航, 高凤翔, 陈学思, 王献红. 柔性桥联双核卟啉铝催化二氧化碳/环氧化物交替共聚反应. 高分子学报, 2025, 56(1), 47-57 DOI: 10.11777/j.issn1000-3304.2024.24182. CSTR: 32057.14.GFZXB.2024.7286.
Fan, P. X.; Liu, S. J.; Zhang, R. Y.; Yang, L. H.; Gao, F. X.; Chen, X. S.; Wang, X. H. Flexible tethered binuclear porphyrin aluminum for the copolymerization of CO2 and epoxide. Acta Polymerica Sinica, 2025, 56(1), 47-57 DOI: 10.11777/j.issn1000-3304.2024.24182. CSTR: 32057.14.GFZXB.2024.7286.
受天然酶启发,协同作用被广泛应用于小分子的识别及其催化转化,但在聚合物合成领域的研究仍然有限. 本文报道了一种柔性桥联双核卟啉铝催化剂(FTBC),成功实现了CO
2
与环氧丙烷(PO)的高效交替共聚. 该策略的关键在于通过调控柔性链的长度使得活性位点相互靠近,从而促进分子内协同作用. 受益于活性位点的协同效应,以―CH
2
―为柔性链的C
1
-Al
2
表现出优异的催化活性(380 h
-1
)及较高的聚合物选择性(96%),优于相同条件下的单分子卟啉铝(活性为300 h
-1
,聚合物选择性为78%). 即使在低催化剂浓度下,C
1
-Al
2
也能保持较好催化活性(250 h
-1
). 动力学实验表明C
1
-Al
2
反应级数为一级,证实催化剂的分子内协同催化主导共聚过程. 本文报道了一种柔性桥联双核催化剂的构筑策略,为模块化设计高性能催化剂提供了新方向.
Inspired by natural enzymes
the synergistic effect has been widely applied in small molecule recognition and catalysis
but the exploration of synergy in the field of polymer synthesis is limited. We reported a flexible tethered binuclear porphyrin aluminum catalyst (FTBC)
aiming to boost the alternating copolymerization of CO
2
and propylene oxide (PO). The key design of FTBC is to promote intramolecular synergy by spatial proximity of active sites through shortening the flexible chains. By shortening the flexible chain length of the FTBC
the catalytic activity of the catalys
t gradually increased. The optimal catalyst C
1
-Al
2
featured with ―CH
2
― grafting two adjacent aluminum porphyrins exhibits outstanding catalytic activity (380 h
-1
) and polymer selectivity (96%)
outperforming the monomeric catalyst m-Al (300 h
-1
polymer selectivity% = 78%). Benefiting from the intramolecular synergy of C
1
-Al
2
the catalytic activity can be maintained at a low catalyst concentration of [PO
]
/[Al
]
= 20000/1
and the molecular weight of the obtained polymer can reach 48.3 kg/mol. Kinetic studies indicated a first-order dependence on C
1
-Al
2
in the copolymerization of CO
2
/PO
confirming that the intramolecular synergistic catalysis of the catalyst dominates the copolymerization process. Here
we reported a construction strategy for a flexible tethered binuclear catalyst
which opens up a new direction for the modular design of high-performance catalysts.
