浏览全部资源
扫码关注微信
华南理工大学前沿软物质学院 广东省功能与智能杂化材料与器件重点实验室 广州 510640
[ "文韬,男,1985年生. 华南理工大学前沿软物质学院教授、博士生导师、院长助理. 2008年于兰州大学获学士学位,2013年于中国科学院化学研究所获博士学位(导师:王佛松先生、王笃金研究员). 2013~2014年,在德国弗莱堡大学物理系从事博士后研究工作(合作导师:Günter Reiter教授),2014~2017年在台湾清华大学化工系从事博士后研究工作(合作导师:何荣铭教授). 2018年入职华南华南理工大学前沿软物质学院,主要从事功能性软物质材料的研究." ]
纸质出版日期:2025-01-20,
网络出版日期:2024-12-13,
收稿日期:2024-08-27,
录用日期:2024-10-08
移动端阅览
文韬. 嵌段共聚物的本体手性自组装. 高分子学报, 2025, 56(1), 91-103
Wen, T. Chiral self-assemblies of block copolymers in bulk. Acta Polymerica Sinica, 2025, 56(1), 91-103
文韬. 嵌段共聚物的本体手性自组装. 高分子学报, 2025, 56(1), 91-103 DOI: 10.11777/j.issn1000-3304.2024.24227. CSTR: 32057.14.GFZXB.2024.7311.
Wen, T. Chiral self-assemblies of block copolymers in bulk. Acta Polymerica Sinica, 2025, 56(1), 91-103 DOI: 10.11777/j.issn1000-3304.2024.24227. CSTR: 32057.14.GFZXB.2024.7311.
手性不仅广泛存在于各类天然物质和生物体系中,同时也是人工合成高分子的重要结构特征之一. 高分子中的手性结构包括分子、分子链、聚集态等多个层级,而嵌段共聚物的微相分离为手性信息的跨层级传递和表达提供了一条途径. 在本文中,我们综述了有关嵌段共聚物本体手性自组装的研究报道. 首先简要介绍了高分子中不同层级手性结构的表征方法,之后对嵌段共聚物中2种手性相(螺旋相、手性螺旋二十四面体)的形成规律、结构特征及潜在应用进行了总结,最后提出了嵌段共聚物本体手性自组装研究中存在的问题和挑战.
Chirality plays a significant role not only in various natural substances and biological systems but also as a critical structural feature in synthetic polymers. In polymers
hierarchical chirality encompasses molecular chirality
conformational chirality
and object chirality. The microphase separation of block copolymers offers a pathway for the cross-level transfer and expression of chiral bias. This review provides an overview of recent studies on the chiral self-assembly of block copolymers in bulk. It begins with a brief introduction to the methods used for characterizing chiral structures across different levels. The review then discusses the fo
rmation mechanisms
structural characteristics
and potential applications of two types of chiral self-assemblies in block copolymers
i.e.
helical phase and chiral double gyroid. Finally
the challenges and open questions in the study of chirality transfer in block copolymers are addressed.
