浏览全部资源
扫码关注微信
中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510006
[ "黄汉初,男,1989年生. 2011年本科毕业于华南理工大学,2016年博士毕业于中国科学院上海有机化学研究所,2016年~2019年先后在香港科技大学和美国波士顿学院开展博士后研究,2020年加入中山大学材料科学与工程学院任副教授. 主要研究方向为硫自由基可逆失活聚合方法学、大环开环聚合方法学." ]
纸质出版日期:2025-01-20,
网络出版日期:2024-11-25,
收稿日期:2024-08-07,
录用日期:2024-09-11
移动端阅览
黄汉初. 硫自由基可逆失活聚合研究进展. 高分子学报, 2025, 56(1), 79-90
Huang, H. C. Advances in sulfur-centered radical reversible-deactivation polymerizations. Acta Polymerica Sinica, 2025, 56(1), 79-90
黄汉初. 硫自由基可逆失活聚合研究进展. 高分子学报, 2025, 56(1), 79-90 DOI: 10.11777/j.issn1000-3304.2024.24211. CSTR: 32057.14.GFZXB.2024.7297.
Huang, H. C. Advances in sulfur-centered radical reversible-deactivation polymerizations. Acta Polymerica Sinica, 2025, 56(1), 79-90 DOI: 10.11777/j.issn1000-3304.2024.24211. CSTR: 32057.14.GFZXB.2024.7297.
发展硫自由基的可逆失活聚合方法将有助于开发新的可控聚合反应,对推动功能高分子材料的发展具有重要的意义. 尽管国内外在硫自由基聚合反应的调控方面已经取得一定的研究进展,但硫自由基可逆失活聚合的研究仍然处于初级阶段,无论单体开发还是应用研究仍然存在很大的发展空间. 本文首先回顾了硫自由基聚合的发展历程,接着分别介绍了自由基脱二氧化硫和自由基脱硫两种间接调控硫自由基聚合反应的策略,然后重点阐述了硫自由基加成-断裂链转移聚合这一直接调控硫自由基的策略,最后总结和展望了该领域存在的挑战及未来发展趋势.
Reversible-deactivation radical polymerization (RDRP) has emerged as a preeminent method for fabricating polymers with precisely controlled structures
finding applications across diverse fields. However
the existing RDRP methods have posed significant challenges in controlling sulfur-centered radicals. Therefore
the sulfur-centered radical polymerizations still suffer from poor control over molecular weight and dispersity
impeding their utility in generating polymers with well-defined architectures. In recent years
our efforts to address this issue have included desulfonylation or desulfurization to form a stabilized alkyl radical capable of being controlled by conventional RDRP methods. Furthermore
our group recently introduced an innovative thiyl radical addition-fragmentation chain transfer (SRAFT) polymerization strategy utilizing allyl sulfides as chain transfer agents for reversibly deactivating the propagating thiyl radicals. This breakthrough enables direct control over the thiyl radical polymerizations and facilitates the production of polymers with well-defined architectures. This feature article aims to describe these recent advancements and focus on SRAFT polymerization. From this article
readers should gain a comprehension of the sulfur-centered radical reversible-deactivation polymerization (SRDP)
along with the future directions of this field.
