浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: xpang@ciac.ac.cn
xschen@ciac.ac.cn
纸质出版日期:2025-01-20,
网络出版日期:2024-11-18,
收稿日期:2024-07-18,
录用日期:2024-09-11
移动端阅览
孟帅明, 冯孟昌, 周延川, 庞烜, 陈学思. 不对称铝配合物催化制备聚酯材料的研究. 高分子学报, 2025, 56(1), 58-67
Meng, S. M.; Feng, M. C.; Zhou, Y. C.; Pang, X.; Chen, X. S. Study on the preparation of polyester catalyzed by the novel al complexes. Acta Polymerica Sinica, 2025, 56(1), 58-67
孟帅明, 冯孟昌, 周延川, 庞烜, 陈学思. 不对称铝配合物催化制备聚酯材料的研究. 高分子学报, 2025, 56(1), 58-67 DOI: 10.11777/j.issn1000-3304.2024.24201. CSTR: 32057.14.GFZXB.2024.7294.
Meng, S. M.; Feng, M. C.; Zhou, Y. C.; Pang, X.; Chen, X. S. Study on the preparation of polyester catalyzed by the novel al complexes. Acta Polymerica Sinica, 2025, 56(1), 58-67 DOI: 10.11777/j.issn1000-3304.2024.24201. CSTR: 32057.14.GFZXB.2024.7294.
设计开发高效的催化体系用于可控制备高分子量聚酯材料,一直以来都是可降解高分子材料研发的重点. 本文报道了一种配体框架中含有Salen键和Catam键的新型不对称铝配合物. 这种特殊的配体结构可以促进中心金属对环酯单体(如
ε
-己内酯(
ε
-CL)和
δ
-戊内酯(
δ
-VL))的活化作用,赋予铝配合物高活性催化环酯单体开环聚合的能力,实现了高分子量聚酯材料的可控合成. 首先,考察比较了铝配合物结构和反应条件(温度、单体比例和单体结构)对催化聚合反应的影响规律. 在优化反应条件后,轴配位为苄氧基的铝配合物,可以在10 min内快速催化
ε
-CL、
δ
-VL及其混合单体的聚合反应,合成得到数均分子量高达175.7~443.8 kg·mol
-1
的聚酯材料. 进一步计算比较了混合单体比例和反应温度等条件对无规共聚酯材料平均链段长度的影响,并详细表征了聚酯材料的组分结构与材料热学性能的关系.
One major remaining challenge in development degradable polymer materials is designing efficient catalytic systems for the controllable synthesis of high molecular weight polyesters. In this study
we reported the novel asymmetric Al complexes with a Salen bond and a Catam bond in the ligand framework. The specific ligand structure played an important role in the activation of the central metal atom to the cyclic ester monomers (
e.g.
ε
-caprolactone (
ε
-CL)
and
δ
-valerolactone (
δ
-VL)). The Al complexes exhibited excellent activity for the cyclic ester polymerizations
generating high molecular weight polyesters. Initially
the effects of aluminum complex structures and polymerization conditions (reaction temperatures
monomer ratios
and monomer structures) on catalytic polymerization were investigated systematically. After optimizing the reaction conditions
the asymmetric Al complex with a benzyl alkoxy as axial group
could controllably polymerize
ε
-CL
δ
-VL
and their mixed monomers
to polyesters with high number-average molecular weight (175.7-443.8 kg·mol
-1
) within 10 min. Furthermore
the relationship between chain structures (n
umber-average sequence lengths of PCL and PVL) and reaction conditions (reaction temperatures and monomer ratios) was analyzed. And the thermal properties of random polyesters were characterized in detail.
