浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
E-mail: haibaojin@ecust.edu.cn
xlyang@ecust.edu.cn
slin@ecust.edu.cn
收稿日期:2024-10-09,
录用日期:2024-12-11,
网络出版日期:2025-02-18,
纸质出版日期:2025-05-20
移动端阅览
丁明宇, 蒋钱宇, 武鹏超, 靳海宝, 杨晓玲, 林绍梁. 二氧化碳刺激响应型聚合物的研究进展. 高分子学报, 2025, 56(5), 690-704
Ding, M. Y.; Jiang, Q. Y.; Wu, P. C.; Jin, H. B.; Yang, X. L.; Lin, S. L. Advances in CO2 stimuli-responsive polymers. Acta Polymerica Sinica, 2025, 56(5), 690-704
丁明宇, 蒋钱宇, 武鹏超, 靳海宝, 杨晓玲, 林绍梁. 二氧化碳刺激响应型聚合物的研究进展. 高分子学报, 2025, 56(5), 690-704 DOI: 10.11777/j.issn1000-3304.2024.24250. CSTR: 32057.14.GFZXB.2024.7330.
Ding, M. Y.; Jiang, Q. Y.; Wu, P. C.; Jin, H. B.; Yang, X. L.; Lin, S. L. Advances in CO2 stimuli-responsive polymers. Acta Polymerica Sinica, 2025, 56(5), 690-704 DOI: 10.11777/j.issn1000-3304.2024.24250. CSTR: 32057.14.GFZXB.2024.7330.
二氧化碳(CO
2
)刺激响应型聚合物是指在向聚合物体系中引入或排除CO
2
后,聚合物物理结构与化学性质等发生可逆变化的“智能”大分子,在各科学领域具有广阔的应用前景. 本文从CO
2
响应基团出发,分类介绍不同种类CO
2
响应基团的作用机理,随后依次综述了CO
2
响应型聚合物的合成、表征、智能体系及其应用领域. 最后讨论与总结该类聚合物材料现存的挑战,并对其未来应用前景与发展方向进行了展望.
CO
2
is a benign
inexpensive
abundant
and non-toxic trigger for stimuli-responsive materials
and has received increasing attention in recent years. CO
2
stimuli-responsive polymers
as an attractive type of "smart" macromolecules
undergo a reversible transition in the physical and chemical properties of polymers when CO
2
is introduced or excluded from the polymer system
exhibiting broad application prospects in various scientific fields. Herein
this review summarizes the recent development of CO
2
-responsive polymers and introduces the working mechanisms of different types of CO
2
-responsive groups from chemical structures
including amidines
tertiary amines
guanidines
imidazoles
and frustrated Lewis pair (FLP). Methods for the synthesis of CO
2
-responsive polymers are introduced
including free radical polymerization (FRP)
reversible addition-fragmentation chain-transfer (RAFT)
atom transfer radical polymerization (ATRP)
nitroxide-mediated polymerization (NMP)
and postpolymerization modification. Subsequently
the techniques for the characterization of CO
2
-responsive polymers are summarized
including structural characterization using
1
H-NMR and FTIR
and property characterization using measurements of pH
conductivity
Zeta potential
and transmittance. Assemblies
latexes
gels
composites
and membranes with CO
2
responsiveness are introduced separately from the perspective of smart response systems
and the current status of these developments is summarized. Among these
research on the second generation of CO
2
-responsive systems is highlighted
which are based on the "dynamic gas bridge" formed between boron/phosphorus frustrated Lewis acid-base pairs and carbon dioxide gas molecules. Meanwhile
a stepwise summary of CO
2
-responsive polymers for CO
2
capture
smart catalysts
protein adsorption
controllable separation
fluorescence sensing
and drug delivery is presented. Eventually
the current challenges toward the development of CO
2
-responsive polymers are discussed and summarized
accompanied by an outlook of the future application prospects and development directions. Large-scale production of CO
2
-responsive polymers remains a significant challenge
while further investigation of the response mechanism to improve the sensitivity and cyclic stability of the response process will provide the basis for the development of CO
2
-responsive materials that have a broader range of applications.
