浏览全部资源
扫码关注微信
1.浙江大学 硅及先进半导体材料全国重点实验室 高分子科学与工程学系 杭州 310058
2.浙江大学杭州国际科创中心 信息与功能材料研究院 杭州 311200
E-mail: lishuixing89@zju.edu.cn;
E-mail: hzchen@zju.edu.cn
收稿日期:2024-10-29,
录用日期:2024-12-06,
网络出版日期:2025-02-13,
纸质出版日期:2025-04-20
移动端阅览
丁学妍, 陈天一, 李水兴, 施敏敏, 陈红征. 基于3-氰基噻吩的不对称非稠环电子受体材料的设计合成及其光伏性能研究. 高分子学报, 2025, 56(4), 515-526
Ding, X. Y.; Chen, T. Y.; Li, S. X.; Shi, M. M.; Chen, H. Z. Design, synthesis, and photovoltaic performance of asymmetric non-fused ring electron acceptors based on 3-cyanothiophene. Acta Polymerica Sinica, 2025, 56(4), 515-526
丁学妍, 陈天一, 李水兴, 施敏敏, 陈红征. 基于3-氰基噻吩的不对称非稠环电子受体材料的设计合成及其光伏性能研究. 高分子学报, 2025, 56(4), 515-526 DOI: 10.11777/j.issn1000-3304.2024.24266. CSTR: 32057.14.GFZXB.2024.7328.
Ding, X. Y.; Chen, T. Y.; Li, S. X.; Shi, M. M.; Chen, H. Z. Design, synthesis, and photovoltaic performance of asymmetric non-fused ring electron acceptors based on 3-cyanothiophene. Acta Polymerica Sinica, 2025, 56(4), 515-526 DOI: 10.11777/j.issn1000-3304.2024.24266. CSTR: 32057.14.GFZXB.2024.7328.
建立晶体结构、分子堆积和光伏性能之间的内在联系,对于推动非稠环电子受体材料的发展具有重要意义,而偶极矩是调控分子堆积方式的手段之一. 为此,本研究基于强偶极的3-氰基噻吩构筑单元,开发了一系列不对称非稠环电子受体(X4、X5和X6),并深入研究了末端基团结构的差异对分子光电特性及有机太阳能电池性能的影响. 氰基的强吸电子性,有效削弱了噻吩的给电子效应,从而使受体保持较深的HOMO能级,与给体材料PM6实现了良好的能级匹配. 单晶结构解析显示,分子中心的强偶极驱使分子采取面对面的二聚体排布,而分子末端的差异化改变了二聚体之间的堆叠方式,其中氟代X4的二聚体之间以J聚集的形式排列,氯代X5的二聚体之间以H聚集和J聚集共存的形式排列. 最终,基于具有更大共轭末端基团的X6制备的器件实现了19.90 mA·cm
-2
的短路电流密度(sho
rt-circuit current density
J
SC
)、72.38%的填充因子(fill factor
FF)和12.05%的能量转化效率(power conversion efficiency
PCE),优于X4 (11.81%)和X5 (11.87%)的器件效率.
Establishing the intrinsic relationship among crystal structure
molecular packing
and photovoltaic performance is crucial for advancing non-fused ring electron acceptor (NFREA) materials
while dipole moment serves as one of the key factors in regulating molecular packing. In this work
based on the large dipole 3-cyanothiophene building block
a series of asymmetric NFREAs (X4
X5
and X6) were developed
for which the impacts of varied terminal groups on the molecular optoelectronic properties and photovoltaic performance were systematically investigated. The strong electron-withdrawing ability of the cyano-group significantly weakens the electron-donating effect of the thiophene unit
resulting in relatively deep HOMO levels for the acceptors
thus enabling favorable energy level alignment with the donor PM6. Single-crystal analysis revealed that the strong dipole moment at the molecular core drives the dimer formed in face-to-face arrang
ement
while variations in terminal groups alter the stacking arrangements between dimers. Specifically
the fluorinated X4 adopts J-aggregation packing between dimers
while the chlorinated X5 tends to the co-existence of H-aggregation and J-aggregation packing between dimers. Ultimately
organic solar cells based on X6
which bears larger conjugated terminal groups
achieved a short-circuit current density (
J
SC
) of 19.90 mA·cm
-2
a fill factor (FF) of 72.38%
and a power conversion efficiency (PCE) of 12.05%
outperforming those based on X4 (11.81%) and X5 (11.87%).
