浏览全部资源
扫码关注微信
1.浙江大学,生物基运输燃料技术全国重点实验室,杭州 310058
2.浙江大学,高分子合成与功能构造教育部重点实验室,杭州 310058
3.浙江大学,高分子科学与工程学系,杭州 310058
E-mail: chengjian.zhang@zju.edu.cn
xhzhang@zju.edu.cn
纸质出版日期:2025-01-20,
网络出版日期:2024-12-12,
收稿日期:2024-08-14,
录用日期:2024-09-25
移动端阅览
虞卿磊, 张宇静, 许震, 张成建, 张兴宏. 聚碳酸亚丙酯纤维的制备及其力学性能. 高分子学报, 2025, 56(1), 145-151
Yu, Q. L.; Zhang, Y. J.; Xu, Z.; Zhang, C. J.; Zhang, X. H. Preparation and mechanical properties of poly(propylene carbonate) fiber. Acta Polymerica Sinica, 2025, 56(1), 145-151
虞卿磊, 张宇静, 许震, 张成建, 张兴宏. 聚碳酸亚丙酯纤维的制备及其力学性能. 高分子学报, 2025, 56(1), 145-151 DOI: 10.11777/j.issn1000-3304.2024.24213. CSTR: 32057.14.GFZXB.2024.7301.
Yu, Q. L.; Zhang, Y. J.; Xu, Z.; Zhang, C. J.; Zhang, X. H. Preparation and mechanical properties of poly(propylene carbonate) fiber. Acta Polymerica Sinica, 2025, 56(1), 145-151 DOI: 10.11777/j.issn1000-3304.2024.24213. CSTR: 32057.14.GFZXB.2024.7301.
聚碳酸亚丙酯(PPC)是由二氧化碳(CO
2
)与环氧丙烷(PO)交替共聚得到的一种可降解高分子材料,极具应用前景. 然而,有关纯PPC纤维的制备及其性能方面的研究仍较少. 本文工作采用湿法纺丝技术制备了PPC长丝,优选出PPC成纤效果最佳的纺丝溶剂和凝固浴,并通过控制不同的后处理温度和牵伸倍数,研究了PPC长丝的纤维取向、热性能及其力学性能. 研究结果表明,以
N
N
-二甲
基甲酰胺(DMF)为溶剂,H
2
O为凝固浴制备得到的PPC原纤性能最佳. PPC原纤经过后牵伸处理后得到具有高取向结构的PPC纤维长丝. 其中,于45 ℃水浴拉伸400倍后得到的PPC长丝,拉伸强度可达201.9 MPa,断裂伸长率为36.4%,弹性模量可达2.9 GPa. 本研究对拓宽PPC的应用领域具有积极的意义.
Poly(propylene carbonate) (PPC) is a biodegradable polymer that can be produced by alternating copolymerization of carbon dioxide (CO
2
) and propylene oxide (PO). It is a typical amorphous polymer with the glass transition temperature of 30-40 ℃
and thus is considered to be difficult to spin. The research on the preparation and properties of neat PPC fiber is rare. In this study
we prepared PPC filaments by wet spinning method
and the spinning solvent and coagulation bath were selected as
N
N
-dimethylformamide (DMF) and water
respectively. The uniform PPC/DMF solution was transferred to the syringe and then extruded at the speed of 160 μL/min
passing through a 4 m long water coagulation bath. The obtained PPC nascent fiber (no further stretching) was collected on a wire collector and vacuum dried to constant weight at room temperature. The dried PPC nascent fibers are clamped on a high-precision fiber stretc
hing machine and stretched at a certain speed in a water bath at set temperatures (
e.g
. 45 ℃) to obtain PPC filaments with different stretching multiples. The orientation
thermal properties and mechanical properties of PPC filaments were studied by changing post-treatment drafting times and temperatures.
