浏览全部资源
扫码关注微信
生物医用高分子材料教育部重点实验室 武汉大学化学与分子科学学院 武汉 430072
[ "程巳雪,女,1971年生. 武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室教授,博士生导师. 1992年于华南理工大学获学士学位,1995年于中国科学技术大学获硕士学位,2000年于新加坡国立大学获博士学位. 2000年1月至2001年1月在新加坡材料研究与工程研究所任助理研究员,2001年1月起在武汉大学生物医用高分子材料教育部重点实验室工作. 主要研究方向为生物医用材料、基因及药物传递系统、疾病诊疗系统." ]
纸质出版日期:2025-01-20,
网络出版日期:2024-12-11,
收稿日期:2024-08-27,
录用日期:2024-10-17
移动端阅览
漆李矜, 黄琪杨, 高晴妤, 韩笛, 廖馨茹, 张先正, 程巳雪. 氨基酸基材料在基因与药物传递领域的应用. 高分子学报, 2025, 56(1), 1-25
Qi, L. J.; Huang, Q. Y.; Gao, Q. Y.; Han, D.; Liao, X. R.; Zhang, X. Z.; Cheng, S. X. Amino acid-based materials for drug and gene delivery. Acta Polymerica Sinica, 2025, 56(1), 1-25
漆李矜, 黄琪杨, 高晴妤, 韩笛, 廖馨茹, 张先正, 程巳雪. 氨基酸基材料在基因与药物传递领域的应用. 高分子学报, 2025, 56(1), 1-25 DOI: 10.11777/j.issn1000-3304.2024.24226. CSTR: 32057.14.GFZXB.2024.7310.
Qi, L. J.; Huang, Q. Y.; Gao, Q. Y.; Han, D.; Liao, X. R.; Zhang, X. Z.; Cheng, S. X. Amino acid-based materials for drug and gene delivery. Acta Polymerica Sinica, 2025, 56(1), 1-25 DOI: 10.11777/j.issn1000-3304.2024.24226. CSTR: 32057.14.GFZXB.2024.7310.
氨基酸基材料如聚氨基酸、多肽、蛋白等具有独特的理化性质、生物活性和良好的生物相容性,在生物医学领域展现出广泛的应用前景,尤其在基因与药物传递领域. 本文介绍了不同类型的氨基酸基材料包括聚氨基酸、多肽、蛋白及其功能化衍生物在基因和药物传递中的应用及研究进展,简述了氨基酸基传递载体与其他材料比较的优势,总结了常见的提高氨基酸基载体性能的策略,重点分析了这些材料在促进基因与药物传递及提高疾病疗效方面的作用和机制,包括通过优化载体材料的结构与性能提高基因及药物传递效率;利用载体材料实现组织、细胞及细胞器的靶向递送、刺激响应性递送;提高载体克服细胞外及细胞内传递屏障的能力等. 指出了本领域所面临的问题和挑战,提出了对材料研发及实际应用的建议和思路.
Amino acid-based materials
including poly(amino acids)
peptides
and proteins
possess distinct physicochemical properties
biological activities
and exceptional biocompatibility
rendering them highly attractive for diverse biomedical applications
particularly in gene and drug delivery. This article provides a comprehensive overview of the applications and recent research progress of amino acid-based materials and their functional derivatives in gene and drug delivery
highlighting the advantages of these carriers over conventional materials. Common strategies aimed at enhancing the efficacy of amino acid-based gene and drug delivery vectors are summarized
with a focus on the mechanisms through which these materials facilitate gene and drug delivery to improve therapeutic outcomes. Key strategies include the optimization of carrier material structures and properties to improve delivery efficiency
the achievement of targeted delivery to specific tissues
cells
and organelles
and the development of approaches to overcome extracellular and intracellular delivery barriers. Specifically
three categories of amino acid-based materials for gene and drug delivery are discussed. For poly(amino acids)
modification strategies to enhance their performance such as copolymerization
creation of hyperbranched structures
functional modification
combination with other polymer moieties
and incorporation of functional moieties are introduced. For peptides
various types of peptides including cell-penetrating peptides
nuclear localization signals
targeting peptides
stimulus-responsive peptides
chimeric peptides/fusion peptides
and de novo designed peptides are introduced
highlighting their roles in improving gene and drug delivery efficiency. For proteins
nucleic acid-binding proteins
positively charged proteins
protein nanocages for gene delivery
and naturally sourced proteins for drug delivery are presented. By addressing current challenges and issues in this field
recommendations and insights for future material development and practical applications are proposed.
聚氨基酸多肽蛋白传递载体基因与药物传递
Poly(amino acid)PeptideProteinDelivery vectorGene and drug delivery
Kumar D.; Sahu B.; Banerjee S.Amino acid-derived smart and functional polymers for biomedical applications: current status and future perspectives. Macromol. Chem. Phys., 2023, 224(24), 2300207. doi:10.1002/macp.202300207http://dx.doi.org/10.1002/macp.202300207
Leigh T.; Fernandez-Trillo P.Helical polymers for biological and medical applications. Nat. Rev. Chem., 2020, 4(6), 291-310. doi:10.1038/s41570-020-0180-5http://dx.doi.org/10.1038/s41570-020-0180-5
Ita K.Polyplexes for gene and nucleic acid delivery: progress and bottlenecks. Eur. J. Pharm. Sci., 2020, 150, 105358. doi:10.1016/j.ejps.2020.105358http://dx.doi.org/10.1016/j.ejps.2020.105358
Putnam D.; Zelikin A. N.; Izumrudov V. A.; Langer R.Polyhistidine‒PEG: DNA nanocomposites for gene delivery. Biomaterials, 2003, 24(24), 4425-4433. doi:10.1016/s0142-9612(03)00341-7http://dx.doi.org/10.1016/s0142-9612(03)00341-7
Zhang H. T.; Yu M. Z.; Niu Y. J.; Liu W. Z.; Pang W. H.; Ding J. S.; Wang J. C.Polyarginine-mediated siRNA delivery: a mechanistic study of intracellular trafficking of PCL-R15/siRNA nanoplexes. Mol. Pharm., 2020, 17(5), 1685-1696. doi:10.1021/acs.molpharmaceut.0c00120http://dx.doi.org/10.1021/acs.molpharmaceut.0c00120
Wu G. Y.; Wu C. H.Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262(10), 4429-4432. doi:10.1016/s0021-9258(18)61209-8http://dx.doi.org/10.1016/s0021-9258(18)61209-8
Hooshmand S. E.; Jahanpeimay Sabet M.; Hasanzadeh A.; Kamrani Mousavi S. M.; Haeri Moghaddam N.; Hooshmand S. A.; Rabiee N.; Liu Y.; Hamblin M. R.; Karimi M.Histidine-enhanced gene delivery systems: the state of the art. J. Gene Med., 2022, 24(5), e3415. doi:10.1002/jgm.3415http://dx.doi.org/10.1002/jgm.3415
Osipova O.; Zakharova N.; Pyankov I.; Egorova A.; Kislova A.; Lavrentieva A.; Kiselev A.; Tennikova T.; Korzhikova-Vlakh E.Amphiphilic pH-sensitive polypeptides for siRNA delivery. J. Drug Deliv. Sci. Technol., 2022, 69, 103135. doi:10.1016/j.jddst.2022.103135http://dx.doi.org/10.1016/j.jddst.2022.103135
Walsh D.; Murphy R. D.; Panarella A.; Raftery R. M.; Cavanagh B.; Simpson J. C.; O’Brien F. J.; Heise A.; Cryan S. A.Bioinspired star-shaped poly(L-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of DNA to mesenchymal stem cells. Mol. Pharm., 2018, 15(5), 1878-1891. doi:10.1021/acs.molpharmaceut.8b00044http://dx.doi.org/10.1021/acs.molpharmaceut.8b00044