手性嵌段共聚物自组装微相分离螺旋相
ChiralityBlock copolymerSelf-assemblyMicrophase separationHelical phase
Yashima E.; Ousaka N.; Taura D.; Shimomura K.; Ikai T.; Maeda K.Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev., 2016, 116(22), 13752-13990. doi:10.1021/acs.chemrev.6b00354http://dx.doi.org/10.1021/acs.chemrev.6b00354
Liu M. H.; Zhang L.; Wang T. Y.Supramolecular chirality in self-assembled systems. Chem. Rev., 2015, 115(15), 7304-7397. doi:10.1021/cr500671phttp://dx.doi.org/10.1021/cr500671p
Zou H.; Wu Q. L.; Zhou L.; Hou X. H.; Liu N.; Wu Z. Q.Chiral recognition and resolution based on helical polymers. Chin. J. Polym. Sci., 2021, 39(12), 1521-1527. doi:10.1007/s10118-021-2615-yhttp://dx.doi.org/10.1007/s10118-021-2615-y
Zhao B. W.; Zhou Z. X.; Shen Y. Q.Effects of chirality on gene delivery efficiency of polylysine. Chinese J. Polym. Sci., 2016, 34(1), 94-103. doi:10.1007/s10118-016-1735-2http://dx.doi.org/10.1007/s10118-016-1735-2
Wen T.; Wang H. F.; Li M. C.; Ho R. M.Homochiral evolution in self-assembled chiral polymers and block copolymers. Acc. Chem. Res., 2017, 50(4), 1011-1021. doi:10.1021/acs.accounts.7b00025http://dx.doi.org/10.1021/acs.accounts.7b00025
Li C. Y.; Ge J. J.; Bai F.; Calhoun B. H.; Harris F. W.; Cheng S. Z. D.; Chien L. C.; Lotz B.; Keith H. D.Early-stage formation of helical single crystals and their confined growth in thin film. Macromolecules, 2001, 34(11), 3634-3641. doi:10.1021/ma0021996http://dx.doi.org/10.1021/ma0021996
Lotz B.; Cheng S. Z. D.A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer, 2005, 46(3), 577-610. doi:10.1016/j.polymer.2004.07.042http://dx.doi.org/10.1016/j.polymer.2004.07.042
Li C. Y.; Cheng S. Z. D.; Ge J. J.; Bai F.; Zhang J. Z.; Mann I. K.; Harris F. W.; Chien L. C.; Yan D. H.; He T. B.; Lotz B.Double twist in helical polymer "soft" crystals. Phys. Rev. Lett., 1999, 83(22), 4558-4561. doi:10.1103/physrevlett.83.4558http://dx.doi.org/10.1103/physrevlett.83.4558
Li C. Y.; Cheng S. Z. D.; Weng X.; Ge J. J.; Bai F.; Zhang J. Z.; Calhoun B. H.; Harris F. W.; Chien L. C.; Lotz B.Left or right, it is a matter of one methylene unit. J. Am. Chem. Soc., 2001, 123(10), 2462-2463. doi:10.1021/ja005805lhttp://dx.doi.org/10.1021/ja005805l
Crist B.; Schultz J. M.Polymer spherulites: a critical review. Prog. Polym. Sci., 2016, 56, 1-63. doi:10.1016/j.progpolymsci.2015.11.006http://dx.doi.org/10.1016/j.progpolymsci.2015.11.006
Xu J.; Ye H. M.; Zhang S. J.; Guo B. H.Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals, 2017, 7(8), 241. doi:10.3390/cryst7080241http://dx.doi.org/10.3390/cryst7080241
Ye H. M.; Freudenthal J. H.; Tan M.; Yang J. X.; Kahr B.Chiroptical differentiation of twisted chiral and achiral polymer crystals. Macromolecules, 2019, 52(21), 8514-8520. doi:10.1021/acs.macromol.9b01526http://dx.doi.org/10.1021/acs.macromol.9b01526
Lovinger A. J.Twisted crystals and the origin of banding in spherulites of semicrystalline polymers. Macromolecules, 2020, 53(3), 741-745. doi:10.1021/acs.macromol.9b01567http://dx.doi.org/10.1021/acs.macromol.9b01567
Bates F. S.; Fredrickson G. H.Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem., 1990, 41, 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Hamley I.W.The Physics of Block Copolymers. Oxford: Oxford University Press, 1998. 24-70. doi:10.1093/oso/9780198502180.003.0002http://dx.doi.org/10.1093/oso/9780198502180.003.0002
He W. N.; Xu J. T.Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci., 2012, 37(10), 1350-1400. doi:10.1016/j.progpolymsci.2012.05.002http://dx.doi.org/10.1016/j.progpolymsci.2012.05.002
Zhang L.; Wang H. X.; Li S.; Liu M. H.Supramolecular chiroptical switches. Chem. Soc. Rev., 2020, 49(24), 9095-9120. doi:10.1039/d0cs00191khttp://dx.doi.org/10.1039/d0cs00191k
Geng Z.; Xiong B. J.; Wang L. Q.; Wang K.; Ren M.; Zhang L. B.; Zhu J. T.; Yang Z. Z.Moebius strips of chiral block copolymers. Nat. Commun., 2019, 10(1), 4090. doi:10.1038/s41467-019-11991-3http://dx.doi.org/10.1038/s41467-019-11991-3
Cai C. H.; Lin J. P.; Lu Y. Q.; Zhang Q.; Wang L. Q.Polypeptide self-assemblies: nanostructures and bioapplications. Chem. Soc. Rev., 2016, 45(21), 5985-6012. doi:10.1039/c6cs00013dhttp://dx.doi.org/10.1039/c6cs00013d
Zhang J.; Chen X. F.; Wei H. B.; Wan X. H.Tunable assembly of amphiphilic rod-coil block copolymers in solution. Chem. Soc. Rev., 2013, 42(23), 9127-9154. doi:10.1039/c3cs60192ghttp://dx.doi.org/10.1039/c3cs60192g
Berova N.; Nakanishi K.; Woody R. W.Circular Dichroism: Principles and Applications. John Wiley & Sons, 2000.