不对称铝配合物开环聚合反应环内酯高催化活性聚酯材料
Asymmetric Al complexRing-opening polymerizationCyclic esterHigh catalytic activityPolyester
Iwata T.Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chem. Int. Ed., 2015, 54(11), 3210-3215. doi:10.1002/anie.201410770http://dx.doi.org/10.1002/anie.201410770
Woodruff M. A.; Hutmacher D. W.The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci., 2010, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
Andrady A. L.; Neal M. A.Applications and societal benefits of plastics. Phil. Trans. R. Soc. B, 2009, 364(1526), 1977-1984. doi:10.1098/rstb.2008.0304http://dx.doi.org/10.1098/rstb.2008.0304
Derraik J. G. B.The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull., 2002, 44(9), 842-852. doi:10.1016/s0025-326x(02)00220-5http://dx.doi.org/10.1016/s0025-326x(02)00220-5
张昊天, 胡晨阳, 李莉莉, 庞烜. 开环聚合催化剂用于脂肪族聚酯合成的研究进展. 高分子学报,2022, 53(9), 1057-1071. doi:10.11777/j.issn1000-3304.2022.22088http://dx.doi.org/10.11777/j.issn1000-3304.2022.22088
Zhang W.; Dai J.; Wu Y. C.; Chen J. X.; Shan S. Y.; Cai Z. Z.; Zhu J. B.Highly reactive cyclic carbonates with a fused ring toward functionalizable and recyclable polycarbonates. ACS Macro Lett., 2022, 11(2), 173-178. doi:10.1021/acsmacrolett.1c00653http://dx.doi.org/10.1021/acsmacrolett.1c00653
Yang X.; Zhang W.; Huang H. Y.; Dai J.; Wang M. Y.; Fan H. Z.; Cai Z. Z.; Zhang Q.; Zhu J. B.Stereoselective ring-opening polymerization of lactones with a fused ring leading to semicrystalline polyesters. Macromolecules, 2022, 55(7), 2777-2786. doi:10.1021/acs.macromol.1c02555http://dx.doi.org/10.1021/acs.macromol.1c02555
Hu Z. T.; Cao X. H.; Zhang X. H.; Wu B.; Luo W. J.; Huang H. H.; Li L.; Chen Y. M.Catalytically controlled ring-opening polymerization of 2-oxo-15-crown-5 for degradable and recyclable PEG-like polyesters. ACS Macro Lett., 2022, 11(6), 792-798. doi:10.1021/acsmacrolett.2c00210http://dx.doi.org/10.1021/acsmacrolett.2c00210
Haque F. M.; Ishibashi J. S. A.; Lidston C. A. L.; Shao H. L.; Bates F. S.; Chang A. B.; Coates G. W.; Cramer C. J.; Dauenhauer P. J.; Dichtel W. R.; Ellison C. J.; Gormong E. A.; Hamachi L. S.; Hoye T. R.; Jin M. Y.; Kalow J. A.; Kim H. J.; Kumar G.; LaSalle C. J.; Liffland S.; Lipinski B. M.; Pang Y. T.; Parveen R.; Peng X. Y.; Popowski Y.; Prebihalo E. A.; Reddi Y.; Reineke T. M.; Sheppard D. T.; Swartz J. L.; Tolman W. B.; Vlaisavljevich B.; Wissinger J.; Xu S.; Hillmyer M. A.Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem. Rev., 2022, 122(6), 6322-6373. doi:10.1021/acs.chemrev.1c00173http://dx.doi.org/10.1021/acs.chemrev.1c00173
Tong R.New chemistry in functional aliphatic polyesters. Ind. Eng. Chem. Res., 2017, 56(15), 4207-4219. doi:10.1021/acs.iecr.7b00524http://dx.doi.org/10.1021/acs.iecr.7b00524
Huang H. C.; Wang B.; Chen X. L.; Pan L.; Li Y. S.Ring-opening polymerization of (Macro)lactones by highly active mononuclear salen-aluminum complexes bearing cyclic β-ketoiminato ligand. J. Polym. Sci. Part A Polym. Chem., 2019, 57(9), 973-981. doi:10.1002/pola.29350http://dx.doi.org/10.1002/pola.29350