Gorzkiewicz M.; Kopeć O.; Janaszewska A.; Konopka M.; Pędziwiatr-Werbicka E.; Tarasenko I. I.; Bezrodnyi V. V.; Neelov I. M.; Klajnert-Maculewicz B.Poly(lysine) dendrimers form complexes with siRNA and provide its efficient uptake by myeloid cells: model studies for therapeutic nucleic acid delivery. Int. J. Mol. Sci., 2020, 21(9), 3138. doi:10.3390/ijms21093138http://dx.doi.org/10.3390/ijms21093138
Zhao K.; Rong G. Y.; Teng Q. Y.; Li X. S.; Lan H. L.; Yu L.; Yu S.; Jin Z.; Chen G. P.; Li Z. J.Dendrigraft poly-L-lysines delivery of DNA vaccine effectively enhances the immunogenic responses against H9N2 avian influenza virus infection in chickens. Nanomed. Nanotechnol. Biol. Med., 2020, 27, 102209. doi:10.1016/j.nano.2020.102209http://dx.doi.org/10.1016/j.nano.2020.102209
Kodama Y.; Nakamura T.; Kurosaki T.; Egashira K.; Mine T.; Nakagawa H.; Muro T.; Kitahara T.; Higuchi N.; Sasaki H.Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur. J. Pharm. Biopharm., 2014, 87(3), 472-479. doi:10.1016/j.ejpb.2014.04.013http://dx.doi.org/10.1016/j.ejpb.2014.04.013
Pichon C.; Gonçalves C.; Midoux P.Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev., 2001, 53(1), 75-94. doi:10.1016/s0169-409x(01)00221-6http://dx.doi.org/10.1016/s0169-409x(01)00221-6
Joubert F.; Munson M. J.; Sabirsh A.; England R. M.; Hemmerling M.; Alexander C.; Ashford M. B.Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J. Control. Release, 2023, 356, 580-594. doi:10.1016/j.jconrel.2023.03.011http://dx.doi.org/10.1016/j.jconrel.2023.03.011
Urello M. A.; Xiang L.; Colombo R.; Ma A.; Joseph A.; Boyd J.; Peterson N.; Gao C.; Wu H.; Christie R. J.Metabolite-based modification of poly(L-lysine) for improved gene delivery. Biomacromolecules, 2020, 21(9), 3596-3607. doi:10.1021/acs.biomac.0c00614http://dx.doi.org/10.1021/acs.biomac.0c00614
Tian H. Y.; Lin L.; Jiao Z. X.; Guo Z. P.; Chen J.; Gao S. Q.; Zhu X. J.; Chen X. S.Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier. J. Control. Release, 2013, 172(2), 410-418. doi:10.1016/j.jconrel.2013.06.026http://dx.doi.org/10.1016/j.jconrel.2013.06.026
Patil M. L.; Zhang M.; Minko T.Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano, 2011, 5(3), 1877-1887. doi:10.1021/nn102711dhttp://dx.doi.org/10.1021/nn102711d
Cai X. X.; Ullah A.; Qian R.; Cui J. M.; Wu L.; Shen S.Membrane-coated protein nanoparticles for mRNA delivery. J. Drug Deliv. Sci. Technol., 2024, 93, 105427. doi:10.1016/j.jddst.2024.105427http://dx.doi.org/10.1016/j.jddst.2024.105427
Boddu S. H. S.; Bhagav P.; Karla P. K.; Jacob S.; Adatiya M. D.; Dhameliya T. M.; Ranch K. M.; Tiwari A. K.Polyamide/poly(amino acid) polymers for drug delivery. J. Funct. Biomater., 2021, 12(4), 58. doi:10.3390/jfb12040058http://dx.doi.org/10.3390/jfb12040058
Guo Y. F.; Shen Y. P.; Yu B.; Ding L. J.; Meng Z.; Wang X. T.; Han M. H.; Dong Z. Q.; Wang X. T.Hydrophilic poly(glutamic acid)-based nanodrug delivery system: structural influence and antitumor efficacy. Polymers, 2022, 14(11), 2242. doi:10.3390/polym14112242http://dx.doi.org/10.3390/polym14112242
Dzhuzha A. Y.; Tarasenko I. I.; Atanase L. I.; Lavrentieva A.; Korzhikova-Vlakh E. G.Amphiphilic polypeptides obtained by the post-polymerization modification of poly(glutamic acid) and their evaluation as delivery systems for hydrophobic drugs. Int. J. Mol. Sci., 2023, 24(2), 1049. doi:10.3390/ijms24021049http://dx.doi.org/10.3390/ijms24021049
Hu Z.; Wang G. S.; Zhang R.; Wang L. J.; Wang J. W.; Hu J. S.; Reheman A.Construction of poly(amino acid)s nano-delivery system and sustained release with redox-responsive. Colloids Surf. B Biointerfaces, 2023, 224, 113232. doi:10.1016/j.colsurfb.2023.113232http://dx.doi.org/10.1016/j.colsurfb.2023.113232
Xu Y. J.; Lv J. L.; Liu F. Y.; Wang J. Q.; Liu Y.; Kong C. Y.; Li Y. R.; Shen N.; Gu Z.; Tang Z. H.; Chen X. S.Tumor microenvironment remodeling-mediated sequential drug delivery potentiates treatment efficacy. Adv. Mater., 2024, 36(23), e2312493. doi:10.1002/adma.202312493http://dx.doi.org/10.1002/adma.202312493
Cohen-Erez I.; Issacson C.; Lavi Y.; Shaco-Levy R.; Milam J.; Laster B.; Gheber L. A.; Rapaport H.Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models. ACS Appl. Mater. Interfaces, 2019, 11(36), 32670-32678. doi:10.1021/acsami.9b09886http://dx.doi.org/10.1021/acsami.9b09886
Zhang J. G.; Yang X. Y.; Chen J. Y.; Zhou Q. M.; Pan G. H.; Wang Y. N.; Luo W. P.; Hou J.; Bao H. X.; Xu G. Q.; Tang G. P.; Bai H. Z.; Yu R. S.A poly(amino acid)-based nanomedicine strategy: telomere-telomerase axis targeting and magnetic resonance imaging in hepatocellular carcinoma treatment. Nano Lett., 2024, 24(27), 8351-8360. doi:10.1021/acs.nanolett.4c01767http://dx.doi.org/10.1021/acs.nanolett.4c01767
Zhang Y.; Kim I.; Lu Y. M.; Xu Y. X.; Yu D. G.; Song W. L.Intelligent poly(L-histidine)-based nanovehicles for controlled drug delivery. J. Control. Release, 2022, 349, 963-982. doi:10.1016/j.jconrel.2022.08.005http://dx.doi.org/10.1016/j.jconrel.2022.08.005
Zheng M. C.; Pan M.; Zhang W. C.; Lin H. C.; Wu S. L.; Lu C.; Tang S. J.; Liu D. J.; Cai J. F.Poly(α-L-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact. Mater., 2021, 6(7), 1878-1909. doi:10.1016/j.bioactmat.2020.12.001http://dx.doi.org/10.1016/j.bioactmat.2020.12.001
Han S. S.; Li Z. Y.; Zhu J. Y.; Han K.; Zeng Z. Y.; Hong W.; Li W. X.; Jia H. Z.; Liu Y.; Zhuo R. X.; Zhang X. Z.Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small, 2015, 11(21), 2543-2554. doi:10.1002/smll.201402865http://dx.doi.org/10.1002/smll.201402865
Guo H.; Li F. P.; Xu W. G.; Chen J. J.; Hou Y. C.; Wang C. X.; Ding J. X.; Chen X. S.Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5(6), 1800004. doi:10.1002/advs.201800004http://dx.doi.org/10.1002/advs.201800004
