浏览全部资源
扫码关注微信
中国科学院理化技术研究所 北京 100190
[ "王健君,男,1976年生. 中国科学院理化技术研究所研究员,博士生导师. 1999、2002年,于华东理工大学分别获得学士、硕士学位;2006年获德国美因茨大学博士学位;2007年5月担任德国马普高分子所课题组长;2010年2月担任中国科学院化学研究所研究员/课题组长;2023年5月在中国科学院理化技术研究所工作,任研究员/课题组组长. 主要研究方向为防冰高分子材料设计、制备与应用、冰晶形成分子机制研究、控冰新材料的创制并应用于细胞组织和器官的低温保存等领域." ]
收稿日期:2024-08-16,
录用日期:2024-10-08,
网络出版日期:2024-12-17,
纸质出版日期:2025-03-20
移动端阅览
杨宏伟, 范庆瑞, 王健君. 半导体聚合物纳米点生物荧光成像探针进展. 高分子学报, 2025, 56(3), 396-407
Yang, H. W,; Fan, Q. R.; Wang, J. J. Recent advances of semiconductor polymer nanodots for fluorescence bioimaging. Acta Polymerica Sinica, 2025, 56(3), 396-407
杨宏伟, 范庆瑞, 王健君. 半导体聚合物纳米点生物荧光成像探针进展. 高分子学报, 2025, 56(3), 396-407 DOI: 10.11777/j.issn1000-3304.2024.24214. CSTR: 32057.14.GFZXB.2024.7304.
Yang, H. W,; Fan, Q. R.; Wang, J. J. Recent advances of semiconductor polymer nanodots for fluorescence bioimaging. Acta Polymerica Sinica, 2025, 56(3), 396-407 DOI: 10.11777/j.issn1000-3304.2024.24214. CSTR: 32057.14.GFZXB.2024.7304.
荧光成像技术因其非侵入性、高时空分辨率和高灵敏度,在生命科学研究领域中备受关注. 作为荧光成像技术的基础工具,发展高性能的荧光探针成为提高成像质量的关键途径之一. 随着纳米材料科学领域的迅速发展,荧光纳米颗粒探针因其克服了传统有机染料和荧光蛋白在荧光效率和光稳定性方面的不足,逐渐成为荧光成像领域的有力竞争者. 近年来,半导体聚合物纳米点(Pdots)因其粒径小、亮度高、稳定性强等特性在荧光纳米探针领域中备受瞩目. 本文首先回顾了Pdots的发展历程和制备策略,并总结了Pdots作为荧光纳米探针在光物理特性上所具备的优势. 此外重点介绍了Pdots作为一类性能优异的荧光纳米探针在荧光标记成像、超分辨荧光成像和活体生物成像中的最新应用进展. 最后,分析了当前Pdots作为荧光探针存在的一些优点和局限性,并探讨了该类纳米探针在未来存在的主要发展方向和应用前景,为Pdots在生命科学成像领域中的更广泛应用开辟新的可能性.
Fluorescence imaging technology has garnered significant attention in the field of life sciences due to its non-invasive nature
high spatial and temporal resolution
and high sensitivity. As a fundamental tool in fluorescence imaging technology
the development of high-performance fluorescent probes is one of the key approaches to improving imaging quality. With the rapid development of nanomaterial science
fluorescent nanoparticle probes have emerged as formidable contenders in fluorescence imaging
overcoming the deficiencies of traditional organic dyes and fluorescent proteins in terms of fluorescence efficiency and photostability. In recent years
semiconductor polymer nanodots (Pdots) have attracted considerable attention in the field of fluorescent nanoprobes due to their small particle size
high brightness
and great photostability. In this review
we first summarized the development history and preparation strategies of Pdots
and organized the advantages of Pdots as fluorescent nanoprobes in terms of photophysical properties. In addition
this review focuses on the latest applications of Pdots as a class of high-performance fluorescent nanoprobes in fluorescence labeling imaging
super-resolution fluorescence imaging
and
in vivo
biological imaging. Finally
we analyzed the advantages and limitations of Pdots as fluorescent probes
and explored the main development directions and application prospects of this nanoprobe in the future
which creates new opportunities for broader applications of Pdots in life science imaging.