Wang W.; Ren B. H.; Gu G. G.; Yue T. J.; Zhang S.; Lu X. B.; Ren W. M.Dinuclear Mg complex-mediated ring-opening polymerization of lactones: High molecular weight and enhanced performance. Macromolecules, 2024, 57(12), 5720-5728. doi:10.1021/acs.macromol.4c00955http://dx.doi.org/10.1021/acs.macromol.4c00955
Wan Y.; Bai Y.; Xu H.; He J. H.; Zhang Y. T.Highly isoselective ring-opening polymerization of rac-lactide using chiral binuclear aluminum catalyst. Macromol. Rapid Commun., 2021, 42(3), e2000491. doi:10.1002/marc.202000491http://dx.doi.org/10.1002/marc.202000491
Jia Y. F.; Li B. K.; Sun Y. F., Hu C. Y.; Li X.; Liu S. J.; Wang X. H.; Pang X.; Chen X. S.Sustainable, recyclable, and bench-stable catalytic system for synthesis of poly(ester-b-carbonate). Chem. Bio. Eng., 2024, doi: 10.1021/cbe.4c00064.http://dx.doi.org/10.1021/cbe.4c00064.
Wu L. J.; Lee W.; Kumar Ganta P.; Chang Y. L.; Chang Y. C.; Chen H. Y.Multinuclear metal catalysts in ring-opening polymerization of ε-caprolactone and lactide: cooperative and electronic effects between metal centers. Coord. Chem. Rev., 2023, 475, 214847. doi:10.1016/j.ccr.2022.214847http://dx.doi.org/10.1016/j.ccr.2022.214847
Yolsal U.; Shaw P. J.; Lowy P. A.; Chambenahalli R.; Garden J. A.Exploiting multimetallic cooperativity in the ring-opening polymerization of cyclic esters and ethers. ACS Catal., 2024, 14(2), 1050-1074. doi:10.1021/acscatal.3c05103http://dx.doi.org/10.1021/acscatal.3c05103
刘娇玉, 刘爽, 索泓一, 秦玉升. 胍基锌配合物催化丙交酯开环聚合研究. 高分子学报, 2024, 55(6), 770-780.
黄月洲, 胡晨阳, 王天昶, 庞烜, 陈学思. 硫代羧基环内酸酐与丙交酯的可切换共聚. 高分子学报, 2023, 54(4), 467-475. doi:10.11777/j.issn1000-3304.2022.22355http://dx.doi.org/10.11777/j.issn1000-3304.2022.22355
Du H. Z.; Pang X.; Yu H. Y.; Zhuang X. L.; Chen X. S.; Cui D. M.; Wang X. H.; Jing X. B.Polymerization of rac-lactide using schiff base aluminum catalysts: structure, activity, and stereoselectivity. Macromolecules, 2007, 40(6), 1904-1913. doi:10.1021/ma062194uhttp://dx.doi.org/10.1021/ma062194u
van der Meulen I.; Gubbels E.; Huijser S.; Sablong R.; Koning C. E.; Heise A.; Duchateau R.Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers. Macromolecules, 2011, 44(11), 4301-4305. doi:10.1021/ma200685uhttp://dx.doi.org/10.1021/ma200685u
Pepels M. P. F.; Bouyahyi M.; Heise A.; Duchateau R.Kinetic investigation on the catalytic ring-opening (co)polymerization of (macro)lactones using aluminum salen catalysts. Macromolecules, 2013, 46(11), 4324-4334. doi:10.1021/ma400731chttp://dx.doi.org/10.1021/ma400731c
Nomura N.; Ishii R.; Akakura M.; Aoi K.Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism. J. Am. Chem. Soc., 2002, 124(21), 5938-5939. doi:10.1021/ja0175789http://dx.doi.org/10.1021/ja0175789
Tang Z. H.; Chen X. S.; Pang X.; Yang Y. K.; Zhang X. F.; Jing X. B.Stereoselective polymerization of rac-lactide using a monoethylaluminum schiff base complex. Biomacromolecules, 2004, 5(3), 965-970. doi:10.1021/bm034467ohttp://dx.doi.org/10.1021/bm034467o
