浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
E-mail: haibaojin@ecust.edu.cn
xlyang@ecust.edu.cn
slin@ecust.edu.cn
网络出版日期:2025-01-13,
收稿日期:2024-10-09,
录用日期:2024-12-11
移动端阅览
丁明宇, 蒋钱宇, 武鹏超, 靳海宝, 杨晓玲, 林绍梁. 二氧化碳刺激响应型聚合物的研究进展[J/OL]. 高分子学报, 2025,1-15.
MING-YU DING, QIAN-YU JIANG, PENG-CHAO WU, HAI-BAO JIN, XIAO-LING YANG, SHAO-LIANG LIN. Advances in CO2 Stimuli-responsive Polymers. [J/OL]. Acta polymerica sinica, 2025, 1-15.
丁明宇, 蒋钱宇, 武鹏超, 靳海宝, 杨晓玲, 林绍梁. 二氧化碳刺激响应型聚合物的研究进展[J/OL]. 高分子学报, 2025,1-15. DOI: 10.11777/j.issn1000-3304.2024.24250;. CSTR: 32057.14.GFZXB.2024.7330.
MING-YU DING, QIAN-YU JIANG, PENG-CHAO WU, HAI-BAO JIN, XIAO-LING YANG, SHAO-LIANG LIN. Advances in CO2 Stimuli-responsive Polymers. [J/OL]. Acta polymerica sinica, 2025, 1-15. DOI: 10.11777/j.issn1000-3304.2024.24250;. CSTR: 32057.14.GFZXB.2024.7330.
二氧化碳(CO
2
)刺激响应型聚合物是指在向聚合物体系中引入或排除CO
2
后,聚合物物理结构与化学性质等发生可逆变化的“智能”大分子,在各科学领域具有广阔的应用前景. 本文从CO
2
响应基团出发,分类介绍不同种类CO
2
响应基团的作用机理,随后依次综述了CO
2
响应型聚合物的合成、表征、智能体系及其应用领域. 最后讨论与总结该类聚合物材料现存的挑战,并对其未来应用前景与发展方向进行了展望.
CO
2
is a benign
inexpensive
abundant
and non-toxic trigger for stimuli-responsive materials
and has received increasing attention in recent years. CO
2
stimuli-responsive polymers
as an attractive type of "smart" macromolecules
undergo a reversible transition in the physical and chemical properties of polymers when CO
2
is introduced or excluded from the polymer system
exhibiting broad application prospects in various scientific fields. Herein
this review paper summarizes the recent development of CO
2
-responsive polymers and introduces the working mechanisms of different types of CO
2
-responsive groups from chemical structures
including amidines
tertiary amines
guanidines
imidazoles
and frustrated Lewis pair (FLP). Methods for the synthesis of CO
2
-responsive polymers are introduced
including free radical polymerization (FRP)
reversible addition-fragmentation chain-transfer (RAFT)
atom transfer radical polymerization (ATRP)
nitroxide-mediated polymerization (NMP)
and postpolymerization modification. Subsequently
the techniques for the characterization of CO
2
-responsive polymers are summarized
including structural characterization using
1
H-NMR and FTIR
and property characterization using measurements of pH
conductivity
Zeta potential
and transmittance. Assemblies
latexes
gels
composites
and membranes with CO
2
responsiveness are introduced separately from the perspective of smart response systems
and the current status of these developments is summarized. Among these
research on the second generation of CO
2
-responsive systems is h
ighlighted
which are based on the "dynamic gas bridge" formed between boron/phosphorus frustrated Lewis acid-base pairs and carbon dioxide gas molecules. Meanwhile
a stepwise summary of CO
2
-responsive polymers for CO
2
capture
smart catalysts
protein adsorption
controllable separation
fluorescence sensing
and drug delivery is presented. Eventually
the current challenges toward the development of CO
2
-responsive polymers are discussed and summarized
accompanied by an outlook of the future application prospects and development directions. Large-scale production of CO
2
-responsive polymers remains a significant challenge
while further investigation of the response mechanism to improve the sensitivity and cyclic stability of the response process will provide the basis for the development of CO
2
-responsive materials that have a broader range of applications.