Dunn R. C. Near-field scanning optical microscopy . Chem. Rev. , 1999 , 99 ( 10 ), 2891 - 2928 . doi: 10.1021/cr980130e http://dx.doi.org/10.1021/cr980130e
Hell S. W. Nanoscopy with focused light (Nobel lecture) . Angew. Chem. Int. Ed. , 2015 , 54 ( 28 ), 8054 - 8066 . doi: 10.1002/anie.201504181 http://dx.doi.org/10.1002/anie.201504181
Heintzmann R. ; Huser T. Super-resolution structured illumination microscopy . Chem. Rev. , 2017 , 117 ( 23 ), 13890 - 13908 . doi: 10.1021/acs.chemrev.7b00218 http://dx.doi.org/10.1021/acs.chemrev.7b00218
Keller P. J. ; Schmidt A. D. ; Wittbrodt J. ; Stelzer E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy . Science , 2008 , 322 ( 5904 ), 1065 - 1069 . doi: 10.1126/science.1162493 http://dx.doi.org/10.1126/science.1162493
Wang L. ; Tran M. ; D'Este E. ; Roberti J. ; Koch B. ; Xue L. ; Johnsson K. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy . Nat. Chem. , 2020 , 12 ( 2 ), 165 - 172 . doi: 10.1038/s41557-019-0371-1 http://dx.doi.org/10.1038/s41557-019-0371-1
Day R. N. ; Davidson M. W. The fluorescent protein palette: tools for cellular imaging . Chem. Soc. Rev. , 2009 , 38 ( 10 ), 2887 - 2921 . doi: 10.1039/b901966a http://dx.doi.org/10.1039/b901966a
Li W. ; Kaminski Schierle G. S. ; Lei B. F. ; Liu Y. L. ; Kaminski C. F. Fluorescent nanoparticles for super-resolution imaging . Chem. Rev. , 2022 , 122 ( 15 ), 12495 - 12543 . doi: 10.1021/acs.chemrev.2c00050 http://dx.doi.org/10.1021/acs.chemrev.2c00050
Wegner K. D. ; Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors . Chem. Soc. Rev. , 2015 , 44 ( 14 ), 4792 - 4834 . doi: 10.1039/c4cs00532e http://dx.doi.org/10.1039/c4cs00532e
Wu C. F. ; Chiu D. T. Highly fluorescent semiconducting polymer dots for biology and medicine . Angew. Chem. Int. Ed. , 2013 , 52 ( 11 ), 3086 - 3109 . doi: 10.1002/anie.201205133 http://dx.doi.org/10.1002/anie.201205133
Cheng Y. J. ; Yang S. H. ; Hsu C. S. Synthesis of conjugated polymers for organic solar cell applications . Chem. Rev. , 2009 , 109 ( 11 ), 5868 - 5923 . doi: 10.1021/cr900182s http://dx.doi.org/10.1021/cr900182s
Jiang Y. F. ; McNeill J. Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles . Chem. Rev. , 2017 , 117 ( 2 ), 838 - 859 . doi: 10.1021/acs.chemrev.6b00419 http://dx.doi.org/10.1021/acs.chemrev.6b00419
Epple M. ; Rotello V. M. ; Dawson K. The why and how of ultrasmall nanoparticles . Acc. Chem. Res. , 2023 , 56 ( 23 ), 3369 - 3378 . doi: 10.1021/acs.accounts.3c00459 http://dx.doi.org/10.1021/acs.accounts.3c00459
Shirakawa H. ; Louis E. J. ; MacDiarmid A. G. ; Chiang C. K. ; Heeger A. J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) X . J. Chem. Soc. , Chem. Commun., 1977 ( 16 ), 578 . doi: 10.1039/c39770000578 http://dx.doi.org/10.1039/c39770000578
Feast W. J. ; Tsibouklis J. ; Pouwer K. L. ; Groenendaal L. ; Meijer E. W. Synthesis, processing and material properties of conjugated polymers . Polymer , 1996 , 37 ( 22 ), 5017 - 5047 . doi: 10.1016/0032-3861(96)00439-9 http://dx.doi.org/10.1016/0032-3861(96)00439-9