双核催化剂铝卟啉协同催化二氧化碳环氧化物
Binuclear catalystsAluminum porphyrinSynergistic catalysisCarbon dioxideEpoxide
Raynal M.; Ballester P.; Vidal-Ferran A.; van Leeuwen P. W. N. M.Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev., 2014, 43(5), 1734-1787. doi:10.1039/c3cs60037hhttp://dx.doi.org/10.1039/c3cs60037h
Selvakumar K.; Motiei L.; Margulies D.Enzyme-artificial enzyme interactions as a means for discriminating among structurally similar isozymes. J. Am. Chem. Soc., 2015, 137(15), 4892-4895. doi:10.1021/jacs.5b02496http://dx.doi.org/10.1021/jacs.5b02496
Xie D. W.; Li H.; Cui D. G.; Li J. B.; Song Y. K.; Li S. J.; Zhang X.; Lee J. Y.; Shao M. F.; Wei M.NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem. Int. Ed., 2021, 60(13), 7382-7388. doi:10.1002/anie.202014655http://dx.doi.org/10.1002/anie.202014655
Chang X. X.; He M.; Lu Q.; Xu B. J.Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions. Sci. China Chem., 2023, 66(1), 96-106. doi:10.1007/s11426-022-1459-3http://dx.doi.org/10.1007/s11426-022-1459-3
Xu H. M.; Zhu H. R.; Huang C. J.; Zhang Z. J.; Shuai T. Y.; Zhan Q. N.; Li G. R.Recent advances in Fe―N―C― and Co-N-C-based materials as bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Sci. China Chem., 2024, 67(4), 1137-1160. doi:10.1007/s11426-023-1863-8http://dx.doi.org/10.1007/s11426-023-1863-8
Kim D. S.; Park W. J.; Jun C. H.Metal-organic cooperative catalysis in C―H and C―C bond activation. Chem. Rev., 2017, 117(13), 8977-9015. doi:10.1021/acs.chemrev.6b00554http://dx.doi.org/10.1021/acs.chemrev.6b00554
Gianneschi N. C.; Bertin P. A.; Nguyen S. T.; Mirkin C. A.; Zakharov L. N.; Rheingold A. L.A supramolecular approach to an allosteric catalyst. J. Am. Chem. Soc., 2003, 125(35), 10508-10509. doi:10.1021/ja035621hhttp://dx.doi.org/10.1021/ja035621h
Wang X. H.Biodegradable polymers, history tells polymer science's fortune. Chinese J. Polym. Sci., 2022, 40(5), 431-432. doi:10.1007/s10118-022-2737-xhttp://dx.doi.org/10.1007/s10118-022-2737-x
Liu Y.; Lu X. B.Current challenges and perspectives in CO2-based polymers. Macromolecules, 2023, 56(5), 1759-1777. doi:10.1021/acs.macromol.2c02483http://dx.doi.org/10.1021/acs.macromol.2c02483
Li Y.; Zhang Y. Y.; Hu L. F.; Zhang X. H.; Du B. Y.; Xu J. T.Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci., 2018, 82, 120-157. doi:10.1016/j.progpolymsci.2018.02.001http://dx.doi.org/10.1016/j.progpolymsci.2018.02.001
Zhao Y. J.; Zhu S. S.; Liao C.; Wang Y.; Lam J. W. Y.; Zhou X. P.; Wang X. H.; Xie X. L.; Tang B. Z.Cobalt-mediated switchable catalysis for the one-pot synthesis of cyclic polymers. Angew. Chem. Int. Ed., 2021, 60(31), 16974-16979. doi:10.1002/anie.202106285http://dx.doi.org/10.1002/anie.202106285
Klaus S.; Lehenmeier M. W.; Anderson C. E.; Rieger B.Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coord. Chem. Rev., 2011, 255(13-14), 1460-1479. doi:10.1016/j.ccr.2010.12.002http://dx.doi.org/10.1016/j.ccr.2010.12.002
Cao H.; Liu S. J.; Wang X. H.Environmentally benign metal catalyst for the ring-opening copolymerization of epoxide and CO2: state-of-the-art, opportunities, and challenges. Green Chem. Eng., 2022, 3(2), 111-124. doi:10.1016/j.gce.2021.11.005http://dx.doi.org/10.1016/j.gce.2021.11.005
Zhang Y. Y.; Yang G. W.; Lu C. J.; Zhu X. F.; Wang Y. H.; Wu G. P.Organoboron-mediated polymerizations. Chem. Soc. Rev., 2024, 53(7), 3384-3456. doi:10.1039/d3cs00115fhttp://dx.doi.org/10.1039/d3cs00115f
Fang Y. B.; Qi H.; Li B.; Yang G. W.; Wu G. P.Stereoselective polymerization of epoxides using organoboron catalysts. Polym. Chem., 2024, 15(13), 1297-1302. doi:10.1039/d3py01315dhttp://dx.doi.org/10.1039/d3py01315d