CO2刺激响应型聚合物可逆调控聚合物自组装功能应用
CO2-responsive polymersReversible transitionPolymer self-assemblyFunctional application
Stuart M. A. C.; Huck W. T. S.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S.Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9, 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Sato O.Dynamic molecular crystals with switchable physical properties. Nat. Chem., 2016, 8(7), 644-656. doi:10.1038/nchem.2547http://dx.doi.org/10.1038/nchem.2547
Raje V. P.; Morgado P. I.; Ribeiro M. P.; Correia I. J.; Bonifácio V. D. B.; Branco P. S.; Aguiar-Ricardo A.Dual on-off and off-on switchable oligoaziridine biosensor. Biosens. Bioelectron., 2013, 39(1), 64-69. doi:10.1016/j.bios.2012.06.047http://dx.doi.org/10.1016/j.bios.2012.06.047
Huo M.; Yuan J. Y.; Tao L.; Wei Y.Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528. doi:10.1039/c3py01192ehttp://dx.doi.org/10.1039/c3py01192e
Gil E. S.; Hudson S. M.Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci., 2004, 29(12), 1173-1222. doi:10.1016/j.progpolymsci.2004.08.003http://dx.doi.org/10.1016/j.progpolymsci.2004.08.003
Hu X. L.; Zhang Y. Q.; Xie Z. G.; Jing X. B.; Bellotti A.; Gu Z.Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules, 2017, 18(3), 649-673. doi:10.1021/acs.biomac.6b01704http://dx.doi.org/10.1021/acs.biomac.6b01704
Cunningham, M. F.; Jessop, P. G. CO2-switchable colloids. Chem. Commun., 2023, 59(89), 13272-13288. doi:10.1039/d3cc03929chttp://dx.doi.org/10.1039/d3cc03929c
Du N. Y.; Park H. B.; Robertson G. P.; Dal-Cin M. M.; Visser T.; Scoles L.; Guiver M. D.Polymer nanosieve membranes for CO2-capture applications. Nat. Mater., 2011, 10(5), 372-375. doi:10.1038/nmat2989http://dx.doi.org/10.1038/nmat2989
Lin, S. J.; Theato, P. CO2-responsive polymers. Macromol. Rapid Commun., 2013, 34(14), 1118-1133. doi:10.1002/marc.201300288http://dx.doi.org/10.1002/marc.201300288
Cunningham M. F.; Jessop P. G.Carbon dioxide-switchable polymers: where are the future opportunities?Macromolecules, 2019, 52(18), 6801-6816. doi:10.1021/acs.macromol.9b00914http://dx.doi.org/10.1021/acs.macromol.9b00914
Zeng R. J.; Chen L.; Yan Q.CO2-folded single-chain nanoparticles as recyclable, improved carboxylase mimics. Angew. Chem. Int. Ed., 2020, 59(42), 18418-18422. doi:10.1002/anie.202006842http://dx.doi.org/10.1002/anie.202006842
Darabi A.; Jessop P. G.; Cunningham M. F.CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev., 2016, 45(15), 4391-4436. doi:10.1039/c5cs00873ehttp://dx.doi.org/10.1039/c5cs00873e
Png Z. M.; Wang C. G.; Yeo J. C. C.; Lee J. J. C.; Surat'man N. E.; Tan Y. L.; Liu H. F.; Wang P.; Tan B. H.; Xu J. W.; Loh X. J.; Zhu Q.Stimuli-responsive structure-property switchable polymer materials. Mol. Syst. Des. Eng., 2023, 8(9), 1097-1129. doi:10.1039/d3me00002hhttp://dx.doi.org/10.1039/d3me00002h
Jiang B. X.; Zhang Y. C.; Huang X. D.; Kang T.; Severtson S. J.; Wang W. J.; Liu P. W.Tailoring CO2-responsive polymers and nanohybrids for green chemistry and processes. Ind. Eng. Chem. Res., 2019, 58(33), 15088-15108. doi:10.1021/acs.iecr.9b02433http://dx.doi.org/10.1021/acs.iecr.9b02433