Schwartz E.; Domingos S. R.; Vdovin A.; Koepf M.; Buma W. J.; Cornelissen J. J. L. M.; Rowan A. E.; Nolte R. J. M.; Woutersen S.Direct access to polyisocyanide screw sense using vibrational circular dichroism. Macromolecules, 2010, 43(19), 7931-7935. doi:10.1021/ma101601ehttp://dx.doi.org/10.1021/ma101601e
章慧, 齐爱华, 李丹, 李荣兴. 光学活性和手性光谱的溯源和发展. 大学化学, 2022, 37(1), 220-235. doi:10.3866/PKU.DXHX202105009http://dx.doi.org/10.3866/PKU.DXHX202105009
Holzwarth G.; Chabay I.Optical activity of vibrational transitions: a coupled oscillator model. J. Chem. Phys., 1972, 57(4), 1632-1635. doi:10.1063/1.1678447http://dx.doi.org/10.1063/1.1678447
Ho R. M.; Li M. C.; Lin S. C.; Wang H. F.; Lee Y. D.; Hasegawa H.; Thomas E. L.Transfer of chirality from molecule to phase in self-assembled chiral block copolymers. J. Am. Chem. Soc., 2012, 134(26), 10974-10986. doi:10.1021/ja303513fhttp://dx.doi.org/10.1021/ja303513f
Cymerman Craig J.; Roy S. K.Optical rotatory dispersion and absolute configuration—I α-amino acids. Tetrahedron, 1965, 21(3), 391-394. doi:10.1016/s0040-4020(01)98278-xhttp://dx.doi.org/10.1016/s0040-4020(01)98278-x
Cymerman Craig J.; Roy S. K.Optical rotatory dispersion and absolute configuration—IV α-substituted alcohols and their derivatives. Tetrahedron, 1965, 21(7), 1847-1853. doi:10.1016/s0040-4020(01)98655-7http://dx.doi.org/10.1016/s0040-4020(01)98655-7
Williams D. B.; Carter C. B.The Transmission Electron Microscope. Boston, MA: Springer, 1996. 24-44. doi:10.1007/978-1-4757-2519-3_1http://dx.doi.org/10.1007/978-1-4757-2519-3_1
Vinothkumar K. R.; Henderson R.Single particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys., 2016, 49, e13. doi:10.1017/s0033583516000068http://dx.doi.org/10.1017/s0033583516000068
Glaeser R. M.Electron crystallography: Present excitement, a nod to the past, anticipating the future. J. Struct. Biol., 1999, 128(1), 3-14. doi:10.1006/jsbi.1999.4172http://dx.doi.org/10.1006/jsbi.1999.4172
Ercius P.; Alaidi O.; Rames M. J.; Ren G.Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv. Mater., 2015, 27(38), 5638-5663. doi:10.1002/adma.201501015http://dx.doi.org/10.1002/adma.201501015
Jinnai H.; Nishikawa Y.; Koga T.; Hashimoto T.Direct observation of three-dimensional bicontinuous structure developed via spinodal decomposition. Macromolecules, 1995, 28(13), 4782-4784. doi:10.1021/ma00117a071http://dx.doi.org/10.1021/ma00117a071
Feng X. Y.; Burke C. J.; Zhuo M. J.; Guo H.; Yang K. Q.; Reddy A.; Prasad I.; Ho R. M.; Avgeropoulos A.; Grason G. M.; Thomas E. L.Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer. Nature, 2019, 575(7781), 175-179. doi:10.1038/s41586-019-1706-1http://dx.doi.org/10.1038/s41586-019-1706-1
Li M. C.; Wang H. F.; Chiang C. H.; Lee Y. D.; Ho R. M.Lamellar-twisting-induced circular dichroism of chromophore moieties in banded spherulites with evolution of homochirality. Angew. Chem. Int. Ed., 2014, 53(17), 4450-4455. doi:10.1002/anie.201310078http://dx.doi.org/10.1002/anie.201310078
Mai Y. Y.; Eisenberg A.Self-assembly of block copolymers. Chem. Soc. Rev., 2012, 41(18), 5969-5985. doi:10.1039/c2cs35115chttp://dx.doi.org/10.1039/c2cs35115c
Noshay A.; McGrath J. E.Block Copolymers: Overview and Critical Survey. New York: Academic Press, 2013. 30-79.