Luo M.; Li Y.; Zhang Y. Y.; Zhang X. H.Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer, 2016, 82, 406-431. doi:10.1016/j.polymer.2015.11.011http://dx.doi.org/10.1016/j.polymer.2015.11.011
Liu Y.; Ren W. M.; Liu C.; Fu S.; Wang M.; He K. K.; Li R. R.; Zhang R.; Lu X. B.Mechanistic understanding of dinuclear cobalt(III) complex mediated highly enantioselective copolymerization of meso-epoxides with CO2. Macromolecules, 2014, 47(22), 7775-7788. doi:10.1021/ma5019186http://dx.doi.org/10.1021/ma5019186
Yang G. W.; Xu C. K.; Xie R.; Zhang Y. Y.; Lu C. J.; Qi H.; Yang L.; Wang Y. H.; Wu G. P.Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts. Nat. Synth., 2022, 1, 892-901. doi:10.1038/s44160-022-00137-xhttp://dx.doi.org/10.1038/s44160-022-00137-x
S, S.; Min, J.; Seong, J.; Na, S.; Lee, B. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed., 2008, 47(38), 7306-7309. doi:10.1002/anie.200801852http://dx.doi.org/10.1002/anie.200801852
Nakano K.; Kamada T.; Nozaki K.Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed., 2006, 45(43), 7274-7277. doi:10.1002/anie.200603132http://dx.doi.org/10.1002/anie.200603132
Wang X. W.; Hui J. W.; Shi M. M.; Kou X. H.; Li X. X.; Zhong R. L.; Li Z. B.Exploration of the synergistic effect in a one-component lewis pair system: serving as a dual initiator and catalyst in the ring-opening polymerization of epoxides. ACS Catal., 2022, 12(14), 8434-8443. doi:10.1021/acscatal.2c02170http://dx.doi.org/10.1021/acscatal.2c02170
Vagin S. I.; Reichardt R.; Klaus S.; Rieger B.Conformationally flexible dimeric salphen complexes for bifunctional catalysis. J. Am. Chem. Soc., 2010, 132(41), 14367-14369. doi:10.1021/ja106484thttp://dx.doi.org/10.1021/ja106484t
Nakano K.; Kobayashi K.; Ohkawara T.; Imoto H.; Nozaki K.Copolymerization of epoxides with carbon dioxide catalyzed by iron-corrole complexes: synthesis of a crystalline copolymer. J. Am. Chem. Soc., 2013, 135(23), 8456-8459. doi:10.1021/ja4028633http://dx.doi.org/10.1021/ja4028633
Gu Y. R.; Kou X. H.; Wang X. W.; Li Z. B.Creating remarkably moisture- and air-stable macromolecular lewis acid by integrating borane within the polymer chain: a highly active catalyst for homo(co)polymerization of epoxides. Angew. Chem. Int. Ed., 2024, 63(7), e202318645. doi:10.1002/anie.202318645http://dx.doi.org/10.1002/anie.202318645
Duan R. L.; Hu C. Y.; Sun Z. Q.; Zhang H.; Pang X.; Chen X. S.Conjugated tri-nuclear salen-co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem., 2019, 21(17), 4723-4731. doi:10.1039/c9gc02045dhttp://dx.doi.org/10.1039/c9gc02045d
Chen P.; Zhou H.; Cao H.; Zhuo C. W.; Liu S. J.; Wang X. H.Polymeric catalyst with polymerization-enhanced Lewis acidity for CO2-based copolymers. Chin. Chem. Lett., 2023, 34(12), 108630. doi:10.1016/j.cclet.2023.108630http://dx.doi.org/10.1016/j.cclet.2023.108630
Zhuo C. W.; Cao H.; Wang X. S.; Liu S. J.; Wang X. H.Polymeric aluminum porphyrin: controllable synthesis of ultra-low molecular weight CO2-based polyols. Chin. Chem. Lett., 2023, 34(8), 108011. doi:10.1016/j.cclet.2022.108011http://dx.doi.org/10.1016/j.cclet.2022.108011
Zhang R. Y.; Kuang Q. X.; Cao H.; Liu S. J.; Chen X. S.; Wang X. H.; Wang F. S.Unity makes strength: constructing polymeric catalyst for selective synthesis of CO2/epoxide copolymer. CCS Chem., 2023, 5(3), 750-760. doi:10.31635/ccschem.022.202201952http://dx.doi.org/10.31635/ccschem.022.202201952