Wu X. L. ; Zheng X. J. ; Chen T. Y. ; Zhang S. ; Zhou Y. ; Wang M. T. ; Chen T. J. ; Wang Y. M. ; Bi Z. Z. ; Fu W. F. ; Du M. ; Ma W. ; Zuo L. J. ; Chen H. Z. High-performance intrinsically stretchable organic photovoltaics enabled by robust silver nanowires/S-PH1000 hybrid transparent electrodes . Adv. Mater. , 2024 , 36 ( 40 ), 2406879 . doi: 10.1002/adma.202406879 http://dx.doi.org/10.1002/adma.202406879
李耀凯 , 关诗陶 , 李水兴 , 左立见 , 陈红征 . 超96%近红外光隔热率的高性能半透明有机太阳能电池 . 高分子学报 , 2024 , 55 ( 9 ): 1134 - 1144 .
Zheng X. J. ; Wu X. L. ; Wu Q. ; Han Y. F. ; Ding G. Y. ; Wang Y. M. ; Kong Y. B. ; Chen T. Y. ; Wang M. T. ; Zhang Y. Q. ; Xue J. W. ; Fu W. F. ; Luo Q. ; Ma C. Q. ; Ma W. ; Zuo L. J. ; Shi M. M. ; Chen H. Z. Thorough optimization for intrinsically stretchable organic photovoltaics . Adv. Mater. , 2024 , 36 ( 11 ), 2307280 . doi: 10.1002/adma.202307280 http://dx.doi.org/10.1002/adma.202307280
Zheng X. J. ; Zuo L. J. ; Yan K. R. ; Shan S. Q. ; Chen T. Y. ; Ding G. Y. ; Xu B. W. ; Yang X. ; Hou J. H. ; Shi M. M. ; Chen H. Z. Versatile organic photovoltaics with a power density of nearly 40 W g -1 . Energy Environ. Sci. , 2023 , 16 ( 5 ), 2284 - 2294 . doi: 10.1039/d3ee00087g http://dx.doi.org/10.1039/d3ee00087g
Wang P. ; Zhu Y. H. ; Tao H. X. ; Ma Y. L. ; Cai D. D. ; Tu Q. S. ; Liao R. C. ; Zheng Q. D. Polymerizing ladder-type heteroheptacene-cored small-molecule acceptors for efficient all-polymer solar cells . Chinese J. Polym. Sci. , 2023 , 41 ( 7 ), 1018 - 1026 . doi: 10.1007/s10118-023-2909-3 http://dx.doi.org/10.1007/s10118-023-2909-3
Wang Z. Y. ; Bo Y. W. ; Bai P. J. ; Zhang S. C. ; Li G. H. ; Wan X. J. ; Liu Y. S. ; Ma R. J. ; Chen Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight . Science , 2023 , 382 ( 6676 ), 1291 - 1296 . doi: 10.1126/science.adj3654 http://dx.doi.org/10.1126/science.adj3654
Chen H. Y. ; Zhang R. ; Chen X. B. ; Zeng G. ; Kobera L. ; Abbrent S. ; Zhang B. ; Chen W. J. ; Xu G. Y. ; Oh J. ; Kang S. H. ; Chen S. S. ; Yang C. ; Brus J. ; Hou J. H. ; Gao F. ; Li Y. W. ; Li Y. F. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents . Nat. Energy , 2021 , 6 , 1045 - 1053 . doi: 10.1038/s41560-021-00923-5 http://dx.doi.org/10.1038/s41560-021-00923-5
Gao J. H. ; Zhang L. H. ; Shen H. ; Sun F. B. ; Gao X. ; Sun Y. J. ; Tong X. Z. ; Wen J. ; Li P. C. ; Wu D. ; Xia J. L. ; Liu Z. T. Chlorinated perylene monoimide monoanhydrate synthesized via hydrolysis and its application in organic solar cells . Chinese J. Polym. Sci. , 2023 , 41 ( 11 ), 1686 - 1694 . doi: 10.1007/s10118-023-2984-5 http://dx.doi.org/10.1007/s10118-023-2984-5
Chen X. Z. ; Luo Q. ; Ma C. Q. Inkjet-printed organic solar cells and perovskite solar cells: progress, challenges, and prospect . Chinese J. Polym. Sci. , 2023 , 41 ( 8 ), 1169 - 1197 . doi: 10.1007/s10118-023-2961-z http://dx.doi.org/10.1007/s10118-023-2961-z