T
g
values of the PPC filaments achieved 31.6 ℃
increased by about 2 ℃ after stretching. The maximum stretching limit of PPC filaments can reach 1020 times of PPC nascent fiber; generally
it can be stretched about 600 times
and the diameter of the resulting PPC filaments is about 10 μm. The tensile strength of PPC filaments stretched 400 times at 45 ℃ at room temperature can reach 201.9 MPa
which is 20 times that of PPC sheet
87 times that of PPC/polybutylene succinic acid (PBS) composite fiber membrane
9.2 times that of PPC/poly(3-hydroxybutyrate) (PHB) composite fiber
and 9.7 times that of PPC/polylactic acid (PLA) composite fiber. The room temperature elastic modulus can reach 2.9 GPa
which is 4.1 times that of PPC sheet. The great improvement of its mechanical properties is attributed to a certain degree of highly ordered structure formed by the high orientation of the fibers after stretching. The DSC heating curves of PPC filaments showed an endothermic peak near 60 ℃
similar to the melting of "crystallization" with very small enthalpy changes (0.4-0.6 J/g)
suggesting the formation of ordered aggregation structure
rather than crystalline. In addition
the polarized optical microscope (POM)
small-angle X-ray scattering (SAXS)
wide-angle X-ray scattering (WAXS) and scanning electron microscope (SEM) characterizations also supported the formation of ordered aggregation structure in PPC filaments. This preliminary study shows the potential application of PPC in fiber materials.
聚碳酸亚丙酯CO2聚合物湿法纺丝纤维取向力学性能
Poly(propylene carbonate)CO2-based polymerWet spinningFiber orientationMechanical properties
Liu J. J.; Jia M. C.; Gnanou Y.; Feng X. S.One-pot synthesis of CO2-based polylactide-b-poly(ether carbonate)-b-polylactide triblock copolymers and their mechanical properties. Macromolecules, 2023, 56(4), 1615-1624. doi:10.1021/acs.macromol.2c02522http://dx.doi.org/10.1021/acs.macromol.2c02522
Yang J. N.; Zhang X. H.; Li T.; Wang Y.; Xia B. H.; Jiang J.; Chen M. Q.; Dong W. F.A novel biodegradable poly-(propylene carbonate) with enhanced thermal and mechanical properties by incorporating tannic acid. Polym. Adv. Technol., 2022, 33(4), 1341-1347. doi:10.1002/pat.5579http://dx.doi.org/10.1002/pat.5579
Zheng G. F.; Han L. J.; Zheng B. H.; Bian J. J.; Zhang H. L.Biodegradable poly(lactic acid)/poly(propylene carbonate) blend with enhanced mechanical properties and heat resistance by uniaxial pre-stretching. Polym. Adv. Technol., 2024, 35(4), e6395. doi:10.1002/pat.6395http://dx.doi.org/10.1002/pat.6395
金荣仙, 席曼, 赵浩淼, 杨浩艺, 吴峣, 吴静怡. 聚碳酸亚丙酯(PPC)纤维膜的制备及其热性能研究. 材料科学, 2018, 8(5), 567-572. doi:10.12677/MS.2018.85066http://dx.doi.org/10.12677/MS.2018.85066
王丹, 陈月君, 许华君, 路瑶, 王依民, 王燕萍. 聚碳酸亚丙酯-聚乳酸共混熔纺纤维的制备与性能. 合成纤维, 2014, 43(2), 7-11.
马遥, 储顺礼, 孙悦, 马珊珊, 李雪, 张天首, 周延民. 聚丁二酸丁二醇酯/聚碳酸亚丙酯生物膜的制备及相关性能评价. 中国组织工程研究, 2015, 19(21), 3355-3360.