Wahane A.; Malik S.; Shih K. C.; Gaddam R. R.; Chen C. H.; Liu Y.; Nieh M. P.; Vikram A.; Bahal R.Dual-modality poly-l-histidine nanoparticles to deliver peptide nucleic acids and paclitaxel for in vivo cancer therapy. ACS Appl. Mater. Interfaces, 2021, 13(38), 45244-45258. doi:10.1021/acsami.1c11981http://dx.doi.org/10.1021/acsami.1c11981
Liu X. M.; Sun J. J.; Gu J.; Weng L. Y.; Wang X. T.; Zhu L.; Luo Q. Q.; Chen Z. P.Effective drug and shRNA delivery for synergistic treatment of triple-negative breast cancer by sequentially targeting tumor hypoxia. Chem. Eng. J., 2023, 470, 144271. doi:10.1016/j.cej.2023.144271http://dx.doi.org/10.1016/j.cej.2023.144271
Chen X. A.; Xu C.; Zhao P.; Zhang Y.; Guo J. Z.; Hu X. L.; Gao H.; Zhang C. N.; Qu X. W.; Zhang J. M.A multichannel Ca2+ nanomodulator amplifies exogenous and endogenous calcium overload for efficient antitumor and antimetastasis therapy. Chem. Eng. J., 2023, 463, 142478. doi:10.1016/j.cej.2023.142478http://dx.doi.org/10.1016/j.cej.2023.142478
Chen C. J.; Li S. K.; Liu K.; Ma G. H.; Yan X. H.Co-assembly of heparin and polypeptide hybrid nanoparticles for biomimetic delivery and anti-thrombus therapy. Small, 2016, 12(34), 4719-4725. doi:10.1002/smll.201600328http://dx.doi.org/10.1002/smll.201600328
Hu H. H.; Zhang Z.; Fang Y. F.; Chen L.; Wu J.Therapeutic poly(amino acid)s as drug carriers for cancer therapy. Chin. Chem. Lett., 2023, 34(6), 107953. doi:10.1016/j.cclet.2022.107953http://dx.doi.org/10.1016/j.cclet.2022.107953
Skwarczynski M.; Zhao G. Z.; Boer J. C.; Ozberk V.; Azuar A.; Cruz J. G.; Giddam A. K.; Khalil Z. G.; Pandey M.; Shibu M. A.; Hussein W. M.; Nevagi R. J.; Batzloff M. R.; Wells J. W.; Capon R. J.; Plebanski M.; Good M. F.; Toth I.Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci. Adv., 2020, 6(5), eaax2285. doi:10.1126/sciadv.aax2285http://dx.doi.org/10.1126/sciadv.aax2285
Liang H. Y.; Du Y. B.; Zhu C. X.; Zhang Z. Q.; Liao G. Q.; Liu L. X.; Chen Y. M.Nanoparticulate cationic poly(amino acid)s block cancer metastases by destructing neutrophil extracellular traps. ACS Nano, 2023, 17(3), 2868-2880. doi:10.1021/acsnano.2c11280http://dx.doi.org/10.1021/acsnano.2c11280
Hadianamrei R.; Zhao X. B.Current state of the art in peptide-based gene delivery. J. Control. Release, 2022, 343, 600-619. doi:10.1016/j.jconrel.2022.02.010http://dx.doi.org/10.1016/j.jconrel.2022.02.010
Samec T.; Boulos J.; Gilmore S.; Hazelton A.; Alexander-Bryant A.Peptide-based delivery of therapeutics in cancer treatment. Mater. Today Bio, 2022, 14, 100248. doi:10.1016/j.mtbio.2022.100248http://dx.doi.org/10.1016/j.mtbio.2022.100248
Wang H. Y.; Chen J. X.; Sun Y. X.; Deng J. Z.; Li C.; Zhang X. Z.; Zhuo R. X.Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J. Control. Release, 2011, 155(1), 26-33. doi:10.1016/j.jconrel.2010.12.009http://dx.doi.org/10.1016/j.jconrel.2010.12.009
Zorko M.; Jones S.; Langel Ü.Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev., 2022, 180, 114044. doi:10.1016/j.addr.2021.114044http://dx.doi.org/10.1016/j.addr.2021.114044
Boisguérin P.; Konate K.; Josse E.; Vivès E.; Deshayes S.Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines, 2021, 9(5), 583. doi:10.3390/biomedicines9050583http://dx.doi.org/10.3390/biomedicines9050583
Brooks H.; Lebleu B.; Vivès E.Tat peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev., 2005, 57(4), 559-577. doi:10.1016/j.addr.2004.12.001http://dx.doi.org/10.1016/j.addr.2004.12.001
Kasai H.; Inoue K.; Imamura K.; Yuvienco C.; Montclare J. K.; Yamano S.Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway. J. Nanobiotechnol., 2019, 17(1), 11. doi:10.1186/s12951-019-0444-8http://dx.doi.org/10.1186/s12951-019-0444-8
Ando Y.; Nakazawa H.; Miura D.; Otake M.; Umetsu M.Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Sci. Rep., 2021, 11(1), 21882. doi:10.1038/s41598-021-01331-1http://dx.doi.org/10.1038/s41598-021-01331-1
Alhakamy N. A.; Dhar P.; Berkland C. J.Charge type, charge spacing, and hydrophobicity of arginine-rich cell-penetrating peptides dictate gene transfection. Mol. Pharm., 2016, 13(3), 1047-1057. doi:10.1021/acs.molpharmaceut.5b00871http://dx.doi.org/10.1021/acs.molpharmaceut.5b00871
Klipp A.; Burger M.; Leroux J. C.Get out or die trying: peptide- and protein-based endosomal escape of RNA therapeutics. Adv. Drug Deliv. Rev., 2023, 200, 115047. doi:10.1016/j.addr.2023.115047http://dx.doi.org/10.1016/j.addr.2023.115047
Han D.; He X. Y.; Huang Y.; Gao M.; Guo T.; Ren X. H.; Liao X. R.; Chen X. S.; Pang X.; Cheng S. X.A multifunctional delivery system for remodulating cell behaviors of circulating malignant cells to prevent cell fusion. Adv. Sci., 2023, 10(29), 2303309. doi:10.1002/advs.202303309http://dx.doi.org/10.1002/advs.202303309
Hagino Y.; Khalil I. A.; Kimura S.; Kusumoto K.; Harashima H.GALA-modified lipid nanoparticles for the targeted delivery of plasmid DNA to the lungs. Mol. Pharm., 2021, 18(3), 878-888. doi:10.1021/acs.molpharmaceut.0c00854http://dx.doi.org/10.1021/acs.molpharmaceut.0c00854
Ali S.; Dussouillez C.; Padilla B.; Frisch B.; Mason A. J.; Kichler A.Design of a new cell penetrating peptide for DNA, siRNA and mRNA delivery. J. Gene Med., 2022, 24(3), e3401. doi:10.1002/jgm.3401http://dx.doi.org/10.1002/jgm.3401
Wang Z. X.; Zhang J. X.; Wang Y. F.; Zhou J. L.; Jiao X. H.; Han M. S.; Zhang X. L.; Hu H. L.; Su R. X.; Zhang Y. M.; Qi W.Overcoming endosomal escape barriers in gene drug delivery using de novo designed pH-responsive peptides. ACS Nano, 2024, 18(14), 10324-10340. doi:10.1021/acsnano.4c02400http://dx.doi.org/10.1021/acsnano.4c02400