Li S. X. ; He C. L. ; Chen T. Y. ; Zheng J. L. ; Sun R. ; Fang J. ; Chen Y. Y. ; Pan Y. W. ; Yan K. R. ; Li C. Z. ; Shi M. M. ; Zuo L. J. ; Ma C. Q. ; Min J. ; Liu Y. J. ; Chen H. Z. Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency . Energy Environ. Sci. , 2023 , 16 ( 5 ), 2262 - 2273 . doi: 10.1039/d3ee00630a http://dx.doi.org/10.1039/d3ee00630a
Guan S. T. ; Li Y. K. ; Xu C. ; Yin N. ; Xu C. R. ; Wang C. X. ; Wang M. T. ; Xu Y. X. ; Chen Q. ; Wang D. W. ; Zuo L. J. ; Chen H. Z. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20% . Adv. Mater. , 2024 , 36 ( 25 ), 2400342 . doi: 10.1002/adma.202400342 http://dx.doi.org/10.1002/adma.202400342
Sun Y. D. ; Wang L. ; Guo C. H. ; Xiao J. Y. ; Liu C. H. ; Chen C. ; Xia W. Y. ; Gan Z. R. ; Cheng J. C. ; Zhou J. P. ; Chen Z. H. ; Zhou J. ; Liu D. ; Wang T. ; Li W. π -extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency . J. Am. Chem. Soc. , 2024 , 146 ( 17 ), 12011 - 12019 . doi: 10.1021/jacs.4c01503 http://dx.doi.org/10.1021/jacs.4c01503
Chen Z. Y. ; Ge J. F. ; Song W. ; Tong X. Y. ; Liu H. ; Yu X. L. ; Li J. ; Shi J. Y. ; Xie L. ; Han C. C. ; Liu Q. ; Ge Z. Y. 20.2% efficiency organic photovoltaics employing a π -extension quinoxaline-based acceptor with ordered arrangement . Adv. Mater. , 2024 , 36 ( 33 ), 2406690 . doi: 10.1002/adma.202406690 http://dx.doi.org/10.1002/adma.202406690
Jiang Y. Y. ; Sun S. M. ; Xu R. J. ; Liu F. ; Miao X. D. ; Ran G. L. ; Liu K. R. ; Yi Y. P. ; Zhang W. K. ; Zhu X. Z. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells . Nat. Energy , 2024 , 9 , 975 - 986 . doi: 10.1038/s41560-024-01557-z http://dx.doi.org/10.1038/s41560-024-01557-z
Yu Y. ; Wang J. Q. ; Chen Z. H. ; Xiao Y. ; Fu Z. ; Zhang T. ; Yuan H. Y. ; Hao X. T. ; Ye L. ; Cui Y. ; Hou J. H. Naphthalene diimide-based cathode interlayer material enables 20.2% efficiency in organic photovoltaic cells . Sci. China Chem. , 2024 , 67 ( 12 ), 4194 - 4201 . doi: 10.1007/s11426-024-2244-8 http://dx.doi.org/10.1007/s11426-024-2244-8
Lin Y. Z. ; Wang J. Y. ; Zhang Z. G. ; Bai H. T. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 , 27 ( 7 ), 1170 - 1174 . doi: 10.1002/adma.201404317 http://dx.doi.org/10.1002/adma.201404317
Yuan J. ; Zhang Y. Q. ; Zhou L. Y. ; Zhang G. C. ; Yip H. L. ; Lau T. K. ; Lu X. H. ; Zhu C. ; Peng H. J. ; Johnson P. A. ; Leclerc M. ; Cao Y. ; Ulanski J. ; Li Y. F. ; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 , 3 ( 4 ), 1140 - 1151 . doi: 10.1016/j.joule.2019.01.004 http://dx.doi.org/10.1016/j.joule.2019.01.004
Li X. J. ; Sun G. P. ; Gong Y. F. ; Li Y. F. Recent research progress of n -type conjugated polymer acceptors and all-polymer solar cells . Chinese J. Polym. Sci. , 2023 , 41 ( 5 ), 640 - 651 . doi: 10.1007/s10118-023-2944-0 http://dx.doi.org/10.1007/s10118-023-2944-0
Zhang X. ; Gu X. B. ; Huang H. Low-cost nonfused-ring electron acceptors enabled by noncovalent conformational locks . Acc. Chem. Res. , 2024 , 57 ( 6 ), 981 - 991 . doi: 10.1021/acs.accounts.3c00813 http://dx.doi.org/10.1021/acs.accounts.3c00813