Lin S. J.; Shang J. J.; Zhang X. X.; Theato P. "Breathing" CO2-, O2-, and light-responsive vesicles from a triblock copolymer for rate-tunable controlled release. Macromol. Rapid Commun., 2018, 39(1), 1700313. doi:10.1002/marc.201700313http://dx.doi.org/10.1002/marc.201700313
Sundberg R. J.; Martin R. B.Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev., 1974, 74(4), 471-517. doi:10.1021/cr60290a003http://dx.doi.org/10.1021/cr60290a003
Yan Q.; Wang J. B.; Yin Y. W.; Yuan J. Y.Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew. Chem. Int. Ed., 2013, 52(19), 5070-5073. doi:10.1002/anie.201300397http://dx.doi.org/10.1002/anie.201300397
Guo Z. R.; Feng Y. J.; Wang Y.; Wang J. Y.; Wu Y. F.; Zhang Y. M.A novel smart polymer responsive to CO2. Chem. Commun., 2011, 47(33), 9348-9350. doi:10.1039/c1cc12388bhttp://dx.doi.org/10.1039/c1cc12388b
闫强, 赵越. 二氧化碳响应性聚合物及其应用进展. 高分子材料科学与工程, 2014, 30(2), 170-178.
Dai Y.; Ruan X. H.; Yan Z. J.; Yang K.; Yu M.; Li H.; Zhao W.; He G. H.Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep. Purif. Technol., 2016, 166, 171-180. doi:10.1016/j.seppur.2016.04.038http://dx.doi.org/10.1016/j.seppur.2016.04.038
Pinaud J.; Vignolle J.; Gnanou Y.; Taton D.Poly(N-heterocyclic-carbene)s and their CO2 adducts as recyclable polymer-supported organocatalysts for benzoin condensation and transesterification reactions. Macromolecules, 2011, 44(7), 1900-1908. doi:10.1021/ma1024285http://dx.doi.org/10.1021/ma1024285
Lin S. J.; Shang J. J.; Theato P.Facile fabrication of CO2-responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers. ACS Macro Lett., 2018, 7(4), 431-436. doi:10.1021/acsmacrolett.8b00115http://dx.doi.org/10.1021/acsmacrolett.8b00115
Song Z. F.; Wang K.; Gao C. Q.; Wang S.; Zhang W. Q.A new thermo-, pH-, and CO2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: is the diethylamino group underestimated? Macromolecules, 2016, 49(1), 162-171. doi:10.1021/acs.macromol.5b02458http://dx.doi.org/10.1021/acs.macromol.5b02458
Zeng M.; Huo M.; Feng Y. J.; Yuan J. Y.CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun., 2018, 39(15), e1800291. doi:10.1002/marc.201800291http://dx.doi.org/10.1002/marc.201800291
Wang K.; Zhang J. L.; Si M. Y.; Wang Z. L.; An L. R.; Liu G. Y.; Zeng Y. F.Novel temperature/pH/CO2/redox-quadruple-responsive ferrocene-containing homopolymers and their self-assembly behavior. Macromolecules, 2023, 56(22), 9127-9137. doi:10.1021/acs.macromol.3c02068http://dx.doi.org/10.1021/acs.macromol.3c02068
van de Wetering P.; Moret E. E.; Schuurmans-Nieuwenbroek N. M. E.; van Steenbergen M. J.; Hennink W. E.Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem., 1999, 10(4), 589-597. doi:10.1021/bc980148whttp://dx.doi.org/10.1021/bc980148w
Zhang D. Y.; Boopathi S. K.; Hadjichristidis N.; Gnanou Y.; Feng X. S.Metal-free alternating copolymerization of CO2 epoxideswith: fulfilling "green" synthesis and activity. J. Am. Chem. Soc., 2016, 138(35), 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Kubas, G. J. Breaking the H2 marriage and reuniting the couple. Science, 2006, 314(5802), 1096-1097. doi:10.1126/science.1135430http://dx.doi.org/10.1126/science.1135430
牟桂芳, 杨翠琴, 闫强. 气体调控的高分子自组装. 高分子学报, 2024, 55(7), 781-801.