Zeng Y.; Estapé Senti M.; Labonia M. C. I.; Papadopoulou P.; Brans M. A. D.; Dokter I.; Fens M. H.; van Mil A.; Sluijter J. P. G.; Schiffelers R. M.; Vader P.; Kros A.Fusogenic coiled-coil peptides enhance lipid nanoparticle-mediated mRNA delivery upon intramyocardial administration. ACS Nano, 2023, 17(23), 23466-23477. doi:10.1021/acsnano.3c05341http://dx.doi.org/10.1021/acsnano.3c05341
Zhang R.; Jing W. Q.; Chen C.; Zhang S. C.; Abdalla M.; Sun P.; Wang G. Y.; You W. J.; Yang Z. M.; Zhang J.; Tang C. W.; Du W.; Liu Y.; Li X. X.; Liu J. T.; You X. N.; Hu H. L.; Cai L.; Xu F. B.; Dong B. X.; Liu M. L.; Qiang B. M.; Sun Y. H.; Yu G. C.; Wu J. B.; Zhao K.; Jiang X. Y.Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater., 2022, 34(14), 2107506. doi:10.1002/adma.202270108http://dx.doi.org/10.1002/adma.202270108
Guan J. B.; Guo H.; Tang T.; Wang Y. H.; Wei Y. S.; Seth P.; Li Y. M.; Dehm S. M.; Ruoslahti E.; Pang H. B.iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv. Funct. Mater., 2021, 31(24), 2100478. doi:10.1002/adfm.202100478http://dx.doi.org/10.1002/adfm.202100478
Gao X. H.; Xu J. L.; Yao T. T.; Liu X. X.; Zhang H. C.; Zhan C. Y.Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv. Drug Deliv. Rev., 2022, 187, 114362. doi:10.1016/j.addr.2022.114362http://dx.doi.org/10.1016/j.addr.2022.114362
Cai L. L.; Yang C. Y.; Jia W. F.; Liu Y. W.; Xie R.; Lei T.; Yang Z. H.; He X. Q.; Tong R. S.; Gao H. L.Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer's disease. Adv. Funct. Mater., 2020, 30(27), 1909999. doi:10.1002/adfm.201909999http://dx.doi.org/10.1002/adfm.201909999
Zhang J.; Cui B. Z.; He T.; Hei R. X.; Yang L.; Liu C.; Wu X. N.; Wang X.; Gao Z. W.; Lin F.; Zhang H. Z.; Dong K.Enhancing neuroprotection in mouse model of Parkinson’s disease through protein nanosystem conjugation with ApoE peptide for miR-124 delivery. ACS Appl. Mater. Interfaces, 2024, 16(7), 8199-8212. doi:10.1021/acsami.3c13849http://dx.doi.org/10.1021/acsami.3c13849
Ouyang Q.; Liu K.; Zhu Q. B.; Deng H. Y.; Le Y.; Ouyang W.; Yan X. X.; Zhou W. H.; Tong J. B.Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic therapy of Alzheimer's disease. Small, 2022, 18(14), e2107534. doi:10.1002/smll.202107534http://dx.doi.org/10.1002/smll.202107534
Jiang S. J.; Cai G. E.; Yang Z. M.; Shi H. Y.; Zeng H. J.; Ye Q. Y.; Hu Z. Y.; Wang Z. H.Biomimetic nanovesicles as a dual gene delivery system for the synergistic gene therapy of Alzheimer’s disease. ACS Nano, 2024, 18(18), 11753-11768. doi:10.1021/acsnano.3c13150http://dx.doi.org/10.1021/acsnano.3c13150
Lei S. B.; Chen X. H.; Gao Y.; Shuai M.; Zhou W. L.; Li J. M.; Wu J. P.; Men K.; Duan X. M.ALPPL2-Binding peptide facilitates targeted mRNA delivery for efficient hepatocellular carcinoma gene therapy. Adv. Funct. Mater., 2022, 32(43), 2204342. doi:10.1002/adfm.202204342http://dx.doi.org/10.1002/adfm.202204342
Zhang J. F.; Shen H. W.; Xu J. J.; Liu L.; Tan J. W.; Li M. H.; Xu N.; Luo S. G.; Wang J.; Yang F.; Tang J.; Li Q. H.; Wang Y. T.; Yu L.; Yan Z. Q.Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities. ACS Nano, 2020, 14(5), 6305-6322. doi:10.1021/acsnano.0c02633http://dx.doi.org/10.1021/acsnano.0c02633
Tang C. W.; Jing W. Q.; Han K.; Yang Z. M.; Zhang S. C.; Liu M. Y.; Zhang J.; Zhao X. T.; Liu Y.; Shi C. D.; Chai Q. H.; Li Z. Y.; Han M. S.; Wang Y.; Fu Z. P.; Zheng Z. L.; Zhao K.; Sun P.; Zhu D. Q.; Chen C.; Zhang D. Z.; Li D. W.; Ni S. L.; Li T.; Cui J. W.; Jiang X. Y.mRNA-laden lipid-nanoparticle-enabled in situ CAR-macrophage engineering for the eradication of multidrug-resistant bacteria in a sepsis mouse model. ACS Nano, 2024, 18(3), 2261-2278. doi:10.1021/acsnano.3c10109http://dx.doi.org/10.1021/acsnano.3c10109
Han K.; Lei Q.; Jia H. Z.; Wang S. B.; Yin W. N.; Chen W. H.; Cheng S. X.; Zhang X. Z.A tumor targeted chimeric peptide for synergistic endosomal escape and therapy by dual-stage light manipulation. Adv. Funct. Mater., 2015, 25(8), 1248-1257. doi:10.1002/adfm.201403190http://dx.doi.org/10.1002/adfm.201403190
Cai C. D.; Wang W.; Liang J.; Li Y. G.; Lu M. K.; Cui W. G.; Fan C. Y.; Deng L. F.; Li Y. S.; Wang F.; Liu S.MMP-2 responsive unidirectional hydrogel-electrospun patch loading TGF-β1 siRNA polyplexes for peritendinous anti-adhesion. Adv. Funct. Mater., 2021, 31(6), 2008364. doi:10.1002/adfm.202008364http://dx.doi.org/10.1002/adfm.202008364
Sun Y.; Xu X. J.; Chen L. W.; Chew W. L.; Ping Y.; Miserez A.Redox-responsive phase-separating peptide as a universal delivery vehicle for CRISPR/Cas9 genome editing machinery. ACS Nano, 2023, 17(17), 16597-16606. doi:10.1021/acsnano.3c02669http://dx.doi.org/10.1021/acsnano.3c02669
Cirillo S.; Zhang B.; Brown S.; Zhao X. B.Antimicrobial peptide A9K as a gene delivery vector in cancer cells. Eur. J. Pharm. Biopharm., 2024, 198, 114244. doi:10.1016/j.ejpb.2024.114244http://dx.doi.org/10.1016/j.ejpb.2024.114244
Men K.; Liu M. H.; Zhang X. Y.; Yang Y. L.; Zhang R.; Wang Y. S.; Hu D.; Zhou B. L.; Yang L.Identification of potent siRNA delivery peptides using computer modeling. Adv. Sci., 2024, 11(14), 2308345. doi:10.1002/advs.202308345http://dx.doi.org/10.1002/advs.202308345
Anderson C. F.; Singh A.; Stephens T.; Hoang C. D.; Schneider J. P.Kinetically controlled polyelectrolyte complex assembly of microRNA-peptide nanoparticles toward treating mesothelioma. Adv. Mater., 2024, 36(24), 2314367. doi:10.1002/adma.202314367http://dx.doi.org/10.1002/adma.202314367
Kumar V. B.; Ozguney B.; Vlachou A.; Chen Y.; Gazit E.; Tamamis P.Peptide self-assembled nanocarriers for cancer drug delivery. J. Phys. Chem. B, 2023, 127(9), 1857-1871. doi:10.1021/acs.jpcb.2c06751http://dx.doi.org/10.1021/acs.jpcb.2c06751
Zhang Z. H.; Ai S. F.; Yang Z. M.; Li X. Y.Peptide-based supramolecular hydrogels for local drug delivery. Adv. Drug Deliv. Rev., 2021, 174, 482-503. doi:10.1016/j.addr.2021.05.010http://dx.doi.org/10.1016/j.addr.2021.05.010