Krappe U.; Stadler R.; Voigt-Martin I.Chiral assembly in amorphous ABC triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules, 1995, 28(13), 4558-4561. doi:10.1021/ma00117a027http://dx.doi.org/10.1021/ma00117a027
Elbs H.; Abetz V.; Hadziioannou G.; Drummer C.; Krausch G.Antiferromagnetic ordering in a helical triblock copolymer mesostructure. Macromolecules, 2001, 34(23), 7917-7919. doi:10.1021/ma011123mhttp://dx.doi.org/10.1021/ma011123m
Elbs H.; Drummer C.; Abetz V.; Krausch G.Thin film morphologies of ABC triblock copolymers prepared from solution. Macromolecules, 2002, 35(14), 5570-5577. doi:10.1021/ma011734ehttp://dx.doi.org/10.1021/ma011734e
Schacher F.; Yuan J. Y.; Schoberth H. G.; Müller A. H. E.Synthesis, characterization, and bulk crosslinking of polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) block terpolymers. Polymer, 2010, 51(9), 2021-2032. doi:10.1016/j.polymer.2010.02.046http://dx.doi.org/10.1016/j.polymer.2010.02.046
Schacher F. H.; Rudolph T.; Drechsler M.; Müller A. H. E.Core-crosslinked compartmentalized cylinders. Nanoscale, 2011, 3(1), 288-297. doi:10.1039/c0nr00649ahttp://dx.doi.org/10.1039/c0nr00649a
Jinnai H.; Kaneko T.; Matsunaga K.; Abetz C.; Abetz V.A double helical structure formed from an amorphous, achiral ABC triblock terpolymer. Soft Matter, 2009, 5(10), 2042-2046. doi:10.1039/b901008dhttp://dx.doi.org/10.1039/b901008d
Jinnai H.; Spontak R. J.; Nishi T.Transmission electron microtomography and polymer nanostructures. Macromolecules, 2010, 43(4), 1675-1688. doi:10.1021/ma902035phttp://dx.doi.org/10.1021/ma902035p
Ho R. M.; Chiang Y. W.; Tsai C. C.; Lin C. C.; Ko B. T.; Huang B. H.Three-dimensionally packed nanohelical phase in chiral block copolymers. J. Am. Chem. Soc., 2004, 126(9), 2704-2705. doi:10.1021/ja039627ihttp://dx.doi.org/10.1021/ja039627i
Chiang Y. W.; Ho R. M.; Ko B. T.; Lin C. C.Springlike nanohelical structures in chiral block copolymers. Angew. Chem. Int. Ed., 2005, 44(48), 7969-7972. doi:10.1002/anie.200502236http://dx.doi.org/10.1002/anie.200502236
Ho R. M.; Chiang Y. W.; Chen C. K.; Wang H. W.; Hasegawa H.; Akasaka S.; Thomas E. L.; Burger C.; Hsiao B. S., Block copolymers with a twist. J. Am. Chem. Soc., 2009, 131 (51), 18533-18542. doi:10.1021/ja9083804http://dx.doi.org/10.1021/ja9083804
Ho R. M.; Wang H. F., Li, M. C. Chirality transfer in chiral polymers and block copolymers. In: Encyclopedia of Polymer Science and Technology. John Wiley & Sons Inc., 2014. doi:110.1002/0471440264.pst625http://dx.doi.org/110.1002/0471440264.pst625
Ho R. M.; Chiang Y. W.; Lin S. C.; Chen C. K.Helical architectures from self-assembly of chiral polymers and block copolymers. Prog. Polym. Sci., 2011, 36(3), 376-453. doi:10.1016/j.progpolymsci.2010.09.001http://dx.doi.org/10.1016/j.progpolymsci.2010.09.001
Yang K. C.; Chiu P. T.; Ho R. M.Mesochiral phases from the self-assembly of chiral block copolymers. Polym. Chem., 2020, 11(9), 1542-1554. doi:10.1039/c9py01797fhttp://dx.doi.org/10.1039/c9py01797f
Chung T. M.; Wang H. F.; Lin T.; Chiang Y. W.; Chen Y. C.; Ko B. T.; Ho R. M.Helical phase driven by solvent evaporation in self-assembly of poly(4-vinylpyridine)-block-poly(l-lactide) chiral block copolymers. Macromolecules, 2012, 45(24), 9727-9733. doi:10.1021/ma302159phttp://dx.doi.org/10.1021/ma302159p