可逆失活自由基聚合硫自由基连锁聚合大环开环聚合
Reversible-deactivation radical polymerizationSulfur-centered radicalChain-growth polymerizationMacrocyclic ring-opening polymerization
Corrigan N.; Jung K.; Moad G.; Hawker C. J.; Matyjaszewski K.; Boyer C.Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci., 2020, 111, 101311. doi:10.1016/j.progpolymsci.2020.101311http://dx.doi.org/10.1016/j.progpolymsci.2020.101311
Bagheri A.; Fellows C. M.; Boyer C.Reversible deactivation radical polymerization: from polymer network synthesis to 3D printing. Adv. Sci., 2021, 8(5), 2003701. doi:10.1002/advs.202003701http://dx.doi.org/10.1002/advs.202003701
Teo N. K. S.; Fan B.; Ardana A.; Thang S. H.Aggregation-induced emission polymers via reversible-deactivation radical polymerization. Aggregate, 2024, 5(1), e414. doi:10.1002/agt2.414http://dx.doi.org/10.1002/agt2.414
Dworakowska S.; Lorandi F.; Gorczyński A.; Matyjaszewski K.Toward green atom transfer radical polymerization: current status and future challenges. Adv. Sci., 2022, 9(19), 2106076. doi:10.1002/advs.202106076http://dx.doi.org/10.1002/advs.202106076
Ouchi M.; Sawamoto M.50th Anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules, 2017, 50(7), 2603-2614. doi:10.1021/acs.macromol.6b02711http://dx.doi.org/10.1021/acs.macromol.6b02711
Pan X. C.; Fantin M.; Yuan F.; Matyjaszewski K.Externally controlled atom transfer radical polymerization. Chem. Soc. Rev., 2018, 47(14), 5457-5490. doi:10.1039/c8cs00259bhttp://dx.doi.org/10.1039/c8cs00259b
Perrier S.50th Anniversary perspective: RAFT polymerization—a user guide. Macromolecules, 2017, 50(19), 7433-7447. doi:10.1021/acs.macromol.7b00767http://dx.doi.org/10.1021/acs.macromol.7b00767
Keddie D. J.; Moad G.; Rizzardo E.; Thang S. H.RAFT agent design and synthesis. Macromolecules, 2012, 45(13), 5321-5342. doi:10.1021/ma300410vhttp://dx.doi.org/10.1021/ma300410v
Li R. Y.; Kong W. N.; An Z. S.Enzyme catalysis for reversible deactivation radical polymerization. Angew. Chem. Int. Ed., 2022, 61(26), e202202033. doi:10.1002/anie.202202033http://dx.doi.org/10.1002/anie.202202033
Nicolas J.; Guillaneuf Y.; Lefay C.; Bertin D.; Gigmes D.; Charleux B.Nitroxide-mediated polymerization. Prog. Polym. Sci., 2013, 38(1), 63-235. doi:10.1016/j.progpolymsci.2012.06.002http://dx.doi.org/10.1016/j.progpolymsci.2012.06.002
Hawker C. J.; Bosman A. W.; Harth E.New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev., 2001, 101(12), 3661-3688. doi:10.1021/cr990119uhttp://dx.doi.org/10.1021/cr990119u
Sbordone F.; Frisch H.Plenty of space in the backbone: radical ring-opening polymerization. Chem. Eur. J., 2024, 30(44), e202401547. doi:10.1002/chem.202401547http://dx.doi.org/10.1002/chem.202401547
Dénès F.; Pichowicz M.; Povie G.; Renaud P.Thiyl radicals in organic synthesis. Chem. Rev., 2014, 114(5), 2587-2693. doi:10.1021/cr400441mhttp://dx.doi.org/10.1021/cr400441m
Glass R. S.Sulfur radicals and their application. Top. Curr. Chem. Cham, 2018, 376(3), 22. doi:10.1007/s41061-018-0197-0http://dx.doi.org/10.1007/s41061-018-0197-0
Liu J. G.; Ueda M.High refractive index polymers: fundamental research and practical applications. J. Mater. Chem., 2009, 19(47), 8907-8919. doi:10.1039/b909690fhttp://dx.doi.org/10.1039/b909690f