Stuart M. A. C. ; Huck W. T. S. ; Genzer J. ; Müller M. ; Ober C. ; Stamm M. ; Sukhorukov G. B. ; Szleifer I. ; Tsukruk V. V. ; Urban M. ; Winnik F. ; Zauscher S. ; Luzinov I. ; Minko S. Emerging applications of stimuli-responsive polymer materials . Nat. Mater. , 2010 , 9 , 101 - 113 . doi: 10.1038/nmat2614 http://dx.doi.org/10.1038/nmat2614
Sato O. Dynamic molecular crystals with switchable physical properties . Nat. Chem. , 2016 , 8 ( 7 ), 644 - 656 . doi: 10.1038/nchem.2547 http://dx.doi.org/10.1038/nchem.2547
Raje V. P. ; Morgado P. I. ; Ribeiro M. P. ; Correia I. J. ; Bonifácio V. D. B. ; Branco P. S. ; Aguiar-Ricardo A. Dual on-off and off-on switchable oligoaziridine biosensor . Biosens. Bioelectron. , 2013 , 39 ( 1 ), 64 - 69 . doi: 10.1016/j.bios.2012.06.047 http://dx.doi.org/10.1016/j.bios.2012.06.047
Huo M. ; Yuan J. Y. ; Tao L. ; Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications . Polym. Chem. , 2014 , 5 ( 5 ), 1519 - 1528 . doi: 10.1039/c3py01192e http://dx.doi.org/10.1039/c3py01192e
Gil E. S. ; Hudson S. M. Stimuli-reponsive polymers and their bioconjugates . Prog. Polym. Sci. , 2004 , 29 ( 12 ), 1173 - 1222 . doi: 10.1016/j.progpolymsci.2004.08.003 http://dx.doi.org/10.1016/j.progpolymsci.2004.08.003
Hu X. L. ; Zhang Y. Q. ; Xie Z. G. ; Jing X. B. ; Bellotti A. ; Gu Z. Stimuli-responsive polymersomes for biomedical applications . Biomacromolecules , 2017 , 18 ( 3 ), 649 - 673 . doi: 10.1021/acs.biomac.6b01704 http://dx.doi.org/10.1021/acs.biomac.6b01704
Cunningham, M. F.; Jessop, P. G. CO 2 -switchable colloids . Chem. Commun. , 2023 , 59 ( 89 ), 13272 - 13288 . doi: 10.1039/d3cc03929c http://dx.doi.org/10.1039/d3cc03929c
Du N. Y. ; Park H. B. ; Robertson G. P. ; Dal-Cin M. M. ; Visser T. ; Scoles L. ; Guiver M. D. Polymer nanosieve membranes for CO 2 -capture applications . Nat. Mater. , 2011 , 10 ( 5 ), 372 - 375 . doi: 10.1038/nmat2989 http://dx.doi.org/10.1038/nmat2989
Lin, S. J.; Theato, P. CO 2 -responsive polymers . Macromol. Rapid Commun. , 2013 , 34 ( 14 ), 1118 - 1133 . doi: 10.1002/marc.201300288 http://dx.doi.org/10.1002/marc.201300288
Cunningham M. F. ; Jessop P. G. Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules , 2019 , 52 ( 18 ), 6801 - 6816 . doi: 10.1021/acs.macromol.9b00914 http://dx.doi.org/10.1021/acs.macromol.9b00914
Zeng R. J. ; Chen L. ; Yan Q. CO 2-folded single-chain nanoparticles as recyclable, improved carboxylase mimics. Angew. Chem. Int. Ed. , 2020 , 59 ( 42 ), 18418 - 18422 . doi: 10.1002/anie.202006842 http://dx.doi.org/10.1002/anie.202006842
Darabi A. ; Jessop P. G. ; Cunningham M. F. CO 2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev. , 2016 , 45 ( 15 ), 4391 - 4436 . doi: 10.1039/c5cs00873e http://dx.doi.org/10.1039/c5cs00873e