Liang C. H.; Yan X. R.; Zhang R. S.; Xu T. Y.; Zheng D. B.; Tan Z. Q.; Chen Y. X.; Gao Z. F.; Wang L.; Li X. Y.; Yang Z. M.Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. J. Control. Release, 2020, 317, 109-117. doi:10.1016/j.jconrel.2019.11.028http://dx.doi.org/10.1016/j.jconrel.2019.11.028
Wang Y. H.; Xie L. M.; Li X. X.; Wang L.; Yang Z. M.Chemo-immunotherapy by dual-enzyme responsive peptide self-assembling abolish melanoma. Bioact. Mater., 2024, 31, 549-562. doi:10.1016/j.bioactmat.2023.09.006http://dx.doi.org/10.1016/j.bioactmat.2023.09.006
Zhang Z. H.; Peng S. J.; Xu T. Y.; Liu J.; Zhao L. E.; Xu H.; Zhang W.; Zhu Y. Y.; Yang Z. M.Retinal microenvironment-protected Rhein-GFFYE nanofibers attenuate retinal ischemia-reperfusion injury via inhibiting oxidative stress and regulating microglial/macrophage M1/M2polarization. Adv. Sci., 2023, 10(30), 2302909. doi:10.1002/advs.202302909http://dx.doi.org/10.1002/advs.202302909
Costa S.; Mozhdehi D.; Dzuricky M. J.; Isaacs F. J.; Brustad E. M.; Chilkoti A.Active targeting of cancer cells by nanobody decorated polypeptide micelle with bio-orthogonally conjugated drug. Nano Lett., 2019, 19(1), 247-254. doi:10.1021/acs.nanolett.8b03837http://dx.doi.org/10.1021/acs.nanolett.8b03837
Chen P.; Cai X. Y.; Mu G. N.; Duan Y. S.; Jing C.; Yang Z. M.; Yang C. H.; Wang X. D.Supramolecular nanofibers co-loaded with dabrafenib and doxorubicin for targeted and synergistic therapy of differentiated thyroid carcinoma. Theranostics, 2023, 13(7), 2140-2153. doi:10.7150/thno.82140http://dx.doi.org/10.7150/thno.82140
Boas D.; van Teijlingen A.; Shpilt Z.; Shalev D. E.; Tshuva E. Y.; Tuttle T.; Reches M.A multifunctional drug delivery system based on switchable peptide-stabilized emulsions. Chem, 2024, 10(6), 1821-1838. doi:10.1016/j.chempr.2024.02.003http://dx.doi.org/10.1016/j.chempr.2024.02.003
Cheng Y. J.; Qin S. Y.; Liu W. L.; Ma Y. H.; Chen X. S.; Zhang A. Q.; Zhang X. Z.Dual-targeting photosensitizer-peptide amphiphile conjugate for enzyme-triggered drug delivery and synergistic chemo-photodynamic tumor therapy. Adv. Mater. Interfaces, 2020, 7(19), 2000935. doi:10.1002/admi.202070108http://dx.doi.org/10.1002/admi.202070108
Cao J. J.; Liu X. Y.; Yuan X. M.; Meng F. H.; Sun X. Y.; Xu L. Z.; Li H. J.; Liu Y.; Hong Z. X.; Bai J. K.Enzyme-induced morphological transformation of self-assembled peptide nanovehicles potentiates intratumoral aggregation and inhibits tumour immunosuppression. Chem. Eng. J., 2023, 454, 140466. doi:10.1016/j.cej.2022.140466http://dx.doi.org/10.1016/j.cej.2022.140466
Kuang J.; Rao Z. Y.; Zheng D. W.; Kuang D.; Huang Q. X.; Pan T.; Li H.; Zeng X.; Zhang X. Z.Nanoparticles hitchhike on monocytes for glioblastoma treatment after low-dose radiotherapy. ACS Nano, 2023, 17(14), 13333-13347. doi:10.1021/acsnano.3c01428http://dx.doi.org/10.1021/acsnano.3c01428
Aschmann D.; Knol R. A.; Kros A.Lipid-based nanoparticle functionalization with coiled-coil peptides for in vitro and in vivo drug delivery. Acc. Chem. Res., 2024, 57(8), 1098-1110. doi:10.1021/acs.accounts.3c00769http://dx.doi.org/10.1021/acs.accounts.3c00769
Zhang J.; Yuan Z. F.; Wang Y.; Chen W. H.; Luo G. F.; Cheng S. X.; Zhuo R. X.; Zhang X. Z.Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc., 2013, 135(13), 5068-5073. doi:10.1021/ja312004mhttp://dx.doi.org/10.1021/ja312004m
Pan L. M.; Liu J. N.; He Q. J.; Shi J. L.MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater., 2014, 26(39), 6742-6748. doi:10.1002/adma.201402752http://dx.doi.org/10.1002/adma.201402752
Han K.; Lei Q.; Wang S. B.; Hu J. J.; Qiu W. X.; Zhu J. Y.; Yin W. N.; Luo X.; Zhang X. Z.Dual-stage-light-guided tumor inhibition by mitochondria-targeted photodynamic therapy. Adv. Funct. Mater., 2015, 25(20), 2961-2971. doi:10.1002/adfm.201500590http://dx.doi.org/10.1002/adfm.201500590
Han K.; Zhang W. Y.; Zhang J.; Lei Q.; Wang S. B.; Liu J. W.; Zhang X. Z.; Han H. Y.Acidity-triggered tumor-targeted chimeric peptide for enhanced intra-nuclear photodynamic therapy. Adv. Funct. Mater., 2016, 26(24), 4351-4361. doi:10.1002/adfm.201600170http://dx.doi.org/10.1002/adfm.201600170
Han K.; Zhang J.; Zhang W. Y.; Wang S. B.; Xu L. M.; Zhang C.; Zhang X. Z.; Han H. Y.Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano, 2017, 11(3), 3178-3188. doi:10.1021/acsnano.7b00216http://dx.doi.org/10.1021/acsnano.7b00216
Chen P. L.; Huang P. Y.; Chen J. Y.; Shi Q. Y.; Zhu Y. Y.; Chen Y.; Liu L. H.; Zhang X. Z.A self-delivery chimeric peptide for high efficient cell membrane-targeting low-temperature photothermal/photodynamic combinational therapy and metastasis suppression of tumor. Biomaterials, 2022, 286, 121593. doi:10.1016/j.biomaterials.2022.121593http://dx.doi.org/10.1016/j.biomaterials.2022.121593
Luo G. F.; Chen W. H.; Hong S.; Cheng Q.; Qiu W. X.; Zhang X. Z.A self-transformable pH-driven membrane-anchoring photosensitizer for effective photodynamic therapy to inhibit tumor growth and metastasis. Adv. Funct. Mater., 2017, 27(36), 1702122. doi:10.1002/adfm.201702122http://dx.doi.org/10.1002/adfm.201702122
Cheng H.; Fan J. H.; Zhao L. P.; Fan G. L.; Zheng R. R.; Qiu X. Z.; Yu X. Y.; Li S. Y.; Zhang X. Z.Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy. Biomaterials, 2019, 211, 14-24. doi:10.1016/j.biomaterials.2019.05.004http://dx.doi.org/10.1016/j.biomaterials.2019.05.004
Cheng H.; Zheng R. R.; Fan G. L.; Fan J. H.; Zhao L. P.; Jiang X. Y.; Yang B.; Yu X. Y.; Li S. Y.; Zhang X. Z.Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Biomaterials, 2019, 188, 1-11. doi:10.1016/j.biomaterials.2018.10.005http://dx.doi.org/10.1016/j.biomaterials.2018.10.005
Wang Z. Y.; Shang Y. N.; Tan Z. Q.; Li X. Y.; Li G. L.; Ren C. H.; Wang F. Q.; Yang Z. M.; Liu J. F.A supramolecular protein chaperone for vaccine delivery. Theranostics, 2020, 10(2), 657-670. doi:10.7150/thno.39132http://dx.doi.org/10.7150/thno.39132