Zhao W.; Liu F.; Wei X. Y.; Chen D.; Grason G. M.; Russell T. P.Formation of H* phase in chiral block copolymers: morphology evolution As revealed by time-resolved X-ray scattering. Macromolecules, 2013, 46(2), 474-483. doi:10.1021/ma302139mhttp://dx.doi.org/10.1021/ma302139m
Zhao W.; Chen D.; Grason G. M.; Russell T. P.Formation of H* phase in chiral block copolymers: effects of solvents and solution-cast conditions. Macromolecules, 2013, 46(2), 455-462. doi:10.1021/ma301928xhttp://dx.doi.org/10.1021/ma301928x
Yang K. C.; Chiu P. T.; Tsai H. W.; Ho R. M.Self-assembly of semiflexible-coil chiral block copolymers under various segregation strengths with multiple secondary interactions. Macromolecules, 2021, 54(21), 9850-9859. doi:10.1021/acs.macromol.1c01447http://dx.doi.org/10.1021/acs.macromol.1c01447
Chen C. K.; Hsueh H. Y.; Chiang Y. W.; Ho R. M.; Akasaka S.; Hasegawa H.Single helix to double gyroid in chiral block copolymers. Macromolecules, 2010, 43(20), 8637-8644. doi:10.1021/ma1009885http://dx.doi.org/10.1021/ma1009885
Wang H. F.; Yang K. C.; Hsu W. C.; Lee J. Y.; Hsu J. T.; Grason G. M.; Thomas E. L.; Tsai J. C.; Ho R. M.Generalizing the effects of chirality on block copolymer assembly. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4080-4089. doi:10.1073/pnas.1812356116http://dx.doi.org/10.1073/pnas.1812356116
Bates F. S.; Hillmyer M. A.; Lodge T. P.; Bates C. M.; Delaney K. T.; Fredrickson G. H.Multiblock polymers: panacea or pandora's box?Science, 2012, 336(6080), 434-440. doi:10.1126/science.1215368http://dx.doi.org/10.1126/science.1215368
Xu Z. W.; Dong Q. S.; Li W. H.Architectural design of block copolymers. Macromolecules, 2024, 57(5), 1869-1884. doi:10.1021/acs.macromol.3c01730http://dx.doi.org/10.1021/acs.macromol.3c01730
Wen T.; Ho R. M.Effects of the chiral interface and orientation-dependent segmental interactions on twisting of self-assembled block copolymers. ACS Macro Lett., 2017, 6(4), 370-374. doi:10.1021/acsmacrolett.7b00138http://dx.doi.org/10.1021/acsmacrolett.7b00138
Yuan J.; Chiu P. T.; Liu X.; Zhou J. J.; Wang Y. Y.; Ho R. M.; Wen T.Cross-domain chirality transfer in self-assembly of chiral block copolymers. Angew. Chem. Int. Ed., 2024, 63(7), e202317102. doi:10.1002/anie.202317102http://dx.doi.org/10.1002/anie.202317102
Fredrickson G.The Equilibrium Theory of Inhomogeneous Polymers. Oxford: Oxford University Press, 2005. doi:10.1093/acprof:oso/9780198567295.001.0001http://dx.doi.org/10.1093/acprof:oso/9780198567295.001.0001
Shi, A. C. Self-consistent field theory of block copolymers. In: Hamley, I. W., ed. Developments in Block Copolymer Science Technology. New York: John Wiley & Sons, 2004. 265-293. doi:10.1002/0470093943.ch8http://dx.doi.org/10.1002/0470093943.ch8
Zhao W.; Russell T. P.; Grason G. M.Orientational interactions in block copolymer melts: self-consistent field theory. J. Chem. Phys., 2012, 137(10), 104911. doi:10.1063/1.4752198http://dx.doi.org/10.1063/1.4752198
Zhao W.; Russell T. P.; Grason G. M.Chirality in block copolymer melts: mesoscopic helicity from intersegment twist. Phys. Rev. Lett., 2013, 110(5), 058301. doi:10.1103/physrevlett.110.058301http://dx.doi.org/10.1103/physrevlett.110.058301