Feng L. H. ; Zhu C. L. ; Yuan H. X. ; Liu L. B. ; Lv F. T. ; Wang S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications . Chem. Soc. Rev. , 2013 , 42 ( 16 ), 6620 - 6633 . doi: 10.1039/C3CS60036J http://dx.doi.org/10.1039/C3CS60036J
Landfester K. ; Montenegro R. ; Scherf U. ; Güntner R. ; Asawapirom U. ; Patil S. ; Neher D. ; Kietzke T. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process . Adv. Mater. , 2002 , 14 ( 9 ), 651 - 655 . doi: 10.1002/1521-4095(20020503)14:9<651::AID-ADMA651>3.0.CO;2- http://dx.doi.org/10.1002/1521-4095(20020503)14:9<651::AID-ADMA651>3.0.CO;2-
Li K. ; Pan J. ; Feng S. S. ; Wu A. W. ; Pu K. Y. ; Liu Y. T. ; Liu B. Generic strategy of preparing fluorescent conjugated-p olymer-loaded poly( DL -lactide- co -glycolide) nanoparticles for targeted cell imaging . Adv. Funct. Mater. , 2009 , 19 ( 22 ), 3535 - 3542 . doi: 10.1002/adfm.200901098 http://dx.doi.org/10.1002/adfm.200901098
Wu C. F. ; Jin Y. H. ; Schneider T. ; Burnham D. R. ; Smith P. B. ; Chiu D. T. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry . Angew. Chem. , 2010 , 122 ( 49 ), 9626 - 9630 . doi: 10.1002/ange.201004260 http://dx.doi.org/10.1002/ange.201004260
Kurokawa N. ; Yoshikawa H. ; Hirota N. ; Hyodo K. ; Masuhara H. Size-dependent spectroscopic properties and thermochromic behavior in poly(substituted thiophene) nanoparticles . ChemPhysChem , 2004 , 5 ( 10 ), 1609 - 1615 . doi: 10.1002/cphc.200400117 http://dx.doi.org/10.1002/cphc.200400117
Wu C. F. ; Schneider T. ; Zeigler M. ; Yu J. B. ; Schiro P. G. ; Burnham D. R. ; McNeill J. D. ; Chiu D. T. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting . J. Am. Chem. Soc. , 2010 , 132 ( 43 ), 15410 - 15417 . doi: 10.1021/ja107196s http://dx.doi.org/10.1021/ja107196s
Wu C. F. ; Szymanski C. ; Cain Z. ; McNeill J. Conjugated polymer dots for multiphoton fluorescence imaging . J. Am. Chem. Soc. , 2007 , 129 ( 43 ), 12904 - 12905 . doi: 10.1021/ja074590d http://dx.doi.org/10.1021/ja074590d
Wu Y. Y. ; Ruan H. F. ; Zhao R. ; Dong Z. Z. ; Li W. H. ; Tang X. J. ; Yuan J. H. ; Fang X. H. Ultrastable fluorescent polymer dots for stimulated emission depletion bioimaging . Adv. Opt. Mater. , 2018 , 6 ( 19 ), 1800333 . doi: 10.1002/adom.201800333 http://dx.doi.org/10.1002/adom.201800333
Chen C. P. ; Wu P. J. ; Liou S. Y. ; Chan Y. H. Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging . RSC Adv. , 2013 , 3 ( 38 ), 17507 - 17514 . doi: 10.1039/c3ra42565g http://dx.doi.org/10.1039/c3ra42565g
Fernando L. P. ; Kandel P. K. ; Yu J. B. ; McNeill J. ; Ackroyd P. C. ; Christensen K. A. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles . Biomacromolecules , 2010 , 11 ( 10 ), 2675 - 2682 . doi: 10.1021/bm1007103 http://dx.doi.org/10.1021/bm1007103
Moon J. H. ; MacLean P. ; McDaniel W. ; Hancock L. F. Conjugated polymer nanoparticles for biochemical protein kinase assay . Chem. Commun. , 2007 ( 46 ), 4910 - 4912 . doi: 10.1039/b710807a http://dx.doi.org/10.1039/b710807a