Song Y.; Lei L.; Cai X. Y.; Wei H.; Yu C. Y.Immunomodulatory peptides for tumor treatment. Adv. Healthc. Mater., 2024, 2400512. doi:10.1002/adhm.202400512http://dx.doi.org/10.1002/adhm.202400512
Zhang Q. L.; Hong S.; Dong X.; Zheng D. W.; Liang J. L.; Bai X. F.; Wang X. N.; Han Z. Y.; Zhang X. Z.Bioinspired nano-vaccine construction by antigen pre-degradation for boosting cancer personalized immunotherapy. Biomaterials, 2022, 287, 121628. doi:10.1016/j.biomaterials.2022.121628http://dx.doi.org/10.1016/j.biomaterials.2022.121628
Wang Y. H.; Li X. X.; Zheng D. B.; Chen Y. M.; Zhang Z. H.; Yang Z. M.Selective degradation of PD-L1 in cancer cells by enzyme-instructed self-assembly. Adv. Funct. Mater., 2021, 31(45), 2102505. doi:10.1002/adfm.202102505http://dx.doi.org/10.1002/adfm.202102505
Zhu H. C.; Luo H.; Chang R. L.; Yang Y. F.; Liu D. K.; Ji Y.; Qin H.; Rong H. B.; Yin J.Protein-based delivery systems for RNA delivery. J. Control. Release, 2023, 363, 253-274. doi:10.1016/j.jconrel.2023.09.032http://dx.doi.org/10.1016/j.jconrel.2023.09.032
Tai W. Y.; Li J. W.; Corey E.; Gao X. H.A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng., 2018, 2(5), 326-337. doi:10.1038/s41551-018-0214-1http://dx.doi.org/10.1038/s41551-018-0214-1
Li Z. L.; Zhou X. Y.; Wei M. Y.; Gao X. T.; Zhao L. B.; Shi R. J.; Sun W. Q.; Duan Y. Y.; Yang G. D.; Yuan L. J.In Vitro and in Vivo RNA Inhibition by CD9-HuR Functionalized Exosomes Encapsulated with miRNA or CRISPR/dCas9. Nano Lett., 2019, 19(1), 19-28. doi:10.1021/acs.nanolett.8b02689http://dx.doi.org/10.1021/acs.nanolett.8b02689
Jarzebska N. T.; Mellett M.; Frei J.; Kündig T. M.; Pascolo S.Protamine-based strategies for RNA transfection. Pharmaceutics, 2021, 13(6), 877. doi:10.3390/pharmaceutics13060877http://dx.doi.org/10.3390/pharmaceutics13060877
Han H. B.; Yang J. B.; Chen W. Q.; Li Q.; Yang Y.; Li Q. S.A comprehensive review on histone-mediated transfection for gene therapy. Biotechnol. Adv., 2019, 37(1), 132-144. doi:10.1016/j.biotechadv.2018.11.009http://dx.doi.org/10.1016/j.biotechadv.2018.11.009
Zheng B. B.; Chen Y. P.; Niu L. M.; Zhang X. Y.; Yang Y. B.; Wang S. Z.; Chen W.; Cai Z. M.; Huang W.; Huang W. R.Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J. Control. Release, 2024, 366, 596-610. doi:10.1016/j.jconrel.2023.12.057http://dx.doi.org/10.1016/j.jconrel.2023.12.057
Wang Y. H.; Rajala A.; Cao B. R.; Ranjo-Bishop M.; Agbaga M. P.; Mao C. B.; Rajala R. V. S.Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics, 2016, 6(10), 1514-1527. doi:10.7150/thno.15230http://dx.doi.org/10.7150/thno.15230
Rajala A.; Wang Y. H.; Zhu Y.; Ranjo-Bishop M.; Ma J. X.; Mao C. B.; Rajala R. V. S.Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett., 2014, 14(9), 5257-5263. doi:10.1021/nl502275shttp://dx.doi.org/10.1021/nl502275s
Wang Y.; Tang Y.; Zhao X. M.; Huang G.; Gong J. H.; Yang S. D.; Li H.; Wan W. J.; Jia C. H.; Chen G.; Zhang X. N.A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy. Acta Biomater., 2022, 153, 481-493. doi:10.1016/j.actbio.2022.09.046http://dx.doi.org/10.1016/j.actbio.2022.09.046
He X. Y.; Ren X. H.; Peng Y.; Zhang J. P.; Ai S. L.; Liu B. Y.; Xu C.; Cheng S. X.Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-mediated cancer immunosuppression. Adv. Mater., 2020, 32(17), 2000208. doi:10.1002/adma.202000208http://dx.doi.org/10.1002/adma.202000208
Ren X. H.; Han D.; He X. Y.; Guo T.; Chen X. S.; Pang X.; Cheng S. X.Multi-targeting nano-systems targeting heterogeneous cancer cells for therapeutics and biomarker detection. Adv. Healthc. Mater., 2023, 12(4), 2202155. doi:10.1002/adhm.202202155http://dx.doi.org/10.1002/adhm.202202155
Ren X. H.; He X. Y.; Xu C.; Han D.; Cheng S. X.Functional tumor targeting nano-systems for reprogramming circulating tumor cells with in situ evaluation on therapeutic efficiency at the single-cell level. Adv. Sci., 2022, 9(21), e2105806. doi:10.1002/advs.202105806http://dx.doi.org/10.1002/advs.202105806
Eweje F.; Walsh M. L.; Ahmad K.; Ibrahim V.; Alrefai A.; Chen J. X.; Chaikof E. L.Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials, 2024, 305, 122464. doi:10.1016/j.biomaterials.2023.122464http://dx.doi.org/10.1016/j.biomaterials.2023.122464
Li L.; Muñoz-Culla M.; Carmona U.; Lopez M. P.; Yang F.; Trigueros C.; Otaegui D.; Zhang L. B.; Knez M.Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials, 2016, 98, 143-151. doi:10.1016/j.biomaterials.2016.05.006http://dx.doi.org/10.1016/j.biomaterials.2016.05.006
Ngarande E.; Doubell E.; Tamgue O.; Mano M.; Human P.; Giacca M.; Davies N. H.Modified fibrin hydrogel for sustained delivery of RNAi lipopolyplexes in skeletal muscle. Regen. Biomater., 2022, 10, rbac101. doi:10.1093/rb/rbac101http://dx.doi.org/10.1093/rb/rbac101
Hong S.; Choi D. W.; Kim H. N.; Park C. G.; Lee W.; Park H. H.Protein-based nanoparticles as drug delivery systems. Pharmaceutics, 2020, 12(7), 604. doi:10.3390/pharmaceutics12070604http://dx.doi.org/10.3390/pharmaceutics12070604
Chen Q.; Liu Z.Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv. Mater., 2016, 28(47), 10557-10566. doi:10.1002/adma.201600038http://dx.doi.org/10.1002/adma.201600038
Lin Y. W.; Lin T. T.; Chen C. H.; Wang R. H.; Lin Y. H.; Tseng T. Y.; Zhuang Y. J.; Tang S. Y.; Lin Y. C.; Pang J.; Chakravarthy R. D.; Lin H. C.; Tzou S. C.; Chao J. I.Enhancing efficacy of Albumin-bound paclitaxel for human lung and colorectal cancers through autophagy receptor sequestosome 1 (SQSTM1)/p62-mediated nanodrug delivery and cancer therapy. ACS Nano, 2023, 17(19), 19033-19051. doi:10.1021/acsnano.3c04739http://dx.doi.org/10.1021/acsnano.3c04739