McCahill J. S. J.; Welch G. C.; Stephan D. W.Reactivity of "frustrated Lewis pairs": three-component reactions of phosphines, a borane, and olefins. Angew. Chem. Int. Ed., 2007, 46(26), 4968-4971. doi:10.1002/anie.200701215http://dx.doi.org/10.1002/anie.200701215
Chase P. A.; Stephan D. W.Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew. Chem. Int. Ed, 2008, 47(39), 7433-7437.
Moebs-Sanchez S.; Bouhadir G.; Saffon N.; Maron L.; Bourissou D.Tracking reactive intermediates in phosphine-promoted reactions with ambiphilic phosphino-boranes. Chem. Commun., 2008 (29), 3435-3437. doi:10.1039/b805161ehttp://dx.doi.org/10.1039/b805161e
Su X.; Jessop P. G.; Cunningham M. F.Switchable surfactants at the polystyrene-water interface: effect of molecular structure. Green Mater., 2014, 2(2), 69-81. doi:10.1680/gmat.13.00015http://dx.doi.org/10.1680/gmat.13.00015
Liu H. B.; Zhao Y.; Dreiss C. A.; Feng Y. J.CO2-switchable multi-compartment micelles with segregated corona. Soft Matter, 2014, 10(34), 6387-6391. doi:10.1039/c4sm01207khttp://dx.doi.org/10.1039/c4sm01207k
Zhang Q.; Wang W. J.; Lu Y. Y.; Li B. G.; Zhu S. P.Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules, 2011, 44(16), 6539-6545. doi:10.1021/ma201056ghttp://dx.doi.org/10.1021/ma201056g
Huo M.; Du H. T.; Zeng M.; Pan L.; Fang T.; Xie X. M.; Wei Y.; Yuan J. Y.CO2-stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym. Chem., 2017, 8(18), 2833-2840. doi:10.1039/c7py00214ahttp://dx.doi.org/10.1039/c7py00214a
Darabi A.; Shirin-Abadi A. R.; Jessop P. G.; Cunningham M. F.Nitroxide-mediated polymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA) in water. Macromolecules, 2015, 48(1), 72-80. doi:10.1021/ma502175chttp://dx.doi.org/10.1021/ma502175c
Yuan W. Z.; Huang W. W.; Zou H.Synthesis and properties of CO2-responsive copolymer by the combination of reversible addition-fragmentation chain transfer polymerization and click chemistry. Polym. Bull., 2016, 73(8), 2199-2210. doi:10.1007/s00289-016-1603-9http://dx.doi.org/10.1007/s00289-016-1603-9
Zhang D. P.; Fan Y. J.; Chen H.; Trépout S.; Li M. H.CO2-activated reversible transition between polymersomes and micelles with AIE fluorescence. Angew. Chem. Int. Ed, 2019, 58(30), 10260-10265. doi:10.1002/anie.201905089http://dx.doi.org/10.1002/anie.201905089
Chen L.; Liu R. J.; Yan Q.Polymer meets frustrated Lewis pair: second-generation CO2-responsive nanosystem for sustainable CO2 conversion. Angew. Chem. Int. Ed, 2018, 57(30), 9336-9340. doi:10.1002/anie.201804034http://dx.doi.org/10.1002/anie.201804034
Yan Q.; Zhou R.; Fu C. K.; Zhang H. J.; Yin Y. W.; Yuan J. Y.CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed, 2011, 50(21), 4923-4927. doi:10.1002/anie.201100708http://dx.doi.org/10.1002/anie.201100708
周硕, 杨松铭, 袁金颖. 基于二氧化碳响应的聚合物及复合材料的构建与功能. 高分子学报, 2023, 54(10), 1409-1425.