King-Poole C.; Thérien-Aubin H.Sulfur-rich polymers coatings. Adv. Funct. Mater., 2024, 34(44), 2405608. doi:10.1002/adfm.202405608http://dx.doi.org/10.1002/adfm.202405608
Mutlu H.; Ceper E. B.; Li X. H.; Yang J. M.; Dong W. Y.; Ozmen M. M.; Theato P.Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun., 2019, 40(1), 1800650. doi:10.1002/marc.201800650http://dx.doi.org/10.1002/marc.201800650
Wang Y. J.; Du J. M.; Huang H. C.Reversible thiyl radical addition-fragmentation chain transfer polymerization. Angew. Chem. Int. Ed., 2024, 136(12), e202318898. doi:10.1002/anie.202318898http://dx.doi.org/10.1002/anie.202318898
Hoyle C. E.; Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed, 2010, 49(9), 1540-1573. doi:10.1002/anie.200903924http://dx.doi.org/10.1002/anie.200903924
Geng Z. S.; Shin J. J.; Xi Y. M.; Hawker C. J.Click chemistry strategies for the accelerated synthesis of functional macromolecules. J. Polym. Sci., 2021, 59(11), 963-1042. doi:10.1002/pol.20210126http://dx.doi.org/10.1002/pol.20210126
Fu X. Y.; Qin A. J.; Tang B. Z.X-yne click polymerization. Aggregate, 2023, 4(5), e350. doi:10.1002/agt2.350http://dx.doi.org/10.1002/agt2.350
Cho I.; Kim S. K.; Lee M. H.Exploratory ring-opening polymerization. XIIL Ring-opening polymerization of 2-vinyl cyclic sulfones. J. Polym. Sci. Polym. Symp., 1986, 74(1), 219-226. doi:10.1002/polc.5070740119http://dx.doi.org/10.1002/polc.5070740119
Cho I.New ring-opening polymerizations for copolymers having controlled microstructures. Prog. Polym. Sci., 2000, 25(8), 1043-1087. doi:10.1016/s0079-6700(00)00022-8http://dx.doi.org/10.1016/s0079-6700(00)00022-8
Evans R. A.; Moad G.; Rizzardo E.; Thang S. H.New free-radical ring-opening acrylate monomers. Macromolecules, 1994, 27(26), 7935-7937. doi:10.1021/ma00104a062http://dx.doi.org/10.1021/ma00104a062
Evans R. A.; Rizzardo E.Free-radical ring-opening polymerization of cyclic allylic sulfides. Macromolecules, 1996, 29(22), 6983-6989. doi:10.1021/ma960573phttp://dx.doi.org/10.1021/ma960573p
Evans R. A.; Rizzardo E.Free-radical ring-opening polymerization of cyclic allylic sulfides. 2. Effect of substituents on seven- and eight-membered ring low shrink monomers. Macromolecules, 2000, 33(18), 6722-6731. doi:10.1021/ma9917646http://dx.doi.org/10.1021/ma9917646
Paulusse J. M. J.; Amir R. J.; Evans R. A.; Hawker C. J.Free radical polymers with tunable and selective bio- and chemical degradability. J. Am. Chem. Soc., 2009, 131(28), 9805-9812. doi:10.1021/ja903245phttp://dx.doi.org/10.1021/ja903245p
Huang H. C.; Sun B. H.; Huang Y. Z.; Niu J.Radical cascade-triggered controlled ring-opening polymerization of macrocyclic monomers. J. Am. Chem. Soc., 2018, 140(33), 10402-10406. doi:10.1021/jacs.8b05365http://dx.doi.org/10.1021/jacs.8b05365
Huang H. C.; Wang W. Q.; Zhou Z. F.; Sun B. H.; An M. R.; Haeffner F.; Niu J.Radical ring-closing/ring-opening cascade polymerization. J. Am. Chem. Soc., 2019, 141(32), 12493-12497. doi:10.1021/jacs.9b05568http://dx.doi.org/10.1021/jacs.9b05568