Mishra A. ; Sharma G. D. Harnessing the structure-performance relationships in designing non-fused ring acceptors for organic solar cells . Angew. Chem. Int. Ed. , 2023 , 62 ( 21 ), e 202219245 . doi: 10.1002/anie.202219245 http://dx.doi.org/10.1002/anie.202219245
Gao H. ; Han C. ; Wan X. ; Chen Y. Recent progress in non-fused ring electron acceptors for high performance organic solar cells . Ind. Chem. Mater. , 2023 , 1 ( 1 ), 60 - 78 . doi: 10.1039/d2im00037g http://dx.doi.org/10.1039/d2im00037g
Wang X. C. ; Zhang Y. ; Yang J. X. ; Shao J. J. ; Wang M. F. ; Li Y. F. Facile and cost-efficient synthesis of photovoltaic polymers via direct arylation coupling . Chinese J. Polym. Sci. , 2023 , 41 ( 11 ), 1663 - 1685 . doi: 10.1007/s10118-023-2990-7 http://dx.doi.org/10.1007/s10118-023-2990-7
蒋晓林 , 汪航 , 马雪晴 , 王逸凡 , 路皓 , 刘亚辉 , 薄志山 . 利用苯并二噻吩基聚合物给体和三芳胺基非稠环电子受体构筑简单高效有机太阳能电池 . 高分子学报 , 2024 , 55 ( 10 ): 1280 - 1289 .
Wan X. J. ; Li C. X. ; Zhang M. T. ; Chen Y. S. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism . Chem. Soc. Rev. , 2020 , 49 ( 9 ), 2828 - 2842 . doi: 10.1039/d0cs00084a http://dx.doi.org/10.1039/d0cs00084a
Yu R. N. ; Li S. ; Yuan H. Y. ; Yang Z. Z. ; Jin S. L. ; Tan Z. A. Research advances of nonfused ring acceptors for organic solar cells . J. Phys. Chem. Lett. , 2024 , 15 ( 10 ), 2781 - 2803 . doi: 10.1021/acs.jpclett.4c00153 http://dx.doi.org/10.1021/acs.jpclett.4c00153
Yang M. Q. ; Wei W. K. ; Zhou X. ; Wang Z. Q. ; Duan C. H. Non-fused ring acceptors for organic solar cells . Energy Mater. , 2022 , 1 ( 1 ), 100008 . doi: 10.20517/energymater.2021.08 http://dx.doi.org/10.20517/energymater.2021.08
Liu X. Z. ; Wei Y. N. ; Zhang X. ; Qin L. Q. ; Wei Z. X. ; Huang H. An A-D-a'-D-a type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency . Sci. China Chem. , 2021 , 64 ( 2 ), 228 - 231 . doi: 10.1007/s11426-020-9868-8 http://dx.doi.org/10.1007/s11426-020-9868-8
Li S. X. ; Zhan L. L. ; Lau T. K. ; Yu Z. P. ; Yang W. T. ; Andersen T. R. ; Fu Z. S. ; Li C. Z. ; Lu X. H. ; Shi M. M. ; Chen H. Z. Near-infrared nonfullerene acceptors based on benzobis(thiazole) unit for efficient organic solar cells with low energy loss . Small Meth. , 2019 , 3 ( 12 ), 1900531 . doi: 10.1002/smtd.201900531 http://dx.doi.org/10.1002/smtd.201900531
Bai Q. ; Liang Q. ; Li H. ; Sun H. ; Guo X. ; Niu L. Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells . Aggregate , 2022 , 3 ( 6 ), e 281 . doi: 10.1002/agt2.281 http://dx.doi.org/10.1002/agt2.281
刘慧 , 陈妍 , 陈娜 , 刘诗咏 . C―H键直接芳基化合成共轭长度连续递增的氯代低聚物非富勒烯受体 . 高分子学报 , 2023 , 54 ( 7 ), 1122 - 1130 . doi: 10.11777/j.issn1000-3304.2022.22398 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22398
Li S. X. ; Zhan L. L. ; Liu F. ; Ren J. ; Shi M. M. ; Li C. Z. ; Russell T. P. ; Chen H. Z. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures . Adv. Mater. , 2018 , 30 ( 6 ), 1705208 . doi: 10.1002/adma.201705208 http://dx.doi.org/10.1002/adma.201705208