Png Z. M. ; Wang C. G. ; Yeo J. C. C. ; Lee J. J. C. ; Surat'man N. E. ; Tan Y. L. ; Liu H. F. ; Wang P. ; Tan B. H. ; Xu J. W. ; Loh X. J. ; Zhu Q. Stimuli-responsive structure-property switchable polymer materials . Mol. Syst. Des. Eng. , 2023 , 8 ( 9 ), 1097 - 1129 . doi: 10.1039/d3me00002h http://dx.doi.org/10.1039/d3me00002h
Jiang B. X. ; Zhang Y. C. ; Huang X. D. ; Kang T. ; Severtson S. J. ; Wang W. J. ; Liu P. W. Tailoring CO 2 -responsive polymers and nanohybrids for green chemistry and processes . Ind. Eng. Chem. Res. , 2019 , 58 ( 33 ), 15088 - 15108 . doi: 10.1021/acs.iecr.9b02433 http://dx.doi.org/10.1021/acs.iecr.9b02433
Lin S. J. ; Shang J. J. ; Zhang X. X. ; Theato P. " Breathing" CO 2 -, O 2 -, and light-responsive vesicles from a triblock copolymer for rate-tunable controlled release. Macromol. Rapid Commun. , 2018 , 39 ( 1 ), 1700313 . doi: 10.1002/marc.201700313 http://dx.doi.org/10.1002/marc.201700313
Sundberg R. J. ; Martin R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems . Chem. Rev. , 1974 , 74 ( 4 ), 471 - 517 . doi: 10.1021/cr60290a003 http://dx.doi.org/10.1021/cr60290a003
Yan Q. ; Wang J. B. ; Yin Y. W. ; Yuan J. Y. Breathing polymersomes: CO 2-tuning membrane permeability for size-selective release, separation, and reaction. Angew. Chem. Int. Ed. , 2013 , 52 ( 19 ), 5070 - 5073 . doi: 10.1002/anie.201300397 http://dx.doi.org/10.1002/anie.201300397
Guo Z. R. ; Feng Y. J. ; Wang Y. ; Wang J. Y. ; Wu Y. F. ; Zhang Y. M. A novel smart polymer responsive to CO 2 . Chem. Commun. , 2011 , 47 ( 33 ), 9348 - 9350 . doi: 10.1039/c1cc12388b http://dx.doi.org/10.1039/c1cc12388b
闫强 , 赵越 . 二氧化碳响应性聚合物及其应用进展 . 高分子材料科学与工程 , 2014 , 30 ( 2 ), 170 - 178 .
Dai Y. ; Ruan X. H. ; Yan Z. J. ; Yang K. ; Yu M. ; Li H. ; Zhao W. ; He G. H. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO 2 capture . Sep. Purif. Technol. , 2016 , 166 , 171 - 180 . doi: 10.1016/j.seppur.2016.04.038 http://dx.doi.org/10.1016/j.seppur.2016.04.038
Pinaud J. ; Vignolle J. ; Gnanou Y. ; Taton D. Poly( N -heterocyclic-carbene)s and their CO 2 adducts as recyclable polymer-supported organocatal ysts for benzoin condensation and transesterification reactions . Macromolecules , 2011 , 44 ( 7 ), 1900 - 1908 . doi: 10.1021/ma1024285 http://dx.doi.org/10.1021/ma1024285
Lin S. J. ; Shang J. J. ; Theato P. Facile fabrication of CO 2 -responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers . ACS Macro Lett. , 2018 , 7 ( 4 ), 431 - 436 . doi: 10.1021/acsmacrolett.8b00115 http://dx.doi.org/10.1021/acsmacrolett.8b00115
Song Z. F. ; Wang K. ; Gao C. Q. ; Wang S. ; Zhang W. Q. A new thermo-, pH-, and CO 2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl ] acrylamide ] : is the diethylamino group underestimated? Macromolecules , 2016 , 49 ( 1 ), 162 - 171 . doi: 10.1021/acs.macromol.5b02458 http://dx.doi.org/10.1021/acs.macromol.5b02458