El-Hadi A. M.Improvement of the miscibility by combination of poly(3-hydroxy butyrate) PHB and poly(propylene carbonate) PPC with additives. J. Polym. Environ., 2017, 25(3), 728-738. doi:10.1007/s10924-016-0863-7http://dx.doi.org/10.1007/s10924-016-0863-7
Maeda Y.; Nakayama A.; Kawasaki N.; Hayashi K.; Aiba S.; Yamamoto N.Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide. Polymer, 1997, 38(18), 4719-4725. doi:10.1016/s0032-3861(96)01088-9http://dx.doi.org/10.1016/s0032-3861(96)01088-9
Longo J. M.; DiCiccio A. M.; Coates G. W.Poly(propylene succinate): a new polymer stereo complex. J. Am. Chem. Soc., 2014, 136(45), 15897-15900. doi:10.1021/ja509440ghttp://dx.doi.org/10.1021/ja509440g
Li J.; Liu Y.; Ren W. M.; Lu X. B.Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: efficient access to enantiopure polyesters. J. Am. Chem. Soc., 2016, 138(36), 11493-11496. doi:10.1021/jacs.6b07520http://dx.doi.org/10.1021/jacs.6b07520
Wu H. L.; Yang J. L.; Luo M.; Wang R. Y.; Xu J. T.; Du B. Y.; Zhang X. H.; Darensbourg D. J.Poly(trimethylene monothiocarbonate) from the alternating copolymerization of COS and oxetane: a semicrystalline copolymer. Macromolecules, 2016, 49(23), 8863-8868. doi:10.1021/acs.macromol.6b02285http://dx.doi.org/10.1021/acs.macromol.6b02285
Hu L. F.; Zhang X.; Cao X. H.; Chen D. J.; Sun Y.; Zhang C. J.; Zhang X. H.Alternating copolymerization of isobutylene oxide and cyclic anhydrides: a new route to semicrystalline polyesters. Macromolecules, 2021, 54(13), 6182-6190. doi:10.1021/acs.macromol.1c00793http://dx.doi.org/10.1021/acs.macromol.1c00793
Yue T. J.; Ren W. M.; Liu Y.; Wan Z. Q.; Lu X. B.Crystalline polythiocarbonate from stereoregular copolymerization of carbonyl sulfide and epichlorohydrin. Macromolecules, 2016, 49(8), 2971-2976. doi:10.1021/acs.macromol.6b00272http://dx.doi.org/10.1021/acs.macromol.6b00272
Sun J. K.; Guo W. J.; Mei G. K.; Wang S. L.; Wen K.; Wang M. L.; Feng D. Y.; Qian D.; Zhu M. F.; Zhou X.; Liu Z. F.Artificial spider silk with buckled sheath by nano-pulley combing. Adv. Mater., 2023, 35(32), 2212112. doi:10.1002/adma.202212112http://dx.doi.org/10.1002/adma.202212112
Gao F. X.; Cai Y.; Liu S. J.; Wang X. H.High-performance biodegradable PBAT/PPC composite film through reactive compatibilizer. Chinese J. Polym. Sci., 2023, 41(7), 1051-1058. doi:10.1007/s10118-023-2900-zhttp://dx.doi.org/10.1007/s10118-023-2900-z
Liang Z. Z.; Li X.; Hu C. Y.; Duan R. L.; Wang X. H.; Pang X.; Chen X. S.Copolymerization of PO/CO2 and lactide by a dinuclear salen-Cr(III) complex: gradient and random copolymers with modificable microstructure. Chinese J. Polym. Sci., 2022, 40(9), 1028-1033. doi:10.1007/s10118-022-2727-zhttp://dx.doi.org/10.1007/s10118-022-2727-z
Xia Y. N.; Sun Y.; Liu Z. H.; Zhang C. J.; Zhang X. H.Modular alcohol click chemistry enables facile synthesis of recyclable polymers with tunable structure. Angew. Chem. Int. Ed., 2023, 62(37), e202306731. doi:10.1002/anie.202306731http://dx.doi.org/10.1002/anie.202306731
Cao X. H.; Wang H. L.; Yang J. L.; Wang R. Y.; Hong X.; Zhang X. H.; Xu J. T.; Wang H.Sulfur-substitution-enhanced crystallization and crystal structure of poly(trimethylene monothiocarbonate). Chin. Chem. Lett., 2022, 33(2), 1021-1024. doi:10.1016/j.cclet.2021.07.014http://dx.doi.org/10.1016/j.cclet.2021.07.014
0
浏览量
134
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构