Ye F. M. ; White C. C. ; Jin Y. H. ; Hu X. G. ; Hayden S. ; Zhang X. J. ; Gao X. H. ; Kavanagh T. J. ; Chiu D. T. Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages . Nanoscale , 2015 , 7 ( 22 ), 10085 - 10093 . doi: 10.1039/c5nr01857a http://dx.doi.org/10.1039/c5nr01857a
Wu C. F. ; Szymanski C. ; McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles . Langmuir , 2006 , 22 ( 7 ), 2956 - 2960 . doi: 10.1021/la060188l http://dx.doi.org/10.1021/la060188l
Zhang X. J. ; Yu J. B. ; Wu C. F. ; Jin Y. H. ; Rong Y. ; Ye F. M. ; Chiu D. T. Importance of having low-density functional groups for generating high-performance semiconducting polymer dots . ACS Nano , 2012 , 6 ( 6 ), 5429 - 5439 . doi: 10.1021/nn301308w http://dx.doi.org/10.1021/nn301308w
Kuo C. T. ; Thompson A. M. ; Gallina M. E. ; Ye F. M. ; Johnson E. S. ; Sun W. ; Zhao M. X. ; Yu J. B. ; Wu I. C. ; Fujimoto B. ; DuFort C. C. ; Carlson M. A. ; Hingorani S. R. ; Paguirigan A. L. ; Radich J. P. ; Chiu D. T. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots . Nat. Commun. , 2016 , 7 , 11468 . doi: 10.1038/ncomms11468 http://dx.doi.org/10.1038/ncomms11468
Han Y. P. ; Li X. M. ; Chen H. B. ; Hu X. J. ; Luo Y. ; Wang T. ; Wang Z. J. ; Li Q. ; Fan C. H. ; Shi J. Y. ; Wang L. H. ; Zhao Y. ; Wu C. F. ; Chen N. Real-time imaging of endocytosis and intracellular trafficking of semiconducting polymer dots . ACS Appl. Mater. Interfaces , 2017 , 9 ( 25 ), 21200 - 21208 . doi: 10.1021/acsami.7b05662 http://dx.doi.org/10.1021/acsami.7b05662
Luo Y. ; Yin M. ; Mu C. L. ; Hu X. J. ; Xie H. ; Li J. Y. ; Cao T. T. ; Chen N. ; Wu J. ; Fan C. H. Engineering female germline stem cells with exocytotic polymer dots . Adv. Mater. , 2023 , 35 ( 24 ), e 2210458 . doi: 10.1002/adma.202210458 http://dx.doi.org/10.1002/adma.202210458
Li Y. Q. ; Lu S. T. ; Zhang Y. F. ; Li J. R. ; Xiong L. Q. High-resolution imaging of the ocular vasculature of conjunctivitis in mice using highly bright polymer dots . Adv. Healthc. Mater. , 2022 , 11 ( 21 ), 2200978 . doi: 10.1002/adhm.202200978 http://dx.doi.org/10.1002/adhm.202200978
Chen X. Z. ; Li R. Q. ; Liu Z. H. ; Sun K. ; Sun Z. Z. ; Chen D. N. ; Xu G. X. ; Xi P. ; Wu C. F. ; Sun Y. J. Small photoblinking semiconductor polymer dots for fluorescence nanoscopy . Adv. Mater. , 2017 , 29 ( 5 ), 1604850 . doi: 10.1002/adma.201770030 http://dx.doi.org/10.1002/adma.201770030
Chen X. Z. ; Liu Z. H. ; Li R. Q. ; Shan C. Y. ; Zeng Z. P. ; Xue B. X. ; Yuan W. H. ; Mo C. ; Xi P. ; Wu C. F. ; Sun Y. J. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots . ACS Nano , 2017 , 11 ( 8 ), 8084 - 8091 . doi: 10.1021/acsnano.7b02893 http://dx.doi.org/10.1021/acsnano.7b02893
Wu Y. Y. ; Ruan H. F. ; Dong Z. Z. ; Zhao R. ; Yu J. Q. ; Tang X. J. ; Kou X. L. ; Zhang X. ; Wu M. C. ; Luo F. ; Yuan J. H. ; Fang X. H. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking . Anal. Chem. , 2020 , 92 ( 17 ), 12088 - 12096 . doi: 10.1021/acs.analchem.0c02821 http://dx.doi.org/10.1021/acs.analchem.0c02821