Zeng M. ; Huo M. ; Feng Y. J. ; Yuan J. Y. CO 2 -breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization . Macromol. Rapid Commun. , 2018 , 39 ( 15 ), e 1800291 . doi: 10.1002/marc.201800291 http://dx.doi.org/10.1002/marc.201800291
Wang K. ; Zhang J. L. ; Si M. Y. ; Wang Z. L. ; An L. R. ; Liu G. Y. ; Zeng Y. F. Novel temperature/pH/CO 2 /redox-quadruple-respon sive ferrocene-containing homopolymers and their self-assembly behavior . Macromolecules , 2023 , 56 ( 22 ), 9127 - 9137 . doi: 10.1021/acs.macromol.3c02068 http://dx.doi.org/10.1021/acs.macromol.3c02068
van de Wetering P. ; Moret E. E. ; Schuurmans-Nieuwenbroek N. M. E. ; van Steenbergen M. J. ; Hennink W. E. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery . Bioconjugate Chem. , 1999 , 10 ( 4 ), 589 - 597 . doi: 10.1021/bc980148w http://dx.doi.org/10.1021/bc980148w
Zhang D. Y. ; Boopathi S. K. ; Hadjichristidis N. ; Gnanou Y. ; Feng X. S. Metal-free alternating copolymerization of CO 2 epoxideswith: fulfilling "green" synthesis and activity. J. Am. Chem. Soc. , 2016 , 138 ( 35 ), 11117 - 11120 . doi: 10.1021/jacs.6b06679 http://dx.doi.org/10.1021/jacs.6b06679
Kubas, G. J. Breaking the H 2 marriage and reuniting the couple . Science , 2006 , 314 ( 5802 ), 1096 - 1097 . doi: 10.1126/science.1135430 http://dx.doi.org/10.1126/science.1135430
牟桂芳 , 杨翠琴 , 闫强 . 气体调控的高分子自组装 . 高分子学报 , 2024 , 55 ( 7 ), 781 - 801 .
McCahill J. S. J. ; Welch G. C. ; Stephan D. W. Reactivity of "frustrated Lewis pairs": three-component reactions of phosphines, a borane, and olefins . Angew. Chem. Int. Ed. , 2007 , 46 ( 26 ), 4968 - 4971 . doi: 10.1002/anie.200701215 http://dx.doi.org/10.1002/anie.200701215
Chase P. A. ; Stephan D. W. Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C 6 F 5 ) 3 . Angew. Chem. Int. Ed., 2008, 47 ( 39 ), 7433 - 7437 .
Moebs-Sanchez S. ; Bouhadir G. ; Saffon N. ; Maron L. ; Bourissou D. Tracking reactive intermediates in phosphine-promoted reactions with ambiphilic phosphino-boranes . Chem. Commun. , 2008 ( 29 ), 3435 - 3437 . doi: 10.1039/b805161e http://dx.doi.org/10.1039/b805161e
Su X. ; Jessop P. G. ; Cunningham M. F. Switchable surfactants at the polystyrene-water interface: effect of molecular structure . Green Mater. , 2014 , 2 ( 2 ), 69 - 81 . doi: 10.1680/gmat.13.00015 http://dx.doi.org/10.1680/gmat.13.00015
Liu H. B. ; Zhao Y. ; Dreiss C. A. ; Feng Y. J. CO 2 -switchable multi-compartment micelles with segregated corona . Soft Matter , 2014 , 10 ( 34 ), 6387 - 6391 . doi: 10.1039/c4sm01207k http://dx.doi.org/10.1039/c4sm01207k
Zhang Q. ; Wang W. J. ; Lu Y. Y. ; Li B. G. ; Zhu S. P. Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine . Macromolecules , 2011 , 44 ( 16 ), 6539 - 6545 . doi: 10.1021/ma201056g http://dx.doi.org/10.1021/ma201056g