Ohkawara T.; Suzuki K.; Nakano K.; Mori S.; Nozaki K.Facile estimation of catalytic activity and selectivities in copolymerization of propylene oxide with carbon dioxide mediated by metal complexes with planar tetradentate ligand. J. Am. Chem. Soc., 2014, 136(30), 10728-10735. doi:10.1021/ja5046814http://dx.doi.org/10.1021/ja5046814
Liu Z.; Gong Y. K.; Zhang J. B.; Liu S. F.; Li Z. B.Dinuclear half-titanocene complex bearing an anthracene-bridged bifunctional alkoxide ligand: unprecedented cooperativity toward copolymerization of ethylene with 1-octene or norbornene. Macromolecules, 2024, 57(1), 162-173. doi:10.1021/acs.macromol.3c02385http://dx.doi.org/10.1021/acs.macromol.3c02385
Du P.; Li Y.; Lu X. B.Chiral organoboron-mediated alternating copolymerization of meso-epoxides with CO2. Macromolecules, 2023, 56(17), 6783-6789. doi:10.1021/acs.macromol.3c01264http://dx.doi.org/10.1021/acs.macromol.3c01264
Anderson C. E.; Vagin S. I.; Hammann M.; Zimmermann L.; Rieger B.Copolymerisation of propylene oxide and carbon dioxide by dinuclear cobalt porphyrins. ChemCatChem, 2013, 5(11), 3269-3280. doi:10.1002/cctc.201300307http://dx.doi.org/10.1002/cctc.201300307
Wang Y.; Zhao Y. J.; Ye Y. S.; Peng H. Y.; Zhou X. P.; Xie X. L.; Wang X. H.; Wang F. S.A one-step route to CO2-based block copolymers by simultaneous ROCOP of CO2/epoxides and RAFT polymerization of vinyl monomers. Angew. Chem. Int. Ed., 2018, 57(14), 3593-3597. doi:10.1002/anie.201710734http://dx.doi.org/10.1002/anie.201710734
Chatterjee C.; Chisholm M. H.The influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(III) complexes. 1. aluminum chemistry. Inorg. Chem., 2011, 50(10), 4481-4492. doi:10.1021/ic200142fhttp://dx.doi.org/10.1021/ic200142f
Kuang Q. X.; Zhang R. Y.; Zhou Z. Z.; Liao C.; Liu S. J.; Chen X. S.; Wang X. H.A supported catalyst that enables the synthesis of colorless CO2-polyols with ultra-low molecular weight. Angew. Chem. Int. Ed., 2023, 62(35), e202305186. doi:10.1002/anie.202308125http://dx.doi.org/10.1002/anie.202308125
Cao H.; Qin Y. S.; Zhuo C. W.; Wang X. H.; Wang F. S.Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers. ACS Catal., 2019, 9(9), 8669-8676. doi:10.1021/acscatal.9b02741http://dx.doi.org/10.1021/acscatal.9b02741
You H.; Wang E. H.; Cao H.; Zhuo C. W.; Liu S. J.; Wang X. H.; Wang F. S.From impossible to possible: atom-economic polymerization of low strain five-membered carbonates. Angew. Chem. Int. Ed., 2022, 61(5), e202113152. doi:10.1002/anie.202113152http://dx.doi.org/10.1002/anie.202113152
Deacy A. C.; Moreby E.; Phanopoulos A.; Williams C. K.Co(III)/alkali-metal(I) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide. J. Am. Chem. Soc., 2020, 142(45), 19150-19160. doi:10.1021/jacs.0c07980http://dx.doi.org/10.1021/jacs.0c07980
Lidston C. A. L.; Severson S. M.; Abel B. A.; Coates G. W.Multifunctional catalysts for ring-opening copolymerizations. ACS Catal., 2022, 12(18), 11037-11070. doi:10.1021/acscatal.2c02524http://dx.doi.org/10.1021/acscatal.2c02524
卓春伟, 曹瀚, 周振震, 刘顺杰, 王献红. 高分子铝卟啉体系: 二氧化碳基多元醇的高效可控合成. 高分子学报, 2023, 54(5), 601-611.
Zhang X. H.; Wei R. J.; Zhang Y. Y.; Du B. Y.; Fan Z. Q.Carbon dioxide/epoxide copolymerization via a nanosized zinc–cobalt(III) double metal cyanide complex: substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures. Macromolecules, 2015, 48(3), 536-544. doi:10.1021/ma5023742http://dx.doi.org/10.1021/ma5023742
Liu Y.; Zhou H.; Guo J. Z.; Ren W. M.; Lu X. B.Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed., 2017, 56(17), 4862-4866. doi:10.1002/anie.201701438http://dx.doi.org/10.1002/anie.201701438
周庆海, 贾凡, 曹瀚, 刘顺杰, 王献红, 王佛松. 二氧化碳与环氧化物的三元共聚反应动力学过程控制. 高分子学报, 2022, 53(11), 1365-1371.
0
浏览量
134
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构