Wang M. Y.; Zhang L.; Cai Y. F.; Yang Y.; Qiu L. P.; Shen Y. T.; Jin J.; Zhou J.; Chen J. H.Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano, 2020, 14(12), 17405-17418. doi:10.1021/acsnano.0c07610http://dx.doi.org/10.1021/acsnano.0c07610
Sasaki K.; Ishihara J.; Ishihara A.; Miura R.; Mansurov A.; Fukunaga K.; Hubbell J. A.Engineered collagen-binding serum albumin as a drug conjugate carrier for cancer therapy. Sci. Adv., 2019, 5(8), eaaw6081. doi:10.1126/sciadv.aaw6081http://dx.doi.org/10.1126/sciadv.aaw6081
Chen Y.; Wang J. N.; Xu J. Z.; Zhang J. Y.; Xu S.; Zhang Q.; Huang J.; Peng J. Q.; Xu H. Y.; Du Q. M.; Gong Z. P.Fabrication of a polysaccharide-protein/protein complex stabilized oral nanoemulsion to facilitate the therapeutic effects of1, 8-cineole on atherosclerosis. ACS Nano, 2023, 17(10), 9090-9109. doi:10.1021/acsnano.2c12230http://dx.doi.org/10.1021/acsnano.2c12230
Jin M.; Liu B. H.; Zhang Z.; Mu Y. L.; Ma L.; Yao H.; Wang D. A.Catechin-functionalized cationic lipopolymer based multicomponent nanomicelles for lung-targeting delivery. Adv. Mater., 2024, 36(17), 2302985. doi:10.1002/adma.202302985http://dx.doi.org/10.1002/adma.202302985
Wang X. H.; Chen D.; Huang K. X.; Li M.; Zhan C. Y.; Dong Z. Y.; Deng T.; Ren K. B.; Qiu Y.; Zhang Z. R.; He Q.Albumin-hitchhiking drug delivery to tumor-draining lymph nodes precisely boosts tumor-specific immunity through autophagy modulation of immune cells. Adv. Mater., 2023, 35(29), 2211055. doi:10.1002/adma.202211055http://dx.doi.org/10.1002/adma.202211055
Picchio M. L.; Orellano M. S.; Motta M. A.; Huck-Iriart C.; Sánchez-deAlcázar D.; López-Domene R.; Martín-García B.; Larrañaga A.; Beloqui A.; Mecerreyes D.; Calderón M.Elastomeric protein bioactive eutectogels for topical drug delivery. Adv. Funct. Mater., 2024, 34(18), 2313747. doi:10.1002/adfm.202313747http://dx.doi.org/10.1002/adfm.202313747
Falcone N.; Ermis M.; Gangrade A.; Choroomi A.; Young P.; Mathes T. G.; Monirizad M.; Zehtabi F.; Mecwan M.; Rodriguez M.; Zhu Y. Z.; Byun Y.; Khademhosseini A.; de Barros N. R.; Kim H. J.Drug-eluting shear-thinning hydrogel for the delivery of chemo- and immunotherapeutic agents for the treatment of hepatocellular carcinoma. Adv. Funct. Mater., 2024, 34(8), 2309069. doi:10.1002/adfm.202470046http://dx.doi.org/10.1002/adfm.202470046
Zhang H.; Liu Y. X.; Chen C. W.; Cui W. G.; Zhang C. W.; Ye F. F.; Zhao Y. J.Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Appl. Mater. Today, 2020, 19, 100540. doi:10.1016/j.apmt.2019.100540http://dx.doi.org/10.1016/j.apmt.2019.100540
Gou S. Q.; Wang G. Y.; Zou Y. N.; Geng W. B.; He T. T.; Qin Z. Z.; Che L. B.; Feng Q.; Cai K. Y.Non-pore dependent and MMP-9 responsive gelatin/silk fibroin composite microparticles as universal delivery platform for inhaled treatment of lung cancer. Adv. Mater., 2023, 35(42), 2303718. doi:10.1002/adma.202303718http://dx.doi.org/10.1002/adma.202303718
Jin B.; Zhou X. S.; Li X. Z.; Lin W. Q.; Chen G. B.; Qiu R. J.Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules, 2016, 21(3), 282. doi:10.3390/molecules21030282http://dx.doi.org/10.3390/molecules21030282
Huang J. L.; Fu Y. L.; Wang A. T.; Shi K. X.; Peng Y. D.; Yi Y.; Yu R. H.; Gao J. C.; Feng J. F.; Jiang G.; Song Q. X.; Jiang J. Y.; Chen H. Z.; Gao X. L.Brain delivery of protein therapeutics by cell matrix-inspired biomimetic nanocarrier. Adv. Mater., 2024, 36(31), 2405323. doi:10.1002/adma.202405323http://dx.doi.org/10.1002/adma.202405323
Guo J. Q.; Tan D. S.; Lou C. M.; Guo S. Y.; Jin X.; Qu H. J.; Jing L. J.; Li S. J.A tumor-penetrable drug nanococktail made from human histones for interventional nucleus-targeted chemophotothermal therapy of drug-resistant tumors. Bioact. Mater., 2021, 9, 554-565. doi:10.1016/j.bioactmat.2021.07.018http://dx.doi.org/10.1016/j.bioactmat.2021.07.018
Terstappen G. C.; Meyer A. H.; Bell R. D.; Zhang W. D.Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov., 2021, 20(5), 362-383. doi:10.1038/s41573-021-00139-yhttp://dx.doi.org/10.1038/s41573-021-00139-y
He W. Y.; Li X. Z.; Morsch M.; Ismail M.; Liu Y. J.; Rehman F. U.; Zhang D. Y.; Wang Y. B.; Zheng M.; Chung R.; Zou Y.; Shi B. Y.Brain-targeted codelivery of Bcl-2/Bcl-xl and Mcl-1 inhibitors by biomimetic nanoparticles for orthotopic glioblastoma therapy. ACS Nano, 2022, 16(4), 6293-6308. doi:10.1021/acsnano.2c00320http://dx.doi.org/10.1021/acsnano.2c00320
Prakash R.; Vyawahare A.; Sakla R.; Kumari N.; Kumar A.; Ansari M. M.; Kanika, Jori C.; Waseem A.; Siddiqui A. J.; Khan M. A.; Robertson A. A. B.; Khan R.; Raza S. S.NLRP3 inflammasome-targeting nanomicelles for preventing ischemia—reperfusion-induced inflammatory injury. ACS Nano, 2023, 17(9), 8680-8693. doi:10.1021/acsnano.3c01760http://dx.doi.org/10.1021/acsnano.3c01760
Tsuchikama K.; Anami Y.; Ha S. Y. Y.; Yamazaki C. M.Exploring the next generation of antibody-drug conjugates. Nat. Rev. Clin. Oncol., 2024, 21(3), 203-223. doi:10.1038/s41571-023-00850-2http://dx.doi.org/10.1038/s41571-023-00850-2
Nakazawa Y.; Miyano M.; Tsukamoto S.; Kogai H.; Yamamoto A.; Iso K.; Inoue S.; Yamane Y.; Yabe Y.; Umihara H.; Taguchi J.; Akagi T.; Yamaguchi A.; Koga M.; Toshimitsu K.; Hirayama T.; Mukai Y.; Machinaga A.Delivery of a BET protein degrader via a CEACAM6-targeted antibody-drug conjugate inhibits tumour growth in pancreatic cancer models. Nat. Commun., 2024, 15(1), 2192. doi:10.1038/s41467-024-46167-1http://dx.doi.org/10.1038/s41467-024-46167-1
Liu Z. L.; Zhang H. L.; Sun J. L.; Zheng M. F.; Cui L. J.; Zhang Y.; Cheng J. J.; Tang Z. H.; Chen X. S.Organic-solvent-free “lego-like” modular preparation of fab-nondestructive antibody-drug conjugates with ultrahigh drug-to-antibody ratio. Adv. Mater., 2023, 35(46), 2300377. doi:10.1002/adma.202300377http://dx.doi.org/10.1002/adma.202300377