Huo M. ; Du H. T. ; Zeng M. ; Pan L. ; Fang T. ; Xie X. M. ; Wei Y. ; Yuan J. Y. CO 2 -stimulated morphology transition of ABC miktoarm star terpolymer assemblies . Polym. Chem. , 2017 , 8 ( 18 ), 2833 - 2840 . doi: 10.1039/c7py00214a http://dx.doi.org/10.1039/c7py00214a
Darabi A. ; Shirin-Abadi A. R. ; Jessop P. G. ; Cunningham M. F. Nitroxide-mediated polymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA) in water . Macromolecules , 2015 , 48 ( 1 ), 72 - 80 . doi: 10.1021/ma502175c http://dx.doi.org/10.1021/ma502175c
Yuan W. Z. ; Huang W. W. ; Zou H. Synthesis and properties of CO 2 -responsive copolymer by the combination of reversible addition-fragmentation chain transfer polymerization and click chemistry . Polym. Bull. , 2016 , 73 ( 8 ), 2199 - 2210 . doi: 10.1007/s00289-016-1603-9 http://dx.doi.org/10.1007/s00289-016-1603-9
Zhang D. P. ; Fan Y. J. ; Chen H. ; Trépout S. ; Li M. H. CO 2 -activated reversible transition between polymersomes and micelles with AIE fluorescence . Angew. Chem. Int. Ed. , 2019 , 58 ( 30 ), 10260 - 10265 . doi: 10.1002/anie.201905089 http://dx.doi.org/10.1002/anie.201905089
Chen L. ; Liu R. J. ; Yan Q. Polymer meets frustrated Lewis pair: second-generation CO 2-responsive nanosystem for sustainable CO2 conversion. Angew. Chem. Int. Ed. , 2018 , 57 ( 30 ), 9336 - 9340 . doi: 10.1002/anie.201804034 http://dx.doi.org/10.1002/anie.201804034
Yan Q. ; Zhou R. ; Fu C. K. ; Zhang H. J. ; Yin Y. W. ; Yuan J. Y. CO 2 -responsive polymeric vesicles that breathe . Angew. Chem. Int. Ed. , 2011 , 50 ( 21 ), 4923 - 4927 . doi: 10.1002/anie.201100708 http://dx.doi.org/10.1002/anie.201100708
周硕 , 杨松铭 , 袁金颖 . 基于二氧化碳响应的聚合物及复合材料的构建与功能 . 高分子学报 , 2023 , 54 ( 10 ), 1409 - 1425 .
Yan, Q.; Zhao, Y. CO 2 -stimulated diversiform deformations of polymer assemblies . J. Am. Chem. Soc. , 2013 , 135 ( 44 ), 16300 - 16303 . doi: 10.1021/ja408655n http://dx.doi.org/10.1021/ja408655n
Zhu J. N. ; Gong Z. H. ; Yang C. Q. ; Yan Q. Reshaping membrane polymorphism of polymer vesicles through dynamic gas exchange . J. Am. Chem. Soc. , 2021 , 143 ( 48 ), 20183 - 20191 . doi: 10.1021/jacs.1c07838 http://dx.doi.org/10.1021/jacs.1c07838
Gong Z. H. ; Wang Y. X. ; Yan Q. Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry . Sci. China Chem. , 2022 , 65 ( 7 ), 1401 - 1410 . doi: 10.1007/s11426-022-1266-8 http://dx.doi.org/10.1007/s11426-022-1266-8
Zhang Y. M. ; Guo S. ; Ren X. F. ; Liu X. F. ; Fang Y. CO 2 and redox dual responsive Pickering emulsion . Langmuir , 2017 , 33 ( 45 ), 12973 - 12981 . doi: 10.1021/acs.langmuir.7b02976 http://dx.doi.org/10.1021/acs.langmuir.7b02976
Liu Y. X. ; Jessop P. G. ; Cunningham M. ; Eckert C. A. ; Liotta C. L. Switchable surfactants . Science , 2006 , 313 ( 5789 ), 958 - 960 . doi: 10.1126/science.1128142 http://dx.doi.org/10.1126/science.1128142