Jiang Y. F. ; Novoa M. ; Nongnual T. ; Powell R. ; Bruce T. ; McNeill J. Improved superresolution imaging using telegraph noise in organic semiconductor nanoparticles . Nano Lett. , 2017 , 17 ( 6 ), 3896 - 3901 . doi: 10.1021/acs.nanolett.7b01440 http://dx.doi.org/10.1021/acs.nanolett.7b01440
Jiang Y. F. ; Hu Q. Z. ; Chen H. B. ; Zhang J. C. ; Chiu D. T. ; McNeill J. Dual-mode superresolution imaging using charge transfer dynamics in semiconducting polymer dots . Angew. Chem. Int. Ed , 2020 , 59 ( 37 ), 16173 - 16180 . doi: 10.1002/anie.202006348 http://dx.doi.org/10.1002/anie.202006348
Jiang Y. F. ; Zhang J. C. ; Jung S. R. ; Chen H. B. ; Xu S. H. ; Chiu D. T. High-precision mapping of membrane proteins on synaptic vesicles using spectrally encoded super-resolution imaging . Angew. Chem. Int. Ed. , 2023 , 62 ( 8 ), e 202217889 . doi: 10.1002/anie.202217889 http://dx.doi.org/10.1002/anie.202217889
Zhu H. J. ; Fang Y. ; Zhen X. ; Wei N. ; Gao Y. ; Luo K. Q. ; Xu C. J. ; Duan H. W. ; Ding D. ; Chen P. ; Pu K. Y. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice . Chem. Sci. , 2016 , 7 ( 8 ), 5118 - 5125 . doi: 10.1039/c6sc01251e http://dx.doi.org/10.1039/c6sc01251e
Zhou X. B. ; Liu Q. Y. ; Yuan W. ; Li Z. H. ; Xu Y. L. ; Feng W. ; Xu C. J. ; Li F. Y. Ultrabright NIR-II emissive polymer dots for metastatic ovarian cancer detection . Adv. Sci. , 2021 , 8 ( 4 ), 2000441 . doi: 10.1002/advs.202000441 http://dx.doi.org/10.1002/advs.202000441
Zhang Z. ; Fang X. F. ; Liu Z. H. ; Liu H. C. ; Chen D. D. ; He S. Q. ; Zheng J. ; Yang B. ; Qin W. P. ; Zhang X. J. ; Wu C. F. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging . Angew. Chem. Int. Ed. , 2020 , 59 ( 9 ), 3691 - 3698 . doi: 10.1002/anie.201914397 http://dx.doi.org/10.1002/anie.201914397
Fang L. ; Ai R. ; Wang W. X. ; Tan L. ; Li C. Y. ; Wang D. C. ; Jiang R. B. ; Qiu F. S. ; Qi L. Q. ; Yang J. ; Zhou W. ; Zhu T. ; Tan W. H. ; Jiang Y. F. ; Fang X. H. Hyperbranched polymer dots with strong absorption and high fluorescence quantum yield for in vivo NIR-II imaging . Nano Lett. , 2023 , 23 ( 18 ), 8734 - 8742 . doi: 10.1021/acs.nanolett.3c02751 http://dx.doi.org/10.1021/acs.nanolett.3c02751
Piwoński H. ; Michinobu T. ; Habuchi S. Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing . Nat. Commun. , 2017 , 8 , 15256 . doi: 10.1038/ncomms15256 http://dx.doi.org/10.1038/ncomms15256
Ye F. M. ; Sun W. ; Zhang Y. ; Wu C. F. ; Zhang X. J. ; Yu J. B. ; Rong Y. ; Zhang M. Q. ; Chiu D. T. Single-chain semiconducting polymer dots . Langmuir , 2015 , 31 ( 1 ), 499 - 505 . doi: 10.1021/la5038684 http://dx.doi.org/10.1021/la5038684
Fan Q. R. ; Li L. H. ; Xue H. ; Zhou H. ; Zhao L. S. ; Liu J. ; Mao J. Q. ; Wu S. W. ; Zhang S. Z. ; Wu C. Y. ; Li X. M. ; Zhou X. ; Wang J. J. Precise control over kinetics of molecular assembly: Production of particles with tunable sizes and crystalline forms . Angew. Chem. Int. Ed. , 2020 , 59 ( 35 ), 15141 - 15146 . doi: 10.1002/anie.202003922 http://dx.doi.org/10.1002/anie.202003922
0
浏览量
253
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构