Grason G. M.Chirality transfer in block copolymer melts: emerging concepts. ACS Macro Lett., 2015, 4(5), 526-532. doi:10.1021/acsmacrolett.5b00131http://dx.doi.org/10.1021/acsmacrolett.5b00131
Li M. C.; Ousaka N.; Wang H. F.; Yashima E.; Ho R. M.Chirality control and its memory at microphase-separated interface of self-assembled chiral block copolymers for nanostructured chiral materials. ACS Macro Lett., 2017, 6(9), 980-986. doi:10.1021/acsmacrolett.7b00493http://dx.doi.org/10.1021/acsmacrolett.7b00493
Wen T.; Lee J. Y.; Li M. C.; Tsai J. C.; Ho R. M.Competitive interactions of π-π junctions and their role on microphase separation of chiral block copolymers. Chem. Mater., 2017, 29(10), 4493-4501. doi:10.1021/acs.chemmater.7b01151http://dx.doi.org/10.1021/acs.chemmater.7b01151
Li M. Q.; Ober C. K.Block copolymer patterns and templates. Mater. Today, 2006, 9(9), 30-39. doi:10.1016/s1369-7021(06)71620-0http://dx.doi.org/10.1016/s1369-7021(06)71620-0
Tseng W. H.; Chen C. K.; Chiang Y. W.; Ho R. M.; Akasaka S.; Hasegawa H.Helical nanocomposites from chiral block copolymer templates. J. Am. Chem. Soc., 2009, 131(4), 1356-1357. doi:10.1021/ja808092vhttp://dx.doi.org/10.1021/ja808092v
Chiu P. T.; Yang C. Y.; Xie Z. H.; Chang M. Y.; Hung Y. C.; Ho R. M.Gold nanohelices for chiral plasmonic films by templated electroless plating. Adv. Optical Mater., 2021, 9(10), 2002133. doi:10.1002/adom.202002133http://dx.doi.org/10.1002/adom.202002133
Allenmark S.Induced circular dichroism by chiral molecular interaction. Chirality, 2003, 15, 409-422. doi:10.1002/chir.10220http://dx.doi.org/10.1002/chir.10220
Wen T.; Shen H. Y.; Wang H. F.; Mao Y. C.; Chuang W. T.; Tsai J. C.; Ho R. M.Controlled handedness of twisted lamellae in banded spherulites of isotactic poly(2-vinylpyridine) as induced by chiral dopants. Angew. Chem. Int. Ed., 2015, 54(48), 14313-14316. doi:10.1002/anie.201506186http://dx.doi.org/10.1002/anie.201506186
Yao L.; Lu X. M.; Chen S. S.; Watkins J. J.Formation of helical phases in achiral block copolymers by simple addition of small chiral additives. Macromolecules, 2014, 47(19), 6547-6553. doi:10.1021/ma501714ghttp://dx.doi.org/10.1021/ma501714g
Lu X. M.; Li J. M.; Zhu D. D.; Xu M.; Li W. H.; Lu Q. H.Double-helical nanostructures with controllable handedness in bulk diblock copolymers. Angew. Chem. Int. Ed., 2018, 57(46), 15148-15152. doi:10.1002/anie.201809676http://dx.doi.org/10.1002/anie.201809676
Lu X. M.; Song D. P.; Ribbe A.; Watkins J. J.Chiral arrangements of Au nanoparticles with prescribed handedness templated by helical pores in block copolymer films. Macromolecules, 2017, 50(14), 5293-5300. doi:10.1021/acs.macromol.7b01364http://dx.doi.org/10.1021/acs.macromol.7b01364
Shao S. W.; Puneet P.; Li M. C.; Ikai T.; Yashima E.; Ho R. M.Chiral luminophore guided self-assembly of achiral block copolymers for the amplification of circularly polarized luminescence. ACS Macro Lett., 2024, 13(6), 734-740. doi:10.1021/acsmacrolett.4c00188http://dx.doi.org/10.1021/acsmacrolett.4c00188
Schoen A. H.Infinite periodic minimal surfaces without self-intersections. National Aeronautics and Space Administration, 1970.