Mu M. ; Yuan R. ; Zhang G. H. ; Wu D. G. ; Quan H. P. ; Han P. H. ; Feng Y. J. Tuning CO 2 -induced reversible redispersion or irreversible destabilisation for latex separation . J. Colloid Interface Sci. , 2020 , 573 , 250 - 262 . doi: 10.1016/j.jcis.2020.03.121 http://dx.doi.org/10.1016/j.jcis.2020.03.121
Wang, Y. X.; Yan, Q. CO 2 -fueled transient breathing nanogels that couple nonequilibrium catalytic polymerization . Angew. Chem. Int. Ed. , 2023 , 62 ( 14 ), e202217001 . doi: 10.1002/anie.202217001 http://dx.doi.org/10.1002/anie.202217001
Nagai D. ; Suzuki A. ; Kuribayashi T. Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible CO 2 absorbent . Macromol. Rapid Commun. , 2011 , 32 ( 4 ), 404 - 410 . doi: 10.1002/marc.201000601 http://dx.doi.org/10.1002/marc.201000601
Jansen-van Vuuren R. D. ; Naficy S. ; Ramezani M. ; Cunningham M. ; Jessop P. CO 2 -responsive gels . Chem. Soc. Rev. , 2023 , 52 ( 10 ), 3470 - 3542 . doi: 10.1039/d2cs00053a http://dx.doi.org/10.1039/d2cs00053a
Jia Y. G. ; Zhang M. ; Zhu X. X. CO 2 -switchable self-healing host—guest hydrogels . Macromolecules , 2017 , 50 ( 24 ), 9696 - 9701 . doi: 10.1021/acs.macromol.7b02163 http://dx.doi.org/10.1021/acs.macromol.7b02163
Chen L. ; Liu R. J. ; Hao X. ; Yan Q. CO 2 -cross-linked frustrated Lewis networks as gas-regulated dynamic covalent materials . Angew. Chem. , 2019 , 131 ( 1 ), 270 - 274 . doi: 10.1002/ange.201812365 http://dx.doi.org/10.1002/ange.201812365
Liu R. J. ; Wang Y. X. ; Yan Q. CO 2 -strengthened double-cross-linked polymer gels from frustrated Lewis pair networks . Macromol. Rapid Commun. , 2021 , 42 ( 6 ), 2000699 . doi: 10.1002/marc.202170016 http://dx.doi.org/10.1002/marc.202170016
Guo Z. R. ; Feng Y. J. ; He S. ; Qu M. Z. ; Chen H. L. ; Liu H. B. ; Wu Y. F. ; Wang Y. CO 2 -responsive "smart" single-walled carbon nanotubes . Adv. Mater. , 2013 , 25 ( 4 ), 584 - 590 . doi: 10.1002/adma.201202991 http://dx.doi.org/10.1002/adma.201202991
Yoon B. ; Choi S. J. ; Swager T. M. ; Walsh G. F. Switchable single-walled carbon nanotube—polymer composites for CO 2 sensing . ACS Appl. Mater. Interfaces , 2018 , 10 ( 39 ), 33373 - 33379 . doi: 10.1021/acsami.8b11689 http://dx.doi.org/10.1021/acsami.8b11689
Kota A. K. ; Kwon G. ; Choi W. ; Mabry J. M. ; Tuteja A. Hygro-responsive membranes for effective oil-water separation . Nat. Commun. , 2012 , 3 , 1025 . doi: 10.1038/ncomms2027 http://dx.doi.org/10.1038/ncomms2027
Che H. L. ; Huo M. ; Peng L. ; Fang T. ; Liu N. ; Feng L. ; Wei Y. ; Yuan J. Y. CO 2 -responsive nanofibrous membranes with switchable oil/water wettability . Angew. Chem. Int. Ed. , 2015 , 54 ( 31 ), 8934 - 8938 . doi: 10.1002/anie.201501034 http://dx.doi.org/10.1002/anie.201501034