Zhang S.; Cao C.; Jiang S. Q.; Huang H. C.A general strategy for radical ring-opening polymerization of macrocyclic allylic sulfides. Macromolecules, 2022, 55(21), 9411-9419. doi:10.1021/acs.macromol.2c01636http://dx.doi.org/10.1021/acs.macromol.2c01636
Jiang S. Q.; Huang H. C.Mechanism-guided design of chain-growth click polymerization based on a thiol-Michael reaction. Angew. Chem. Int. Ed., 2023, 62(13), e202217895. doi:10.1002/anie.202217895http://dx.doi.org/10.1002/anie.202217895
Jiang S. Q.; Huang H. C.Oxygen-initiated radical ring-opening polymerization of macrocyclic allylic sulfides under ambient conditions. Polymer, 2024, 303, 127106. doi:10.1016/j.polymer.2024.127106http://dx.doi.org/10.1016/j.polymer.2024.127106
Zhang S.; Wang Y. J.; Huang H. C.; Cao D. R.A strategy for controlling the polymerizations of thiyl radical propagation by RAFT agents. Angew. Chem. Int. Ed., 2023, 62(37), e202308524. doi:10.1002/anie.202308524http://dx.doi.org/10.1002/anie.202308524
Do P. T.; Poad B. L. J.; Frisch H.Programming photodegradability into vinylic polymers via radical ring-opening polymerization. Angew. Chem. Int. Ed., 2023, 62(6), e202213511. doi:10.1002/anie.202213511http://dx.doi.org/10.1002/anie.202213511
Sbordone F.; Veskova J.; Richardson B.; Do P. T.; Micallef A.; Frisch H.Embedding peptides into synthetic polymers: Radical ring-opening copolymerization of cyclic peptides. J. Am. Chem. Soc., 2023, 145(11), 6221-6229. doi:10.1021/jacs.2c12517http://dx.doi.org/10.1021/jacs.2c12517
Sato T.; Miki K.; Seno M.Radical group-transfer polymerization of 2-thiocyanatoethyl vinyl ether. Macromolecules, 1999, 32(13), 4166-4172. doi:10.1021/ma9819283http://dx.doi.org/10.1021/ma9819283
Uchiyama M.; Imai M.; Kamigaito M.Synthesis of degradable polymers via 1,5-shift radical isomerization polymerization of vinyl ether derivatives with a cleavable bond. Polym. J., 2024, 56, 359-368. doi:10.1038/s41428-023-00869-3http://dx.doi.org/10.1038/s41428-023-00869-3
An B.; Zhou L. T.; Liu S.; Zheng Y. X.; Li C. H.; Cui F. C.; Yue C. W.; Liu H.; Sui Y.; Ji C. L.; Yan J. J.; Li Y. F.Radical homopolymerization of linear α-olefins enabled by 1,4-cyano group migration. Angew. Chem. Int. Ed., 2024, 136(25), e202402511. doi:10.1002/anie.202402511http://dx.doi.org/10.1002/anie.202402511
Suzuki T.; Nambu Y.; Endo T.Radical copolymerization of lipoamide with vinyl monomers. Macromolecules, 1990, 23(6), 1579-1582. doi:10.1021/ma00208a004http://dx.doi.org/10.1021/ma00208a004
Albanese K. R.; Morris P. T.; Read de Alaniz J.; Bates C. M.; Hawker C. J.Controlled-radical polymerization of α-lipoic acid: a general route to degradable vinyl copolymers. J. Am. Chem. Soc., 2023, 145(41), 22728-22734. doi:10.1021/jacs.3c08248http://dx.doi.org/10.1021/jacs.3c08248
Worthington M. J. H.; Kucera R. L.; Chalker J. M.Green chemistry and polymers made from sulfur. Green Chem., 2017, 19(12), 2748-2761. doi:10.1039/c7gc00014fhttp://dx.doi.org/10.1039/c7gc00014f
Griebel J. J.; Glass R. S.; Char K.; Pyun J.Polymerizations with elemental sulfur: a novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci., 2016, 58, 90-125. doi:10.1016/j.progpolymsci.2016.04.003http://dx.doi.org/10.1016/j.progpolymsci.2016.04.003