Yuan Y.; Zhou S. S.; Li C.; Zhang X. K.; Mao H.; Chen W. Z.; Jiang X. Q.Cascade downregulation of the HER family by a dual-targeted recombinant protein-drug conjugate to inhibit tumor growth and metastasis. Adv. Mater., 2022, 34(23), 2201558. doi:10.1002/adma.202201558http://dx.doi.org/10.1002/adma.202201558
Chen W. Z.; Yuan Y.; Li C.; Mao H.; Liu B. R.; Jiang X. Q.Modulating tumor extracellular matrix by simultaneous inhibition of two cancer cell receptors. Adv. Mater., 2022, 34(10), 2109376. doi:10.1002/adma.202109376http://dx.doi.org/10.1002/adma.202109376
Dhankher A.; Lv W.; Studstill W. T.; Champion J. A.Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J. Control. Release, 2021, 339, 248-258. doi:10.1016/j.jconrel.2021.09.026http://dx.doi.org/10.1016/j.jconrel.2021.09.026
Wang B.; Xu X. X.; Li B.; Wei Z.; Lu S.; Li J. J.; Liu K.; Zhang H. J.; Wang F.; Yang Y.Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy. Nano Res., 2023, 16(8), 11216-11220. doi:10.1007/s12274-023-5841-5http://dx.doi.org/10.1007/s12274-023-5841-5
Liu B.; Li X.; Zhang J. P.; Li X.; Yuan Y.; Hou G. H.; Zhang H. J.; Zhang H.; Li Y.; Mezzenga R.Protein nanotubes as advanced material platforms and delivery systems. Adv. Mater., 2024, 36(6), 2307627. doi:10.1002/adma.202307627http://dx.doi.org/10.1002/adma.202307627
Deng Q. R.; Mi J. M.; Dong J. P.; Chen Y.; Chen L. X.; He J. X.; Zhou J. H.Superiorly stable three-layer air microbubbles generated by versatile ethanol-water exchange for contrast-enhanced ultrasound theranostics. ACS Nano, 2023, 17(1), 263-274. doi:10.1021/acsnano.2c07300http://dx.doi.org/10.1021/acsnano.2c07300
Zhang Q.; Toprakcioglu Z.; Jayaram A. K.; Guo G. S.; Wang X. Y.; Knowles T. P. J.Formation of protein nanoparticles in microdroplet flow reactors. ACS Nano, 2023, 17(12), 11335-11344. doi:10.1021/acsnano.3c00107http://dx.doi.org/10.1021/acsnano.3c00107
Huang S. D.; Gao Y.; Li H. Y.; Wang R. R.; Zhang X. M.; Wang X. Y.; Huang D.; Zhang L. X.; Santos H. A.; Yin Z. Y.; Xia B.Manganese@Albumin nano complex and its assembled nanowire activate TLR4-dependent signaling cascades of macrophages. Adv. Mater., 2024, 36(5), 2310979. doi:10.1002/adma.202310979http://dx.doi.org/10.1002/adma.202310979
Zheng A. X.; Ning Z. Y.; Wang X. R.; Li Z. L.; Sun Y. P.; Wu M.; Zhang D.; Liu X. L.; Chen J. W.; Zeng Y. Y.Human serum albumin as the carrier to fabricate STING-activating peptide nanovaccine for antitumor immunotherapy. Mater. Today Bio, 2024, 25, 100955. doi:10.1016/j.mtbio.2024.100955http://dx.doi.org/10.1016/j.mtbio.2024.100955
Wang X.; Liu Y. Q.; Xue C. C.; Hu Y.; Zhao Y. Y.; Cai K. Y.; Li M. H.; Luo Z.A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses. Nat. Commun., 2022, 13(1), 5685. doi:10.1038/s41467-022-33301-0http://dx.doi.org/10.1038/s41467-022-33301-0
Chen Q.; Feng L. Z.; Liu J. J.; Zhu W. W.; Dong Z. L.; Wu Y. F.; Liu Z.Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater., 2016, 28(33), 7129-7136. doi:10.1002/adma.201601902http://dx.doi.org/10.1002/adma.201601902
Zhao R. X.; Zhu Y. L.; Feng L. L.; Liu B.; Hu Y. Y.; Zhu H. X.; Zhao Z. Y.; Ding H.; Gai S. L.; Yang P. P.Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy. Adv. Mater., 2024, 36(2), 2307115. doi:10.1002/adma.202307115http://dx.doi.org/10.1002/adma.202307115
Yue C. Y.; Lu W. J.; Fan S. X.; Huang Z. S.; Yang J. Y.; Dong H.; Zhang X. J.; Shang Y. X.; Lai W. J.; Li D. D.; Dong T. J.; Yuan A. H.; Wu J. H.; Kang L. F.; Hu Y. Q.Nanoparticles for inducing Gaucher disease-like damage in cancer cells. Nat. Nanotechnol., 2024, 19(8), 1203-1215. doi:10.1038/s41565-024-01668-4http://dx.doi.org/10.1038/s41565-024-01668-4
Wang W. H.; Fu F. Q.; Huang Z. W.; Wang W. H.; Chen M. L.; Yue X.; Fu J. T.; Feng X. Q.; Huang Y.; Wu C. B.; Pan X.Inhalable biomimetic protein corona-mediated nanoreactor for self-amplified lung adenocarcinoma ferroptosis therapy. ACS Nano, 2022, 16(5), 8370-8387. doi:10.1021/acsnano.2c02634http://dx.doi.org/10.1021/acsnano.2c02634
Ebrahimi S. B.; Samanta D.Engineering protein-based therapeutics through structural and chemical design. Nat. Commun., 2023, 14(1), 2411. doi:10.1038/s41467-023-38039-xhttp://dx.doi.org/10.1038/s41467-023-38039-x
Xu H. Y.; Mao B. X.; Ni S. L.; Xie X. L.; Tang S. C.; Wang Y.; Zan X. J.; Zheng Q. X.; Huang W. J.Engineering matrix-free drug protein nanoparticles with promising penetration through biobarriers for treating corneal neovascularization. ACS Nano, 2024, 18(11), 8209-8228. doi:10.1021/acsnano.3c12203http://dx.doi.org/10.1021/acsnano.3c12203
Iqbal H.; Yang T.; Li T.; Zhang M. Y.; Ke H. T.; Ding D. W.; Deng Y. B.; Chen H. B.Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release, 2021, 329, 997-1022. doi:10.1016/j.jconrel.2020.10.030http://dx.doi.org/10.1016/j.jconrel.2020.10.030
Kwon K. C.; Jo E.; Kwon Y. W.; Lee B.; Ryu J. H.; Lee E. J.; Kim K.; Lee J.Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mater., 2017, 29(38), 1701146. doi:10.1002/adma.201701146http://dx.doi.org/10.1002/adma.201701146
Qiu Q. S.; Wen Y.; Dong H. Q.; Shen A. J.; Zheng X. X.; Li Y. Y.; Feng F.A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosis. Biomater. Sci., 2019, 7(12), 5211-5220. doi:10.1039/c9bm01083ahttp://dx.doi.org/10.1039/c9bm01083a
Han D.; Ren X. H.; Liao X. R.; He X. Y.; Guo T.; Chen X. S.; Pang X.; Cheng S. X.A multiple targeting nanoprobe for identifying cancer metastatic sites based on detection of various mRNAs in circulating tumor cells. Nano Lett., 2023, 23(9), 3678-3686. doi:10.1021/acs.nanolett.2c04643http://dx.doi.org/10.1021/acs.nanolett.2c04643
Xu C.; He X. Y.; Ren X. H.; Cheng S. X.Direct detection of intracellular miRNA in living circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosens. Bioelectron., 2021, 190, 113401. doi:10.1016/j.bios.2021.113401http://dx.doi.org/10.1016/j.bios.2021.113401
0
浏览量
115
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构