Qu Z.; Duan R. L.; Pang X.; Gao B.; Li X.; Tang Z. H.; Wang X. H.; Chen X. S.Living and stereoselective polymerization of rac-lactide by bimetallic aluminum Schiff-base complexes. J. Polym. Sci. Part A Polym. Chem., 2014, 52(9), 1344-1352. doi:10.1002/pola.27123http://dx.doi.org/10.1002/pola.27123
Chen S. Q.; Zhai Q. G.; Li S. N.; Jiang Y. C.; Hu M. C.Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Inorg. Chem., 2015, 54(1), 10-12. doi:10.1021/ic502254chttp://dx.doi.org/10.1021/ic502254c
Gesslbauer S.; Hutchinson G.; White A. J. P.; Burés J.; Romain C.Chirality-induced catalyst aggregation: Insights into catalyst speciation and activity using chiral aluminum catalysts in cyclic ester ring-opening polymerization. ACS Catal., 2021, 11(7), 4084-4093. doi:10.1021/acscatal.0c05245http://dx.doi.org/10.1021/acscatal.0c05245
Gesslbauer S.; Savela R.; Chen Y.; White A. J. P.; Romain C.Exploiting noncovalent interactions for room-temperature heteroselective rac-lactide polymerization using aluminum catalysts. ACS Catal., 2019, 9(9), 7912-7920. doi:10.1021/acscatal.9b00875http://dx.doi.org/10.1021/acscatal.9b00875
Zhou Y. C.; Gao Z.; Hu C. Y.; Meng S. M.; Duan R. L.; Sun Z. Q.; Pang X.Facile synthesis of gradient polycarbonate-polyester terpolymers from monomer mixtures mediated by an asymmetric chromium complex. Macromolecules, 2022, 55(22), 9951-9959. doi:10.1021/acs.macromol.2c01680http://dx.doi.org/10.1021/acs.macromol.2c01680
Hu Q.; Jie S. Y.; Braunstein P.; Li B. G.Ring-opening copolymerization of ε-Caprolactone and δ-valerolactone catalyzed by a 2,6-bis(amino)phenol zinc complex. Chin. J. Polym. Sci., 2020, 38(3), 240-247. doi:10.1007/s10118-020-2347-4http://dx.doi.org/10.1007/s10118-020-2347-4
Wu T.; Wei Z. Y.; Ren Y. Y.; Yu Y.; Leng X. F.; Li Y.Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: isodimorphism, mechanical properties and enzymatic degradation behavior. Polym. Degrad. Stab., 2018, 155, 173-182. doi:10.1016/j.polymdegradstab.2018.07.018http://dx.doi.org/10.1016/j.polymdegradstab.2018.07.018
Hunley M. T.; Sari N.; Beers K. L.Microstructure analysis and model discrimination of enzyme-catalyzed copolyesters. ACS Macro Lett., 2013, 2(5), 375-379. doi:10.1021/mz300659hhttp://dx.doi.org/10.1021/mz300659h
Hong M.; Tang X. Y.; Newell B. S.; Chen E. Y. X."Nonstrained" γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules, 2017, 50(21), 8469-8479. doi:10.1021/acs.macromol.7b02174http://dx.doi.org/10.1021/acs.macromol.7b02174
Ceccorulli G.; Scandola M.; Kumar A.; Kalra B.; Gross R. A.Cocrystallization of random copolymers of ω-pentadecalactone and ε-caprolactone synthesized by lipase catalysis. Biomacromolecules, 2005, 6(2), 902-907. doi:10.1021/bm0493279http://dx.doi.org/10.1021/bm0493279
0
浏览量
316
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构