Yan, Q.; Zhao, Y. CO2-stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc., 2013, 135(44), 16300-16303. doi:10.1021/ja408655nhttp://dx.doi.org/10.1021/ja408655n
Zhu J. N.; Gong Z. H.; Yang C. Q.; Yan Q.Reshaping membrane polymorphism of polymer vesicles through dynamic gas exchange. J. Am. Chem. Soc., 2021, 143(48), 20183-20191. doi:10.1021/jacs.1c07838http://dx.doi.org/10.1021/jacs.1c07838
Gong Z. H.; Wang Y. X.; Yan Q.Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry. Sci. China Chem., 2022, 65(7), 1401-1410. doi:10.1007/s11426-022-1266-8http://dx.doi.org/10.1007/s11426-022-1266-8
Zhang Y. M.; Guo S.; Ren X. F.; Liu X. F.; Fang Y.CO2 and redox dual responsive Pickering emulsion. Langmuir, 2017, 33(45), 12973-12981. doi:10.1021/acs.langmuir.7b02976http://dx.doi.org/10.1021/acs.langmuir.7b02976
Liu Y. X.; Jessop P. G.; Cunningham M.; Eckert C. A.; Liotta C. L.Switchable surfactants. Science, 2006, 313(5789), 958-960. doi:10.1126/science.1128142http://dx.doi.org/10.1126/science.1128142
Mu M.; Yuan R.; Zhang G. H.; Wu D. G.; Quan H. P.; Han P. H.; Feng Y. J.Tuning CO2-induced reversible redispersion or irreversible destabilisation for latex separation. J. Colloid Interface Sci., 2020, 573, 250-262. doi:10.1016/j.jcis.2020.03.121http://dx.doi.org/10.1016/j.jcis.2020.03.121
Wang, Y. X.; Yan, Q. CO2-fueled transient breathing nanogels that couple nonequilibrium catalytic polymerization. Angew. Chem. Int. Ed, 2023, 62(14), e202217001. doi:10.1002/anie.202217001http://dx.doi.org/10.1002/anie.202217001
Nagai D.; Suzuki A.; Kuribayashi T.Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible CO2 absorbent. Macromol. Rapid Commun., 2011, 32(4), 404-410. doi:10.1002/marc.201000601http://dx.doi.org/10.1002/marc.201000601
Jansen-van Vuuren R. D.; Naficy S.; Ramezani M.; Cunningham M.; Jessop P.CO2-responsive gels. Chem. Soc. Rev., 2023, 52(10), 3470-3542. doi:10.1039/d2cs00053ahttp://dx.doi.org/10.1039/d2cs00053a
Jia Y. G.; Zhang M.; Zhu X. X.CO2-switchable self-healing host—guest hydrogels. Macromolecules, 2017, 50(24), 9696-9701. doi:10.1021/acs.macromol.7b02163http://dx.doi.org/10.1021/acs.macromol.7b02163
Chen L.; Liu R. J.; Hao X.; Yan Q.CO2-cross-linked frustrated Lewis networks as gas-regulated dynamic covalent materials. Angew. Chem., 2019, 131(1), 270-274. doi:10.1002/ange.201812365http://dx.doi.org/10.1002/ange.201812365
Liu R. J.; Wang Y. X.; Yan Q.CO2-strengthened double-cross-linked polymer gels from frustrated Lewis pair networks. Macromol. Rapid Commun., 2021, 42(6), 2000699. doi:10.1002/marc.202170016http://dx.doi.org/10.1002/marc.202170016
Guo Z. R.; Feng Y. J.; He S.; Qu M. Z.; Chen H. L.; Liu H. B.; Wu Y. F.; Wang Y.CO2-responsive "smart" single-walled carbon nanotubes. Adv. Mater., 2013, 25(4), 584-590. doi:10.1002/adma.201202991http://dx.doi.org/10.1002/adma.201202991
Yoon B.; Choi S. J.; Swager T. M.; Walsh G. F.Switchable single-walled carbon nanotube—polymer composites for CO2 sensing. ACS Appl. Mater. Interfaces, 2018, 10(39), 33373-33379. doi:10.1021/acsami.8b11689http://dx.doi.org/10.1021/acsami.8b11689