He C. L. ; Li Y. K. ; Li S. X. ; Yu Z. P. ; Li Y. H. ; Lu X. H. ; Shi M. M. ; Li C. Z. ; Chen H. Z. Near-infrared electron acceptors with unfused architecture for efficient organic solar cells . ACS Appl. Mater. Interfaces , 2020 , 12 ( 14 ), 16700 - 16706 . doi: 10.1021/acsami.0c00837 http://dx.doi.org/10.1021/acsami.0c00837
Zhang D. X. ; Li C. Q. ; Qin L. Q. ; Chen H. ; Yu J. W. ; Wei Y. N. ; Liu X. Z. ; Zhang P. J. ; Wei P. Z. ; Gao P. F. ; Peng P. Q. ; Huang P. H. Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors . Angew. Chem. Int. Ed. , 2021 , 60 ( 32 ), 17720 - 17725 . doi: 10.1002/anie.202106753 http://dx.doi.org/10.1002/anie.202106753
Yang N. ; Cui Y. ; Xiao Y. ; Chen Z. H. ; Zhang T. ; Yu Y. ; Ren J. Z. ; Wang W. X. ; Ma L. J. ; Hou J. H. Completely non-fused low-cost acceptor enables organic photovoltaic cells with 17% efficiency . Angew. Chem. Int. Ed. , 2024 , 63 ( 22 ), e 202403753 . doi: 10.1002/anie.202403753 http://dx.doi.org/10.1002/anie.202403753
Zeng R. ; Zhang M. ; Wang X. D. ; Zhu L. ; Hao B. N. ; Zhong W. K. ; Zhou G. Q. ; Deng J. W. ; Tan S. K. ; Zhuang J. X. ; Han F. ; Zhang A. Y. ; Zhou Z. C. ; Xue X. N. ; Xu S. J. ; Xu J. Q. ; Liu Y. H. ; Lu H. ; Wu X. F. ; Wang C. ; Fink Z. ; Russell T. P. ; Jing H. ; Zhang Y. M. ; Bo Z. S. ; Liu F. Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization . Nat. Energy , 2024 , 9 , 1117 - 1128 . doi: 10.1038/s41560-024-01564-0 http://dx.doi.org/10.1038/s41560-024-01564-0
Shen Q. ; He C. ; Li S. ; Zuo L. ; Shi M. ; Chen H. Design of non-fused ring acceptors toward high-performance, stable, and low-cost organic photovoltaics . Acc. Mater. Res. , 2022 , 3 ( 6 ), 644 - 657 . doi: 10.1021/accountsmr.2c00052 http://dx.doi.org/10.1021/accountsmr.2c00052
Yuan X. ; Zhao Y. ; Xie D. ; Pan L. ; Liu X. ; Duan C. ; Huang F. ; Cao Y. Polythiophenes for organic solar cells with efficiency surpassing 17 %. Joule , 2022 , 6 ( 3 ), 647 - 661 . doi: 10.1016/j.joule.2022.02.006 http://dx.doi.org/10.1016/j.joule.2022.02.006
阚斌 , 万相见 , 李晨曦 , 陈永胜 . 寡聚物型A-D-A结构高效有机太阳能电池材料与器件 . 高分子学报 , 2021 , 52 ( 10 ), 1262 - 1282 . doi: 10.11777/j.issn1000-3304.2021.21088 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21088
Yuan X. Y. ; Zhao Y. L. ; Zhan T. ; Oh J. ; Zhou J. D. ; Li J. Y. ; Wang X. J. ; Wang Z. Q. ; Pang S. T. ; Cai P. ; Yang C. ; He Z. C. ; Xie Z. Q. ; Duan C. H. ; Huang F. ; Cao Y. A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells . Energy Environ. Sci. , 2021 , 14 ( 10 ), 5530 - 5540 . doi: 10.1039/d1ee01957k http://dx.doi.org/10.1039/d1ee01957k
张拨 , 余永高 , 刘治田 , 刘熙 , 段春晖 , 黄飞 . 基于3,4-二氰基噻吩的宽带隙共轭聚合物的设计合成与光伏应用 . 高分子学报 , 2020 , 51 ( 6 ), 620 - 631 . doi: 10.11777/j.issn1000-3304.2020.20011 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20011