Wang Y. Y. ; Yang S. K. ; Zhang J. W. ; Chen Z. ; Zhu B. ; Li J. ; Liang S. J. ; Bai Y. X. ; Xu J. H. ; Rao D. W. ; Dong L. L. ; Zhang C. F. ; Yang X. W. Scalable and switchable CO 2 -responsive membranes with high wettability for separation of various oil/water systems . Nat. Commun. , 2023 , 14 ( 1 ), 1108 . doi: 10.1038/s41467-023-36685-9 http://dx.doi.org/10.1038/s41467-023-36685-9
Zhang S. ; He L. N. Capture and fixation of CO 2 promoted by guanidine derivatives . Aust. J. Chem. , 2014 , 67 ( 7 ), 980 . doi: 10.1071/ch14125 http://dx.doi.org/10.1071/ch14125
Gabriele B. ; Della Ca N. ; Mancuso R. ; Veltri L. ; Ziccarelli I. Amidine- and guanidine-based synthetic methods for CO 2 capture and utilization . Curr. Opin. Green Sustain. Chem. , 2023 , 41 , 100793 . doi: 10.1016/j.cogsc.2023.100793 http://dx.doi.org/10.1016/j.cogsc.2023.100793
Qu Q. H. ; Cheng L. Y. ; Wang P. R. ; Fang C. ; Li H. P. ; Ding J. ; Wan H. ; Guan G. F. Guanidine-functionalized basic binuclear poly(ionic liquid)s for low partial pressure CO 2 fixation into cyclic carbonate . Sep. Purif. Technol. , 2024 , 339 , 126682 . doi: 10.1016/j.seppur.2024.126682 http://dx.doi.org/10.1016/j.seppur.2024.126682
Feng A. C. ; Wang Y. ; Peng L. ; Wang X. S. ; Yuan J. Y. Breathing catalyst-supports: CO 2 adjustable and magnetic recyclable "smart" hybrid nanoparticles . RSC Adv. , 2016 , 6 ( 99 ), 97030 - 97035 . doi: 10.1039/c6ra22762g http://dx.doi.org/10.1039/c6ra22762g
Liu H. B. ; Yang X. H. ; Wang J. X. ; Meng Q. J. ; Qian L. W. ; Wu H. W. ; Duan C. ; Li Z. J. ; Zhou H. W. Gas responsive cellulose fibers for capturing and releasing of dyes and proteins from water by packing a smart separation column . Cellulose , 2020 , 27 ( 12 ), 7127 - 7138 . doi: 10.1007/s10570-020-03277-5 http://dx.doi.org/10.1007/s10570-020-03277-5
Glasing J. ; Jessop P. G. ; Champagne P. ; Cunningham M. F. Graft-modified cellulose nanocrystals as CO 2 -switchable Pickering emulsifiers . Polym. Chem. , 2018 , 9 ( 28 ), 3864 - 3872 . doi: 10.1039/c8py00417j http://dx.doi.org/10.1039/c8py00417j
Wei H. B. ; Zhang J. L. ; Shi N. ; Liu Y. ; Zhang B. ; Zhang J. ; Wan X. H. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide . Chem. Sci. , 2015 , 6 ( 12 ), 7201 - 7205 . doi: 10.1039/c5sc02020d http://dx.doi.org/10.1039/c5sc02020d
Hsiao Y. N. ; Ilhami F. B. ; Cheng C. C. CO 2 -responsive water-soluble conjugated polymers as a multifunctional fluorescent probe for bioimaging applications . Biomacromolecules , 2024 , 25 ( 2 ), 997 - 1008 . doi: 10.1021/acs.biomac.3c01078 http://dx.doi.org/10.1021/acs.biomac.3c01078
Bayle E. A. ; Ilhami F. B. ; Huang S. Y. ; Su T. H. ; Shieh Y. T. ; Chen J. K. ; Cheng C. C. Development of CO 2 -responsive supramolecular drug carrier system for potential application in anticancer treatment . Appl. Mater. Today , 2023 , 33 , 101865 . doi: 10.1016/j.apmt.2023.101865 http://dx.doi.org/10.1016/j.apmt.2023.101865
0
浏览量
609
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构