Yue T. J.; Ren W. M.; Lu X. B.Copolymerization involving sulfur-containing monomers. Chem. Rev., 2023, 123(24), 14038-14083. doi:10.1021/acs.chemrev.3c00437http://dx.doi.org/10.1021/acs.chemrev.3c00437
Quiclet-Sire B.; Zard S. Z.New radical allylation reaction. J. Am. Chem. Soc., 1996, 118(5), 1209-1210. doi:10.1021/ja9522443http://dx.doi.org/10.1021/ja9522443
Chu X. Q.; Ge D. H.; Cui Y. Y.; Shen Z. L.; Li C. J.Desulfonylation via radical process: recent developments in organic synthesis. Chem. Rev., 2021, 121(20), 12548-12680. doi:10.1021/acs.chemrev.1c00084http://dx.doi.org/10.1021/acs.chemrev.1c00084
Wang W. Q.; Zhou Z. F.; Sathe D.; Tang X. T.; Moran S.; Jin J.; Haeffner F.; Wang J. P.; Niu J.Degradable vinyl random copolymers via photocontrolled radical ring-opening cascade copolymerization. Angew. Chem. Int. Ed., 2022, 61(8), e202113302. doi:10.1002/anie.202113302http://dx.doi.org/10.1002/anie.202113302
Yuan J. S.; Wang W. Q.; Zhou Z. F.; Niu J.Cascade reactions in chain-growth polymerization. Macromolecules, 2020, 53(14), 5655-5673. doi:10.1021/acs.macromol.0c00417http://dx.doi.org/10.1021/acs.macromol.0c00417
Walling C.; Helmreich W.Reactivity and reversibility in the reaction of thiyl radicals with olefins. J. Am. Chem. Soc., 1959, 81(5), 1144-1148. doi:10.1021/ja01514a032http://dx.doi.org/10.1021/ja01514a032
Harrisson S.Radical-catalyzed oxidation of thiols by trithiocarbonate and dithioester RAFT agents: implications for the preparation of polymers with terminal thiol functionality. Macromolecules, 2009, 42(4), 897-898. doi:10.1021/ma900075vhttp://dx.doi.org/10.1021/ma900075v
Moad G.; Rizzardo E.; Thang S. H.Radical addition-fragmentation chemistry in polymer synthesis. Polymer, 2008, 49(5), 1079-1131. doi:10.1016/j.polymer.2007.11.020http://dx.doi.org/10.1016/j.polymer.2007.11.020
Truong N. P.; Jones G. R.; Bradford K. G. E.; Konkolewicz D.; Anastasaki A.A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem., 2021, 5(12), 859-869. doi:10.1038/s41570-021-00328-8http://dx.doi.org/10.1038/s41570-021-00328-8
Pan X. C.; Fang C.; Fantin M.; Malhotra N.; So W. Y.; Peteanu L. A.; Isse A. A.; Gennaro A.; Liu P.; Matyjaszewski K.Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies. J. Am. Chem. Soc., 2016, 138(7), 2411-2425. doi:10.1021/jacs.5b13455http://dx.doi.org/10.1021/jacs.5b13455
Scott T. F.; Schneider A. D.; Cook W. D.; Bowman C. N.Photoinduced plasticity in cross-linked polymers. Science, 2005, 308(5728), 1615-1617. doi:10.1126/science.1110505http://dx.doi.org/10.1126/science.1110505
Kloxin C. J.; Scott T. F.; Bowman C. N.Stress relaxation via addition-fragmentation chain transfer in a thiol-ene photopolymerization. Macromolecules, 2009, 42(7), 2551-2556. doi:10.1021/ma802771bhttp://dx.doi.org/10.1021/ma802771b
Podgórski M.; Fairbanks B. D.; Kirkpatrick B. E.; McBride M.; Martinez A.; Dobson A.; Bongiardina N. J.; Bowman C. N.Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs). Adv. Mater., 2020, 32(20), 1906876. doi:10.1002/adma.202070158http://dx.doi.org/10.1002/adma.202070158
0
浏览量
3151
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构