Yuan X. Y. ; Zhao Y. L. ; Zhang Y. ; Xie D. S. ; Deng W. Y. ; Li J. Y. ; Wu H. B. ; Duan C. H. ; Huang F. ; Cao Y. Achieving 16% efficiency for polythiophene organic solar cells with a cyano-substituted polythiophene . Adv. Funct. Mater. , 2022 , 32 ( 24 ), 2201142 . doi: 10.1002/adfm.202201142 http://dx.doi.org/10.1002/adfm.202201142
Hu H. T. ; Ge J. F. ; Chen Z. Y. ; Song W. ; Xie L. ; Ge Z. Y. The asymmetric strategy of small-molecule materials for organic solar cells . Adv. Energy Mater. , 2024 , 14 ( 17 ), 2304242 . doi: 10.1002/aenm.202304242 http://dx.doi.org/10.1002/aenm.202304242
Xia X. X. ; Mei L. ; Sun R. ; Li S. X. ; Chen C. Y. ; Lin J. M. ; Min J. ; Chen H. Z. ; Chen X. K. ; Lu X. H. Uncovering the crystalline packing advantages of asymmetric Y-series acceptors for efficient additive-insensitive and intrinsically stable organic solar cells . Adv. Energy Mater. , 2024 , 14 ( 12 ), 2303785 . doi: 10.1002/aenm.202303785 http://dx.doi.org/10.1002/aenm.202303785
Huang J. F. ; Chen T. Y. ; Mei L. ; Wang M. T. ; Zhu Y. X. ; Cui J. T. ; Ouyang Y. N. ; Pan Y. W. ; Bi Z. Z. ; Ma W. ; Ma Z. F. ; Zhu H. M. ; Zhang C. F. ; Chen X. K. ; Chen H. Z. ; Zuo L. J. On the role of asymmetric molecular geometry in high-performance organic solar cells . Nat. Commun. , 2024 , 15 ( 1 ), 3287 . doi: 10.1038/s41467-024-47707-5 http://dx.doi.org/10.1038/s41467-024-47707-5
He C. L. ; Chen Z. ; Wang T. H. ; Shen Z. Q. ; Li Y. K. ; Zhou J. D. ; Yu J. W. ; Fang H. Y. ; Li Y. H. ; Li S. X. ; Lu X. H. ; Ma W. ; Gao F. ; Xie Z. Q. ; Coropceanu V. ; Zhu H. M. ; Bredas J. L. ; Zuo L. J. ; Chen H. Z. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18 %. Nat. Commun. , 2022 , 13 , 2598 . doi: 10.1038/s41467-022-30225-7 http://dx.doi.org/10.1038/s41467-022-30225-7
Cao J. R. ; Qu S. Y. ; Yang L. Q. ; Wang H. T. ; Du F. Q. ; Yu J. S. ; Tang W. H. Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells . Chem. Eng. J. , 2021 , 412 , 128770 . doi: 10.1016/j.cej.2021.128770 http://dx.doi.org/10.1016/j.cej.2021.128770
Hestand N. J. ; Spano F. C. Molecular aggregate photophysics beyond the kasha model: novel design principles for organic materials . Acc. Chem. Res. , 2017 , 50 ( 2 ), 341 - 350 . doi: 10.1021/acs.accounts.6b00576 http://dx.doi.org/10.1021/acs.accounts.6b00576
Pang S. T. ; Más-Montoya D. M. ; Xiao M. J. ; Duan P. C. ; Wang Z. F. ; Liu X. ; Janssen P. R. A. J. ; Yu P. G. ; Huang P. F. ; Cao P. Y. Adjusting aggregation modes and photophysical and photovoltaic properties of diketopyrrolopyrrole-based small molecules by introducing B←N bonds . Chem. Eur. J. , 2019 , 25 ( 2 ), 564 - 572 . doi: 10.1002/chem.201804020 http://dx.doi.org/10.1002/chem.201804020
Ji X. F. ; Wang T. ; Fu Q. ; Liu D. X. ; Wu Z. A. ; Zhang M. T. ; Woo H. Y. ; Liu Y. S. Deciphering the effects of molecular dipole moments on the photovoltaic performance of organic solar cells . Macromol. Rapid Commun. , 2023 , 44 ( 23 ), 2300213 . doi: 10.1002/marc.202300213 http://dx.doi.org/10.1002/marc.202300213
0
浏览量
153
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构