Scherer M. R. J.Double-Gyroid-Structured Functional Materials: Synthesis and Applications. Heidelberg: Springer International Publishing, 2013. 7-18. doi:10.1007/978-3-319-00354-2_2http://dx.doi.org/10.1007/978-3-319-00354-2_2
Thomas E. L.; Alward D. B.; Kinning D. J.; Martin D. C.; Handlin D. L.Jr, Fetters, L. J. Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules, 1986, 19(8), 2197-2202. doi:10.1021/ma00162a016http://dx.doi.org/10.1021/ma00162a016
Hajduk D. A.; Harper P. E.; Gruner S. M.; Honeker C. C.; Kim G.; Thomas E. L.; Fetters L. J.The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules, 1994, 27(15), 4063-4075. doi:10.1021/ma00093a006http://dx.doi.org/10.1021/ma00093a006
Schulz M. F.; Bates F. S.; Almdal K.; Mortensen K.Epitaxial relationship for hexagonal-to-cubic phase transition in a book copolymer mixture. Phys. Rev. Lett., 1994, 73(1), 86-89. doi:10.1103/physrevlett.73.86http://dx.doi.org/10.1103/physrevlett.73.86
Hajduk D. A.; Harper P. E.; Gruner S. M.; Honeker C. C.; Thomas E. L.; Fetters L. J.A reevaluation of bicontinuous cubic phases in starblock copolymers. Macromolecules, 1995, 28(7), 2570-2573. doi:10.1021/ma00111a061http://dx.doi.org/10.1021/ma00111a061
Prasad I.; Jinnai H.; Ho R. M.; Thomas E. L.; Grason G. M.Anatomy of triply-periodic network assemblies: characterizing skeletal and inter-domain surface geometry of block copolymer gyroids. Soft Matter, 2018, 14(18), 3612-3623. doi:10.1039/c8sm00078fhttp://dx.doi.org/10.1039/c8sm00078f
Wang H. F.; Chiu P. T.; Yang C. Y.; Xie Z. H.; Hung Y. C.; Lee J. Y.; Tsai J. C.; Prasad I.; Jinnai H.; Thomas E. L.; Ho R. M.Networks with controlled chirality via self-assembly of chiral triblock terpolymers. Sci. Adv., 2020, 6(42), eabc3644. doi:10.1126/sciadv.abc3644http://dx.doi.org/10.1126/sciadv.abc3644
Lien S. H.; Lin P. H.; Shao S. W.; Chiu P. T.; Chang C. Y.; Sung Y. C.; Tsai J. C.; Ho R. M.Peculiar transition between chiral and achiral networks in self-assembly of chiral block copolymers. Macromolecules, 2024, 57, 8734-8747. doi:10.1021/acs.macromol.4c00361http://dx.doi.org/10.1021/acs.macromol.4c00361
Yang K. C.; Reddy A.; Tsai H. W.; Zhao W.; Grason G. M.; Ho R. M.Breaking mirror symmetry of double gyroids via self-assembly of chiral block copolymers. ACS Macro Lett., 2022, 11(7), 930-934. doi:10.1021/acsmacrolett.2c00148http://dx.doi.org/10.1021/acsmacrolett.2c00148
0
浏览量
158
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构