Kota A. K.; Kwon G.; Choi W.; Mabry J. M.; Tuteja A.Hygro-responsive membranes for effective oil-water separation. Nat. Commun., 2012, 3, 1025. doi:10.1038/ncomms2027http://dx.doi.org/10.1038/ncomms2027
Che H. L.; Huo M.; Peng L.; Fang T.; Liu N.; Feng L.; Wei Y.; Yuan J. Y.CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed., 2015, 54(31), 8934-8938. doi:10.1002/anie.201501034http://dx.doi.org/10.1002/anie.201501034
Wang Y. Y.; Yang S. K.; Zhang J. W.; Chen Z.; Zhu B.; Li J.; Liang S. J.; Bai Y. X.; Xu J. H.; Rao D. W.; Dong L. L.; Zhang C. F.; Yang X. W.Scalable and switchable CO2-responsive membranes with high wettability for separation of various oil/water systems. Nat. Commun., 2023, 14(1), 1108. doi:10.1038/s41467-023-36685-9http://dx.doi.org/10.1038/s41467-023-36685-9
Zhang S.; He L. N.Capture and fixation of CO2 promoted by guanidine derivatives. Aust. J. Chem., 2014, 67(7), 980. doi:10.1071/ch14125http://dx.doi.org/10.1071/ch14125
Gabriele B.; Della Ca N.; Mancuso R.; Veltri L.; Ziccarelli I.Amidine- and guanidine-based synthetic methods for CO2 capture and utilization. Curr. Opin. Green Sustain. Chem., 2023, 41, 100793. doi:10.1016/j.cogsc.2023.100793http://dx.doi.org/10.1016/j.cogsc.2023.100793
Qu Q. H.; Cheng L. Y.; Wang P. R.; Fang C.; Li H. P.; Ding J.; Wan H.; Guan G. F.Guanidine-functionalized basic binuclear poly(ionic liquid)s for low partial pressure CO2 fixation into cyclic carbonate. Sep. Purif. Technol., 2024, 339, 126682. doi:10.1016/j.seppur.2024.126682http://dx.doi.org/10.1016/j.seppur.2024.126682
Feng A. C.; Wang Y.; Peng L.; Wang X. S.; Yuan J. Y.Breathing catalyst-supports: CO2 adjustable and magnetic recyclable "smart" hybrid nanoparticles. RSC Adv., 2016, 6(99), 97030-97035. doi:10.1039/c6ra22762ghttp://dx.doi.org/10.1039/c6ra22762g
Liu H. B.; Yang X. H.; Wang J. X.; Meng Q. J.; Qian L. W.; Wu H. W.; Duan C.; Li Z. J.; Zhou H. W.Gas responsive cellulose fibers for capturing and releasing of dyes and proteins from water by packing a smart separation column. Cellulose, 2020, 27(12), 7127-7138. doi:10.1007/s10570-020-03277-5http://dx.doi.org/10.1007/s10570-020-03277-5
Glasing J.; Jessop P. G.; Champagne P.; Cunningham M. F.Graft-modified cellulose nanocrystals as CO2-switchable Pickering emulsifiers. Polym. Chem., 2018, 9(28), 3864-3872. doi:10.1039/c8py00417jhttp://dx.doi.org/10.1039/c8py00417j
Wei H. B.; Zhang J. L.; Shi N.; Liu Y.; Zhang B.; Zhang J.; Wan X. H.A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide. Chem. Sci., 2015, 6(12), 7201-7205. doi:10.1039/c5sc02020dhttp://dx.doi.org/10.1039/c5sc02020d
Hsiao Y. N.; Ilhami F. B.; Cheng C. C.CO2-responsive water-soluble conjugated polymers as a multifunctional fluorescent probe for bioimaging applications. Biomacromolecules, 2024, 25(2), 997-1008. doi:10.1021/acs.biomac.3c01078http://dx.doi.org/10.1021/acs.biomac.3c01078
Bayle E. A.; Ilhami F. B.; Huang S. Y.; Su T. H.; Shieh Y. T.; Chen J. K.; Cheng C. C.Development of CO2-responsive supramolecular drug carrier system for potential application in anticancer treatment. Appl Mater Today, 2023, 33, 101865. doi:10.1016/j.apmt.2023.101865http://dx.doi.org/10.1016/j.apmt.2023.101865
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构